Identification and Antimicrobial Resistance of Dermatophilus congolensis from Cattle in Saint Kitts and Nevis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. D. congolensis: Isolation and Identification
2.3. Susceptibility Testing
3. Results
3.1. D. congolensis Isolation and Identification
3.2. Susceptibility of D. congolensis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oladunni, F.S.; Oyekunle, M.A.; Talabi, A.O.; Ojo, O.E.; Takeet, M.I.; Adam, M.; Raufu, I.A. Phylogenetic analysis of Dermatophilus congolensis isolated from naturally infected cattle in Abeokuta and Ilorin, Nigeria. Vet. Med. Sci. 2016, 2, 136–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frye, C.C.; Bei, D.; Parman, J.E.; Jones, J.; Houlihan, A.J.; Rumore, A. Efficacy of Tea Tree Oil in the Treatment of Equine Streptothricosis. J. Equine Vet. Sci. 2019, 79, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Carter, G.R.; Chengappa, M.M.; Roberts, A.W. Essentials of Veterinary Microbiology; Williams & Wilkins: Baltimore, MD, USA, 1995. [Google Scholar]
- Domingues, P.F.; Guerra, S.T.; Paula, C.L.D.; Alves, A.C.; Bolanos, C.A.D.; Morais, A.B.C.D.; Risseti, R.M.; Colhado, B.D.S.; Portilho, F.V.R.; Caxito, M.S.; et al. Successful therapy in unusual generalized Dermatophilus congolensis infection in a calf based on modified in vitro disk diffusion test. Arq. Do Inst. Biológico 2017, 84. [Google Scholar] [CrossRef] [Green Version]
- Amor, A.; Enríquez, A.; Corcuera, M.T.; Toro, C.; Herrero, D.; Baquero, M. Is Infection by Dermatophilus congolensis Underdiagnosed? J. Clin. Microbiol. 2011, 49, 449–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harman, M.; Sekin, S.; Akdeniz, S. Human dermatophilosis mimicking ringworm. Br. J. Dermatol. 2001, 145, 170–171. [Google Scholar] [CrossRef] [PubMed]
- Burd, E.M.; Juzych, L.A.; Rudrik, J.T.; Habib, F. Pustular dermatitis caused by Dermatophilus congolensis. J. Clin. Microbiol. 2007, 45, 1655–1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaria, L.T. Dermatophilus congolensis infection (Dermatophilosis) in animals and man! An update. Comp. Immunol. Microbiol. Infect. Dis. 1993, 16, 179–222. [Google Scholar] [CrossRef]
- Hermoso de Mendoza, J.; Arenas, A.; Rey, J.; Alonso, J.M.; Gil, M.C.; Naranjo, G.; Hermoso de Mendoza, M. In vitro studies of Dermatophilus congolensis antimicrobial susceptibility by determining minimal inhibitory and bacteriocidal concentrations. Br. Vet. J. 1994, 150, 189–196. [Google Scholar] [CrossRef]
- Markey, B.K. Clinical Veterinary Microbiology; Elsevier: Edinburgh, UK, 2013. [Google Scholar]
- García, A.; Martínez, R.; Benitez-Medina, J.M.; Risco, D.; García, W.L.; Rey, J.; Alonso, J.M.; de Mendoza, J.H. Development of a real-time SYBR Green PCR assay for the rapid detection of Dermatophilus congolensis. J. Vet. Sci. 2013, 14, 491–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals, 5th ed.; CLSI Guidel VET01; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals, 4th ed.; CLSI Guidel VET08; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Butaye, P.; Devriese, L.A.; Haesebrouck, F. Phenotypic distinction in Enterococcus faecium and Enterococcus faecalis strains between susceptibility and resistance to growth-enhancing antibiotics. Antimicrob. Agents Chemother. 1999, 43, 2569–2570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cameron, M.; Barkema, H.W.; De Buck, J.; De Vliegher, S.; Chaffer, M.; Lewis, J.; Keefe, G.P. Identification of bovine-associated coagulase-negative staphylococci by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a direct transfer protocol. J. Dairy Sci. 2017, 100, 2137–2147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aning, K.G.; Koney, E.B. Chemotherapy of dermatophilosis—A preliminary study. Trop. Anim. Health Prod. 1996, 28, 38S–43S, discussion 74S–86S. [Google Scholar] [CrossRef] [PubMed]
- Loeffler, A.; Lloyd, D.H.; Holliman, A. Identification and treatment of dermatophilosis in a Cumbrian cattle herd. Vet. Rec. 2004, 154, 635–636. [Google Scholar] [CrossRef] [PubMed]
- Scrivener, C.J.; Vizard, A.L. Efficacy of a single dose of erythromycin or penicillin/streptomycin for the treatment of ovine dermatophilosis. Aust. Vet. J. 1995, 72, 475–476. [Google Scholar] [CrossRef] [PubMed]
- Butaye, P.; Devriese, L.A.; Haesebrouck, F. Effects of different test conditions on MICs of food animal growth-promoting antibacterial agents for enterococci. J. Clin. Microbiol. 1998, 36, 1907–1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, A.V.; Hamilton-Miller, J.M.; Brumfitt, W. Diminished effect of gentamicin under anaerobic or hypercapnic conditions. Lancet 1976, 1, 447–449. [Google Scholar] [CrossRef]
- Walsh, F.; Carnegy, F.; Willcock, J.; Amyes, S. Comparative in vitro activity of telithromycin against macrolide-resistant and -susceptible Streptococcus pneumoniae, Moraxella catarrhalis and Haemophilus influenzae. J. Antimicrob. Chemother. 2004, 53, 793–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spangler, S.K.; Jacobs, M.R.; Appelbaum, P.C. Effect of CO2 on susceptibilities of anaerobes to erythromycin, azithromycin, clarithromycin, and roxithromycin. Antimicrob. Agents Chemother. 1994, 38, 211–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreasen, J.J.; Nissen, B.; Hartzen, S.H. Influence of carbon-dioxide tension and medium buffer concentration on medium pH and MIC values of erythromycin for Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923 in a micro-aerobic atmosphere. Acta Pathol. Microbiol. Immunol. Scand. B 1987, 95, 253–255. [Google Scholar] [CrossRef] [PubMed]
Antimicrobial | Number of Isolates with MIC in µg/mL | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
≤0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | >64 | |
Chloretetracycline | 7 | 20 | 1* | 2 | 4 | ||||||
Tetracycline | 28 * | 3 | 3 | ||||||||
Sulfadimethoxine | 1 | 2 | 3 | 7 * | 11 | 5 | 5 | ||||
Trimethoprim | 3 | 14 | 17 * | ||||||||
Danofloxacin | 24 | 10 * | |||||||||
Enrofloxacin | 34 * | ||||||||||
Ampicillin | 4 | 30 * | |||||||||
Amoxicillin | 1 * | 15 | 18 | ||||||||
Penicillin | 3 * | 4 | 27 | ||||||||
Tylosin | 1 * | 33 | |||||||||
Tulathromycin | 1 * | 33 | |||||||||
Neomycin | 1 * | 33 | |||||||||
Ceftiofur | 1 * | 1 | 15 | 17 | |||||||
Florfenicol | 5 * | 29 | |||||||||
Novobiocin | 15 | 19 * | |||||||||
Bacitracin | 2 | 31 * | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Branford, I.; Boyen, F.; Johnson, S.; Zayas, S.; Chapwanya, A.; Butaye, P.; Toka, F.N. Identification and Antimicrobial Resistance of Dermatophilus congolensis from Cattle in Saint Kitts and Nevis. Vet. Sci. 2021, 8, 135. https://doi.org/10.3390/vetsci8070135
Branford I, Boyen F, Johnson S, Zayas S, Chapwanya A, Butaye P, Toka FN. Identification and Antimicrobial Resistance of Dermatophilus congolensis from Cattle in Saint Kitts and Nevis. Veterinary Sciences. 2021; 8(7):135. https://doi.org/10.3390/vetsci8070135
Chicago/Turabian StyleBranford, Ian, Filip Boyen, Shevaun Johnson, Samantha Zayas, Aspinas Chapwanya, Patrick Butaye, and Felix N. Toka. 2021. "Identification and Antimicrobial Resistance of Dermatophilus congolensis from Cattle in Saint Kitts and Nevis" Veterinary Sciences 8, no. 7: 135. https://doi.org/10.3390/vetsci8070135