Effects of Litter Size and Parity Number on Mammary Secretions Including, Insulin-Like Growth Factor-1, Immunoglobulin G and Vitamin A of Black Bengal, Saanen and Their Crossbred Goats in Thailand
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Housing and General Management
2.2. Colostrum and Milk Collections
2.3. Analytical Procedure
2.3.1. Colostrum and Milk Compositions
2.3.2. IGF-1 and IgG Concentrations
2.3.3. Vitamin A Concentration
2.4. Statistical Analyses
3. Results
3.1. Goat’s Characteristics
3.2. Colostrum Compositions, IGF-1, IgG and Vit A Concentrations among Groups
3.3. Relationships between Colostrum Composition
3.4. Effects of Litter Size on Colostrum Compositions and Levels of IGF-1, IgG and Vit A
3.5. Effects of Parity on Colostrum Composition and Levels of IGF-1, IgG and Vit A
3.6. Transition from Colostrum to Milk
4. Discussion
4.1. Colostrum Composition, IGF-1, IgG and Vit A Contents in BB, BBSA and SA Goats
4.2. Effects of Litter Size on Composition, IGF-1, IgG and Vit A Contents
4.3. Effects of Parity Number on Composition, IGF-1, IgG and Vit A Contents
4.4. Transition from Colostrum to Milk
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katoh, K.; Takahashi, T.; Kobayashi, Y.; Obara, Y. Somatotropic axis and nutrition in young ruminants around weaning time. Asian-Australas. J. Anim. Sci. 2007, 20, 1156–1168. [Google Scholar] [CrossRef]
- Romero, T.; Beltran, M.C.; Rodriguez, A.; Marti De Olives, A.; Mollna, M.P. Goat colostrum quality: Litter size and lactation number effects. J. Dairy Sci. 2013, 96, 7526–7531. [Google Scholar] [CrossRef]
- Nuntapaitoon, M.; Suwimonteerabutr, J.; Am-in, N.; Tienthai, P.; Chuesiri, P.; Kedkovid, R.; Tummaruk, P. Impact of parity and housing conditions on concentration of immunoglobulin G in sow colostrum. Trop. Anim. Health Prod. 2019, 51, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Magistrelli, D.; Valli, A.; Rosi, F. Insulin and IGF-1 in goat milk: Influence of diet. Ital. J. Anim. Sci. 2005, 4 (Suppl. 2), 386–388. [Google Scholar] [CrossRef]
- Kang, S.H.; Kim, J.U.; Kim, Y.; Han, K.S.; Lee, W.J.; Imm, J.Y.; Kim, S.H. Changes in the levels of insulin-like growth factors (IGF-I and IGF-II) in bovine milk according to the lactation period and parity. Asian-Australas. J. Anim. Sci. 2007, 20, 119–123. [Google Scholar] [CrossRef]
- Castro, N.; Capote, J.; Batista, M.; Bruckmaier, R.M.; Arguello, A. Effects of induced parturition in goats on immunoglobulin G and chitotriosidase activity in colostrum and plasma and on plasma concentrations of prolactin. Domest. Anim. Endocrin. 2011, 40, 192–196. [Google Scholar] [CrossRef]
- Murney, R.; Stelwagen, K.; Wheeler, T.; Margerison, J.; Singh, K. The effects of milking frequency on insulin-like growth factor I signaling within the mammary gland of dairy cows. J. Dairy Sci. 2015, 98, 5422–5428. [Google Scholar] [CrossRef] [PubMed]
- Kessler, E.C.; Bruckmaier, R.M.; Gross, J.J. Immunoglobulin G content and colostrum composition of different goat and sheep breeds in Switzerland and Germany. J. Dairy Sci. 2019, 102, 5542–5547. [Google Scholar] [CrossRef]
- Miah, G.; Das, A.; Bilkis, T.; Momin, M.; Uddin, A.; Alim, A.; Mahmud, M.S.; Miazi, O.F. Comparative study on productive and reproductive traits of Black Bengal and Jumnapari goats under semi-intensive condition. Sci. Res. J. 2016, 4, 1–7. [Google Scholar]
- Husain, S.S.; Horst, P.; Islam, A.B.M.M. Effects of different factors on pre-weaning survivability of Black Bengal kids. Small Rumin. Res. 1995, 18, 1–5. [Google Scholar] [CrossRef]
- Pralomkarn, W.; Supakorn, C.; Boonsanit, D. Knowledge in goats in Thailand. Walailak J. Sci. Technol. 2012, 9, 93–105. [Google Scholar]
- Gond, V.K.; Gangwar, S.K.; Sah, R.K. To study the growth performance of crossbred goat (Black Bengal X Boer) in Bilar. J. Pharmacogn. Phytochem. 2019, SP5, 230–232. [Google Scholar]
- Lakshanasomya, N. Quantitative determination of vitamin A in infant food. Bull. Dep. Med. Sci. 1995, 37, 57–64. [Google Scholar]
- AICRP. All India Coordinated Research Project on Goat Improvement. Research Activities Carried Out. Available online: https://pcgoatcirg.icar.gov.in/home/research_activities (accessed on 10 November 2020).
- Blum, J.W.; Hammon, H. Colostrum effect on the gastrointestinal tract, and on nutritional, endocrine and metabolic parameters in neonatal calves. Livest. Prod. Sci. 2000, 66, 151–159. [Google Scholar] [CrossRef]
- Ahmadi, M.; Boldura, O.; Milovanov, C.; Dronca, D.; Mircu, C.; Hutu, I.; Popescu, S.; Padeanu, I.; Tulcan, C. Colostrum from different animal species- A product of health status enhancement. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Anim. Sci. Biotechnol. 2016, 73, 95–100. [Google Scholar] [CrossRef]
- Yang, X.-Y.; Chen, J.-P.; Zhang, F.-X. Research on the chemical composition of Saanen goat colostrum. Int. J. Dairy Technol. 2009, 6, 500–503. [Google Scholar] [CrossRef]
- Kosum, N.; Taskin, T.; Kinik, O.; Kandemir, C.; Akan, E. A study on the change in postpartum immunoglobulins of goats and kids. J. Anim. Prod. 2018, 59, 1–8. [Google Scholar]
- Georgiev, P. Effect of colostrum insulin-like growth factors on growth and development of neonatal calves. Bulg. J. Vet. Med. 2008, 11, 75–88. [Google Scholar]
- Kumar, H.; Kumar, N.; Seth, R.; Goyal, A.K. Chemical and immunological quality of goat colostrum: Effect of breed and milking frequency. Indian J. Dairy Sci. 2014, 67, 482–486. [Google Scholar]
- Castro, N.; Capote, J.; Morales, L.; Quesada, E.; Briggs, H.; Argüello, A. Short communication: Addition of milk replace to colostrum whey: Effect on immunoglobulin G passive transfer in Majorera kids. J. Dairy Sci. 2007, 90, 2347–2349. [Google Scholar] [CrossRef]
- Caja, G.; Salama, A.A.K.; Such, X. Omitting the dry-off period negatively affects colostrum and milk yield in dairy goats. J. Dairy Sci. 2006, 89, 4220–4228. [Google Scholar] [CrossRef]
- Debier, C.; Pottier, J.; Goffe, C.H.; Larondelle, Y. Present knowledge and unexpected behaviours of vitamins A and E in colostrum and milk. Livest. Prod. Sci. 2005, 98, 135–147. [Google Scholar] [CrossRef]
- Johnston, L.A.; Chew, B.P. Peripartum changes of plasma and milk vitamin A and beta-carotene among dairy cows with or without mastitis. J. Dairy Sci. 1984, 67, 1832–1840. [Google Scholar] [CrossRef]
- Swanson, K.S.; Merchen, N.R.; Erdman, J.W., Jr.; Drackley, J.K.; Orias, F.; Morin, D.E.; Haddad, M.F. Influence of dietary vitamin A content on serum and liver vitamin A concentrations and health in pre-ruminant Holstein calves fed milk replacer. J. Dairy Sci. 2000, 3, 2027–2036. [Google Scholar] [CrossRef]
- Blum, J.W.; Hadorn, U.; Sallmann, H.; Schuep, W. Delaying colostrum intake by one day impairs plasma lipid, essential fatty acid, carotene, retinol and α-tocopherol status. J. Nutr. 1997, 127, 2024–2027. [Google Scholar] [CrossRef]
- Michlova, T.; Dragounova, H.; Hornickkova, S.; Hejtmankova, A. Factors influencing the content of vitamin A and E in sheep and goat milk. Czech. J. Food. Sci. 2015, 33, 58–65. [Google Scholar] [CrossRef]
- Arguello, A.; Castro, N.; Alvarez, S.; Capote, J. Effects of the number of lactations and litter size on chemical composition and physical characteristics of goat colostrum. Small Rumin. Res. 2006, 64, 53–59. [Google Scholar] [CrossRef]
- Csapo, J.; Csapo-Kiss, Z.; Martin, T.G.; Szentpeteri, J.; Wolf, G. Composition of colostrum from goats, ewes and cows producing twins. Int. Daily J. 1994, 4, 445–458. [Google Scholar] [CrossRef]
- Aköz, M.; Aydın, I.; Çitil, Ö.B. The effect of litter size and gender on immunoglobulins and oxidative stress in Damascus goats. Eurasian J. Vet. Sci. 2017, 33, 208–213. [Google Scholar] [CrossRef]
- Campbell, P.G.; Baumrucker, C.R. Insulin-like growth factor-I and its association with binding proteins in bovine milk. J. Endocrinol. 1989, 120, 21–29. [Google Scholar] [CrossRef]
- Kumagai, H.; Chaipan, Y.; Mitani, K. Effects of periparturient vitamin A supplementation on vitamin A concentrations incolostrum and milk from dairy cows, and plasma retinolconcentrations, feed intake and growth of their calves. Anim. Sci. J. 2001, 72, 126–133. [Google Scholar]
- Wang, M.; Ikeda, S.; Yoshioka, H.; Nagase, H.; Kitamura, S.; Itoyama, E.; Murakami, H.; Sugimoto, M.; Kume, S. Relationships between immunoglobulin and fat-soluble vitamins in colostrum of Japanese Black multiparous cows. Anim. Sci. J. 2015, 86, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Castellano, L.E.; Almeida, A.M.; Renaut, J.; Arguello, A.; Castro, N.A. Proteomics study of colostrum and milk from the two major small ruminant dairy breeds from the Canary Islands: A bovine milk comparison perspective. J. Dairy Res. 2016, 83, 366–374. [Google Scholar] [CrossRef]
- Sánchez-Macías, D.; Moreno-Indias, I.; Castro, N.; Morales-delaNuez, A.; Arguello, A. From goat colostrum to milk: Physical, chemical, and immune evolution from partum to 90 days postpartum. J. Dairy Sci. 2014, 97, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Langer, P. Difference s in the composition of colostrum and milk in Eutherians reflect differences in immunoglobulin transfer. J. Mammal. 2009, 90, 332–339. [Google Scholar] [CrossRef]
- Fox, P.F. Lactose: Chemistry and properties. In Advanced Dairy Chemistry, Lactose, Water, Salts and Minor Constituents; McSweeney, P.L.H., Fox, P.F., Eds.; Springer: New York, NY, USA, 2009; Volume 3, pp. 1–15. [Google Scholar]
- Rashid, A.A.; Yousaf, M.; Salaryia, A.M.; Ali, S. Studies on the nutritional composition of goat (Beetal) colostrum and its mature milk. Pak. J. Biochem. Mol. Biol. 2012, 45, 113–116. [Google Scholar]
- Meyer, Z.; Hoflich, C.; Wirthgen, E.; Olm, S.; Hammon, H.M.; Hoeflich, A. Analysis of the IGF-system in milk from farm animals-occurrence, regulation, and biomarker potential. Growth Horm. IGF Res. 2017, 35, 1–7. [Google Scholar] [CrossRef]
- Elfstrand, L.; Lindmark-Mannson, H.; Paulsson, M.; Nyberg, L.; Akesson, B. Immunoglobulins, growth factors and growth hormone in bovine colostrum and the effects of processing. Int. Dairy J. 2002, 12, 879–887. [Google Scholar] [CrossRef]
- Abd El-Fattah, A.M.; Abd Rabo, F.H.; El-Dieb, S.M.; El-Kashef, H.A. Changes in composition of colostrum of Egyptian buffaloes and Holstein cows. BMC Vet. Res. 2012, 8, 19. [Google Scholar] [CrossRef]
- Pehlivan, E. Relationship between insulin-like growth factor-1 (IGF-1) concentrations and body measurements and climatic factors in prepuberty goats kids. Arch. Anim. Breed. 2019, 62, 241–248. [Google Scholar] [CrossRef]
- Acuti, G.; Todini, L.; Malfatti, A.; Antonini, M.; Barbato, O.; Trabalza-Marinucci, M. Effects of field bean (Vicia faba L. var. minor) dietary supplementation on plasma thyroid hormones, insulin, insulin-like growth factor-1 concentrations and mohair characteristics in growing Angora goat kids. J. Anim. Physiol. Anim. Nutr. 2009, 93, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Sawaya, W.N.; Khalil, J.K.; Al-Shalhat, A.F. Mineral and vitamin content of goat’s milk. J. Am. Diet Assoc. 1984, 84, 433–435. [Google Scholar] [PubMed]
- Mi, J.D.; Zhou, J.W.; Ding, L.M.; Wang, L.; Long, R.J. Short communication: Changes in the composition of yak colostrum during the first week of lactation. J. Dairy Sci. 2016, 99, 818–824. [Google Scholar] [CrossRef] [PubMed]
Diet | Concentrate | Pangola Hay | Napier Grass |
---|---|---|---|
Dry matter (%) | 92.01 | 92.51 | 19.62 |
Chemical composition, (g/100g DM) | |||
Ash | 10.11 | 8.37 | 9.68 |
Organic matter | 89.89 | 91.63 | 90.32 |
Crude protein | 17.60 | 4.53 | 10.70 |
Crude fat | 4.52 | 1.61 | 1.99 |
Crude fibre | 14.80 | ||
Neutral detergent fibre | 71.82 | 69.93 | |
Acid detergent fibre | 45.61 | 46.89 | |
Calcium | 2.54 | 1.50 | 1.43 |
Phosphorus | 0.66 | 0.26 | 0.25 |
Digestible energy, MJ/kg | 11.13 | ||
Metabolizable energy, MJ/kg | 10.90 |
Group | |||
---|---|---|---|
Compositions | BB | BBSA | SA |
Fat (g/100 g) | 7.0 ± 0.6 | 7.4 ± 1.3 | 7.1 ± 1.0 |
Protein (g/100 g) | 12.1 ± 0.6 | 11.0 ±1.3 | 12.2 ± 0.9 |
Lactose (g/100 g) | 3.6 ± 0.1 | 3.8 ± 0.2 | 3.5 ± 0.1 |
TS (g/100 g) | 23.4 ± 0.7 | 23.3 ± 1.5 | 23.6 ± 1.1 |
IGF-1 (ng/mL) | 340.7 ± 85.5 b | 983.0 ± 163.6 a | 417.1 ± 93.9 b |
IgG (mg/mL) | 8.2 ± 0.9 b | 12.9 ± 1.7 a | 12.9 ± 1.0 a |
Vit A (µg/100 g) | 388.9 ± 84.3 b | 787.2 ± 152.6 a | 522.8 ± 96.9 ab |
Compositions | Protein | Lactose | TS | IGF-1 | IgG | Vit A |
---|---|---|---|---|---|---|
Fat | −0.287 | −0.151 | 0.666 *** | 0.159 | 0.105 | 0.498 ** |
Protein | −0.654 *** | 0.512 ** | 0.0418 | −0.0815 | −0.361 | |
Lactose | −0.569 *** | 0.0696 | −0.00771 | 0.0675 | ||
TS | 0.178 | 0.00580 | 0.142 | |||
IGF-1 | 0.200 | 0.299 | ||||
IgG | 0.157 |
Litter Size | ||
---|---|---|
Compositions | 1 | 2 |
Fat (g/100 g) | 7.3 ± 1.0 | 7.1 ± 0.6 |
Protein (g/100 g) | 11.2 ± 0.9 | 12.4 ± 0.6 |
Lactose (g/100 g) | 3.7 ± 0.1 | 3.5 ± 0.1 |
TS (g/100 g) | 23.1 ± 1.1 | 23.9 ± 0.7 |
IGF-1 (ng/mL) | 639.5 ± 113.6 | 521.1 ± 63.1 |
IgG (mg/mL) | 11.7 ± 1.2 | 11.0 ± 0.6 |
Vit A (µg/100 g) | 558.0 ± 115.7 | 574.6 ± 65.4 |
Parity | |||
---|---|---|---|
Composition | 1–3 | 4–6 | >6 |
Fat (g/100 g) | 6.4 ± 0.7 | 7.1 ± 0.9 | 8.1 ± 1.3 |
Protein (g/100 g) | 11.4 ± 0.7 | 12.1 ± 0.8 | 11.8 ± 1.2 |
Lactose (g/100 g) | 3.7 ± 0. | 3.7 ± 0.1 | 3.4 ± 0.2 |
TS (g/100 g) | 22.3 ± 0.8 | 23.8 ± 1.0 | 24.3 ± 1.4 |
IGF-1 (ng/mL) | 403.9 ± 92.1 | 586.7 ± 108.8 | 750.2 ± 139.0 |
IgG (mg/mL) | 8.8 ± 0.9 b | 11.5 ± 1.1 ab | 13.9 ± 1.4 a |
Vit A (µg/100 g) | 530.8 ± 91.1 | 571.2 ± 102.3 | 696.9 ± 136.3 |
Group | Day | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Composition | BB | BBSA | SA | SEM | 0 | 4 | 7 | SEM | Group | Day | Group X Day |
Fat (g/100 g) | 7.3 | 5.8 | 6.2 | 0.7 | 6.7 | 6.3 | 6.3 | 0.6 | 0.167 | 0.738 | 0.517 |
Protein (g/100 g) | 9.3 | 7.5 | 7.8 | 0.7 | 12.0 x | 7.1 y | 5.5 y | 0.7 | 0.095 | <0.001 | 0.833 |
Lactose (g/100 g) | 3.9 b | 4.2 a | 4.0 ab | 0.1 | 3.6 y | 4.1 x | 4.3 x | 0.1 | 0.088 | <0.001 | 0.844 |
TS (g/100 g) | 21.5 a | 18.6 b | 19.2 b | 0.9 | 23.3 x | 18.7 y | 17.3 y | 0.9 | 0.024 | <0.001 | 0.452 |
IGF-1 (ng/mL) | 177.4 a | 268.2 b | 139.7 a | 34.2 | 515.8 x | 37.3 y | 32.3 y | 32.4 | 0.028 | <0.001 | 0.004 |
IgG (mg/mL) | 3.522 | 3.41 | 4.25 | 0.40 | 10.75 x | 0.24 y | 0.18 y | 0.38 | 0.262 | <0.001 | 0.092 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buranakarl, C.; Thammacharoen, S.; Semsirmboon, S.; Sutayatram, S.; Nuntapaitoon, M.; Dissayabutra, T.; Katoh, K. Effects of Litter Size and Parity Number on Mammary Secretions Including, Insulin-Like Growth Factor-1, Immunoglobulin G and Vitamin A of Black Bengal, Saanen and Their Crossbred Goats in Thailand. Vet. Sci. 2021, 8, 95. https://doi.org/10.3390/vetsci8060095
Buranakarl C, Thammacharoen S, Semsirmboon S, Sutayatram S, Nuntapaitoon M, Dissayabutra T, Katoh K. Effects of Litter Size and Parity Number on Mammary Secretions Including, Insulin-Like Growth Factor-1, Immunoglobulin G and Vitamin A of Black Bengal, Saanen and Their Crossbred Goats in Thailand. Veterinary Sciences. 2021; 8(6):95. https://doi.org/10.3390/vetsci8060095
Chicago/Turabian StyleBuranakarl, Chollada, Sumpun Thammacharoen, Sapon Semsirmboon, Saikaew Sutayatram, Morakot Nuntapaitoon, Thasinus Dissayabutra, and Kazuo Katoh. 2021. "Effects of Litter Size and Parity Number on Mammary Secretions Including, Insulin-Like Growth Factor-1, Immunoglobulin G and Vitamin A of Black Bengal, Saanen and Their Crossbred Goats in Thailand" Veterinary Sciences 8, no. 6: 95. https://doi.org/10.3390/vetsci8060095
APA StyleBuranakarl, C., Thammacharoen, S., Semsirmboon, S., Sutayatram, S., Nuntapaitoon, M., Dissayabutra, T., & Katoh, K. (2021). Effects of Litter Size and Parity Number on Mammary Secretions Including, Insulin-Like Growth Factor-1, Immunoglobulin G and Vitamin A of Black Bengal, Saanen and Their Crossbred Goats in Thailand. Veterinary Sciences, 8(6), 95. https://doi.org/10.3390/vetsci8060095