Effects of Litter Size and Parity Number on Mammary Secretions Including, Insulin-Like Growth Factor-1, Immunoglobulin G and Vitamin A of Black Bengal, Saanen and Their Crossbred Goats in Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Housing and General Management
2.2. Colostrum and Milk Collections
2.3. Analytical Procedure
2.3.1. Colostrum and Milk Compositions
2.3.2. IGF-1 and IgG Concentrations
2.3.3. Vitamin A Concentration
2.4. Statistical Analyses
3. Results
3.1. Goat’s Characteristics
3.2. Colostrum Compositions, IGF-1, IgG and Vit A Concentrations among Groups
3.3. Relationships between Colostrum Composition
3.4. Effects of Litter Size on Colostrum Compositions and Levels of IGF-1, IgG and Vit A
3.5. Effects of Parity on Colostrum Composition and Levels of IGF-1, IgG and Vit A
3.6. Transition from Colostrum to Milk
4. Discussion
4.1. Colostrum Composition, IGF-1, IgG and Vit A Contents in BB, BBSA and SA Goats
4.2. Effects of Litter Size on Composition, IGF-1, IgG and Vit A Contents
4.3. Effects of Parity Number on Composition, IGF-1, IgG and Vit A Contents
4.4. Transition from Colostrum to Milk
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katoh, K.; Takahashi, T.; Kobayashi, Y.; Obara, Y. Somatotropic axis and nutrition in young ruminants around weaning time. Asian-Australas. J. Anim. Sci. 2007, 20, 1156–1168. [Google Scholar] [CrossRef]
- Romero, T.; Beltran, M.C.; Rodriguez, A.; Marti De Olives, A.; Mollna, M.P. Goat colostrum quality: Litter size and lactation number effects. J. Dairy Sci. 2013, 96, 7526–7531. [Google Scholar] [CrossRef] [Green Version]
- Nuntapaitoon, M.; Suwimonteerabutr, J.; Am-in, N.; Tienthai, P.; Chuesiri, P.; Kedkovid, R.; Tummaruk, P. Impact of parity and housing conditions on concentration of immunoglobulin G in sow colostrum. Trop. Anim. Health Prod. 2019, 51, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Magistrelli, D.; Valli, A.; Rosi, F. Insulin and IGF-1 in goat milk: Influence of diet. Ital. J. Anim. Sci. 2005, 4 (Suppl. 2), 386–388. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.H.; Kim, J.U.; Kim, Y.; Han, K.S.; Lee, W.J.; Imm, J.Y.; Kim, S.H. Changes in the levels of insulin-like growth factors (IGF-I and IGF-II) in bovine milk according to the lactation period and parity. Asian-Australas. J. Anim. Sci. 2007, 20, 119–123. [Google Scholar] [CrossRef]
- Castro, N.; Capote, J.; Batista, M.; Bruckmaier, R.M.; Arguello, A. Effects of induced parturition in goats on immunoglobulin G and chitotriosidase activity in colostrum and plasma and on plasma concentrations of prolactin. Domest. Anim. Endocrin. 2011, 40, 192–196. [Google Scholar] [CrossRef]
- Murney, R.; Stelwagen, K.; Wheeler, T.; Margerison, J.; Singh, K. The effects of milking frequency on insulin-like growth factor I signaling within the mammary gland of dairy cows. J. Dairy Sci. 2015, 98, 5422–5428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessler, E.C.; Bruckmaier, R.M.; Gross, J.J. Immunoglobulin G content and colostrum composition of different goat and sheep breeds in Switzerland and Germany. J. Dairy Sci. 2019, 102, 5542–5547. [Google Scholar] [CrossRef]
- Miah, G.; Das, A.; Bilkis, T.; Momin, M.; Uddin, A.; Alim, A.; Mahmud, M.S.; Miazi, O.F. Comparative study on productive and reproductive traits of Black Bengal and Jumnapari goats under semi-intensive condition. Sci. Res. J. 2016, 4, 1–7. [Google Scholar]
- Husain, S.S.; Horst, P.; Islam, A.B.M.M. Effects of different factors on pre-weaning survivability of Black Bengal kids. Small Rumin. Res. 1995, 18, 1–5. [Google Scholar] [CrossRef]
- Pralomkarn, W.; Supakorn, C.; Boonsanit, D. Knowledge in goats in Thailand. Walailak J. Sci. Technol. 2012, 9, 93–105. [Google Scholar]
- Gond, V.K.; Gangwar, S.K.; Sah, R.K. To study the growth performance of crossbred goat (Black Bengal X Boer) in Bilar. J. Pharmacogn. Phytochem. 2019, SP5, 230–232. [Google Scholar]
- Lakshanasomya, N. Quantitative determination of vitamin A in infant food. Bull. Dep. Med. Sci. 1995, 37, 57–64. [Google Scholar]
- AICRP. All India Coordinated Research Project on Goat Improvement. Research Activities Carried Out. Available online: https://pcgoatcirg.icar.gov.in/home/research_activities (accessed on 10 November 2020).
- Blum, J.W.; Hammon, H. Colostrum effect on the gastrointestinal tract, and on nutritional, endocrine and metabolic parameters in neonatal calves. Livest. Prod. Sci. 2000, 66, 151–159. [Google Scholar] [CrossRef]
- Ahmadi, M.; Boldura, O.; Milovanov, C.; Dronca, D.; Mircu, C.; Hutu, I.; Popescu, S.; Padeanu, I.; Tulcan, C. Colostrum from different animal species- A product of health status enhancement. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Anim. Sci. Biotechnol. 2016, 73, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.-Y.; Chen, J.-P.; Zhang, F.-X. Research on the chemical composition of Saanen goat colostrum. Int. J. Dairy Technol. 2009, 6, 500–503. [Google Scholar] [CrossRef]
- Kosum, N.; Taskin, T.; Kinik, O.; Kandemir, C.; Akan, E. A study on the change in postpartum immunoglobulins of goats and kids. J. Anim. Prod. 2018, 59, 1–8. [Google Scholar]
- Georgiev, P. Effect of colostrum insulin-like growth factors on growth and development of neonatal calves. Bulg. J. Vet. Med. 2008, 11, 75–88. [Google Scholar]
- Kumar, H.; Kumar, N.; Seth, R.; Goyal, A.K. Chemical and immunological quality of goat colostrum: Effect of breed and milking frequency. Indian J. Dairy Sci. 2014, 67, 482–486. [Google Scholar]
- Castro, N.; Capote, J.; Morales, L.; Quesada, E.; Briggs, H.; Argüello, A. Short communication: Addition of milk replace to colostrum whey: Effect on immunoglobulin G passive transfer in Majorera kids. J. Dairy Sci. 2007, 90, 2347–2349. [Google Scholar] [CrossRef]
- Caja, G.; Salama, A.A.K.; Such, X. Omitting the dry-off period negatively affects colostrum and milk yield in dairy goats. J. Dairy Sci. 2006, 89, 4220–4228. [Google Scholar] [CrossRef] [Green Version]
- Debier, C.; Pottier, J.; Goffe, C.H.; Larondelle, Y. Present knowledge and unexpected behaviours of vitamins A and E in colostrum and milk. Livest. Prod. Sci. 2005, 98, 135–147. [Google Scholar] [CrossRef]
- Johnston, L.A.; Chew, B.P. Peripartum changes of plasma and milk vitamin A and beta-carotene among dairy cows with or without mastitis. J. Dairy Sci. 1984, 67, 1832–1840. [Google Scholar] [CrossRef]
- Swanson, K.S.; Merchen, N.R.; Erdman, J.W., Jr.; Drackley, J.K.; Orias, F.; Morin, D.E.; Haddad, M.F. Influence of dietary vitamin A content on serum and liver vitamin A concentrations and health in pre-ruminant Holstein calves fed milk replacer. J. Dairy Sci. 2000, 3, 2027–2036. [Google Scholar] [CrossRef]
- Blum, J.W.; Hadorn, U.; Sallmann, H.; Schuep, W. Delaying colostrum intake by one day impairs plasma lipid, essential fatty acid, carotene, retinol and α-tocopherol status. J. Nutr. 1997, 127, 2024–2027. [Google Scholar] [CrossRef] [Green Version]
- Michlova, T.; Dragounova, H.; Hornickkova, S.; Hejtmankova, A. Factors influencing the content of vitamin A and E in sheep and goat milk. Czech. J. Food. Sci. 2015, 33, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Arguello, A.; Castro, N.; Alvarez, S.; Capote, J. Effects of the number of lactations and litter size on chemical composition and physical characteristics of goat colostrum. Small Rumin. Res. 2006, 64, 53–59. [Google Scholar] [CrossRef]
- Csapo, J.; Csapo-Kiss, Z.; Martin, T.G.; Szentpeteri, J.; Wolf, G. Composition of colostrum from goats, ewes and cows producing twins. Int. Daily J. 1994, 4, 445–458. [Google Scholar] [CrossRef]
- Aköz, M.; Aydın, I.; Çitil, Ö.B. The effect of litter size and gender on immunoglobulins and oxidative stress in Damascus goats. Eurasian J. Vet. Sci. 2017, 33, 208–213. [Google Scholar] [CrossRef]
- Campbell, P.G.; Baumrucker, C.R. Insulin-like growth factor-I and its association with binding proteins in bovine milk. J. Endocrinol. 1989, 120, 21–29. [Google Scholar] [CrossRef]
- Kumagai, H.; Chaipan, Y.; Mitani, K. Effects of periparturient vitamin A supplementation on vitamin A concentrations incolostrum and milk from dairy cows, and plasma retinolconcentrations, feed intake and growth of their calves. Anim. Sci. J. 2001, 72, 126–133. [Google Scholar]
- Wang, M.; Ikeda, S.; Yoshioka, H.; Nagase, H.; Kitamura, S.; Itoyama, E.; Murakami, H.; Sugimoto, M.; Kume, S. Relationships between immunoglobulin and fat-soluble vitamins in colostrum of Japanese Black multiparous cows. Anim. Sci. J. 2015, 86, 673–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez-Castellano, L.E.; Almeida, A.M.; Renaut, J.; Arguello, A.; Castro, N.A. Proteomics study of colostrum and milk from the two major small ruminant dairy breeds from the Canary Islands: A bovine milk comparison perspective. J. Dairy Res. 2016, 83, 366–374. [Google Scholar] [CrossRef]
- Sánchez-Macías, D.; Moreno-Indias, I.; Castro, N.; Morales-delaNuez, A.; Arguello, A. From goat colostrum to milk: Physical, chemical, and immune evolution from partum to 90 days postpartum. J. Dairy Sci. 2014, 97, 10–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langer, P. Difference s in the composition of colostrum and milk in Eutherians reflect differences in immunoglobulin transfer. J. Mammal. 2009, 90, 332–339. [Google Scholar] [CrossRef] [Green Version]
- Fox, P.F. Lactose: Chemistry and properties. In Advanced Dairy Chemistry, Lactose, Water, Salts and Minor Constituents; McSweeney, P.L.H., Fox, P.F., Eds.; Springer: New York, NY, USA, 2009; Volume 3, pp. 1–15. [Google Scholar]
- Rashid, A.A.; Yousaf, M.; Salaryia, A.M.; Ali, S. Studies on the nutritional composition of goat (Beetal) colostrum and its mature milk. Pak. J. Biochem. Mol. Biol. 2012, 45, 113–116. [Google Scholar]
- Meyer, Z.; Hoflich, C.; Wirthgen, E.; Olm, S.; Hammon, H.M.; Hoeflich, A. Analysis of the IGF-system in milk from farm animals-occurrence, regulation, and biomarker potential. Growth Horm. IGF Res. 2017, 35, 1–7. [Google Scholar] [CrossRef]
- Elfstrand, L.; Lindmark-Mannson, H.; Paulsson, M.; Nyberg, L.; Akesson, B. Immunoglobulins, growth factors and growth hormone in bovine colostrum and the effects of processing. Int. Dairy J. 2002, 12, 879–887. [Google Scholar] [CrossRef]
- Abd El-Fattah, A.M.; Abd Rabo, F.H.; El-Dieb, S.M.; El-Kashef, H.A. Changes in composition of colostrum of Egyptian buffaloes and Holstein cows. BMC Vet. Res. 2012, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Pehlivan, E. Relationship between insulin-like growth factor-1 (IGF-1) concentrations and body measurements and climatic factors in prepuberty goats kids. Arch. Anim. Breed. 2019, 62, 241–248. [Google Scholar] [CrossRef]
- Acuti, G.; Todini, L.; Malfatti, A.; Antonini, M.; Barbato, O.; Trabalza-Marinucci, M. Effects of field bean (Vicia faba L. var. minor) dietary supplementation on plasma thyroid hormones, insulin, insulin-like growth factor-1 concentrations and mohair characteristics in growing Angora goat kids. J. Anim. Physiol. Anim. Nutr. 2009, 93, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Sawaya, W.N.; Khalil, J.K.; Al-Shalhat, A.F. Mineral and vitamin content of goat’s milk. J. Am. Diet Assoc. 1984, 84, 433–435. [Google Scholar] [PubMed]
- Mi, J.D.; Zhou, J.W.; Ding, L.M.; Wang, L.; Long, R.J. Short communication: Changes in the composition of yak colostrum during the first week of lactation. J. Dairy Sci. 2016, 99, 818–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Diet | Concentrate | Pangola Hay | Napier Grass |
---|---|---|---|
Dry matter (%) | 92.01 | 92.51 | 19.62 |
Chemical composition, (g/100g DM) | |||
Ash | 10.11 | 8.37 | 9.68 |
Organic matter | 89.89 | 91.63 | 90.32 |
Crude protein | 17.60 | 4.53 | 10.70 |
Crude fat | 4.52 | 1.61 | 1.99 |
Crude fibre | 14.80 | ||
Neutral detergent fibre | 71.82 | 69.93 | |
Acid detergent fibre | 45.61 | 46.89 | |
Calcium | 2.54 | 1.50 | 1.43 |
Phosphorus | 0.66 | 0.26 | 0.25 |
Digestible energy, MJ/kg | 11.13 | ||
Metabolizable energy, MJ/kg | 10.90 |
Group | |||
---|---|---|---|
Compositions | BB | BBSA | SA |
Fat (g/100 g) | 7.0 ± 0.6 | 7.4 ± 1.3 | 7.1 ± 1.0 |
Protein (g/100 g) | 12.1 ± 0.6 | 11.0 ±1.3 | 12.2 ± 0.9 |
Lactose (g/100 g) | 3.6 ± 0.1 | 3.8 ± 0.2 | 3.5 ± 0.1 |
TS (g/100 g) | 23.4 ± 0.7 | 23.3 ± 1.5 | 23.6 ± 1.1 |
IGF-1 (ng/mL) | 340.7 ± 85.5 b | 983.0 ± 163.6 a | 417.1 ± 93.9 b |
IgG (mg/mL) | 8.2 ± 0.9 b | 12.9 ± 1.7 a | 12.9 ± 1.0 a |
Vit A (µg/100 g) | 388.9 ± 84.3 b | 787.2 ± 152.6 a | 522.8 ± 96.9 ab |
Compositions | Protein | Lactose | TS | IGF-1 | IgG | Vit A |
---|---|---|---|---|---|---|
Fat | −0.287 | −0.151 | 0.666 *** | 0.159 | 0.105 | 0.498 ** |
Protein | −0.654 *** | 0.512 ** | 0.0418 | −0.0815 | −0.361 | |
Lactose | −0.569 *** | 0.0696 | −0.00771 | 0.0675 | ||
TS | 0.178 | 0.00580 | 0.142 | |||
IGF-1 | 0.200 | 0.299 | ||||
IgG | 0.157 |
Litter Size | ||
---|---|---|
Compositions | 1 | 2 |
Fat (g/100 g) | 7.3 ± 1.0 | 7.1 ± 0.6 |
Protein (g/100 g) | 11.2 ± 0.9 | 12.4 ± 0.6 |
Lactose (g/100 g) | 3.7 ± 0.1 | 3.5 ± 0.1 |
TS (g/100 g) | 23.1 ± 1.1 | 23.9 ± 0.7 |
IGF-1 (ng/mL) | 639.5 ± 113.6 | 521.1 ± 63.1 |
IgG (mg/mL) | 11.7 ± 1.2 | 11.0 ± 0.6 |
Vit A (µg/100 g) | 558.0 ± 115.7 | 574.6 ± 65.4 |
Parity | |||
---|---|---|---|
Composition | 1–3 | 4–6 | >6 |
Fat (g/100 g) | 6.4 ± 0.7 | 7.1 ± 0.9 | 8.1 ± 1.3 |
Protein (g/100 g) | 11.4 ± 0.7 | 12.1 ± 0.8 | 11.8 ± 1.2 |
Lactose (g/100 g) | 3.7 ± 0. | 3.7 ± 0.1 | 3.4 ± 0.2 |
TS (g/100 g) | 22.3 ± 0.8 | 23.8 ± 1.0 | 24.3 ± 1.4 |
IGF-1 (ng/mL) | 403.9 ± 92.1 | 586.7 ± 108.8 | 750.2 ± 139.0 |
IgG (mg/mL) | 8.8 ± 0.9 b | 11.5 ± 1.1 ab | 13.9 ± 1.4 a |
Vit A (µg/100 g) | 530.8 ± 91.1 | 571.2 ± 102.3 | 696.9 ± 136.3 |
Group | Day | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Composition | BB | BBSA | SA | SEM | 0 | 4 | 7 | SEM | Group | Day | Group X Day |
Fat (g/100 g) | 7.3 | 5.8 | 6.2 | 0.7 | 6.7 | 6.3 | 6.3 | 0.6 | 0.167 | 0.738 | 0.517 |
Protein (g/100 g) | 9.3 | 7.5 | 7.8 | 0.7 | 12.0 x | 7.1 y | 5.5 y | 0.7 | 0.095 | <0.001 | 0.833 |
Lactose (g/100 g) | 3.9 b | 4.2 a | 4.0 ab | 0.1 | 3.6 y | 4.1 x | 4.3 x | 0.1 | 0.088 | <0.001 | 0.844 |
TS (g/100 g) | 21.5 a | 18.6 b | 19.2 b | 0.9 | 23.3 x | 18.7 y | 17.3 y | 0.9 | 0.024 | <0.001 | 0.452 |
IGF-1 (ng/mL) | 177.4 a | 268.2 b | 139.7 a | 34.2 | 515.8 x | 37.3 y | 32.3 y | 32.4 | 0.028 | <0.001 | 0.004 |
IgG (mg/mL) | 3.522 | 3.41 | 4.25 | 0.40 | 10.75 x | 0.24 y | 0.18 y | 0.38 | 0.262 | <0.001 | 0.092 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buranakarl, C.; Thammacharoen, S.; Semsirmboon, S.; Sutayatram, S.; Nuntapaitoon, M.; Dissayabutra, T.; Katoh, K. Effects of Litter Size and Parity Number on Mammary Secretions Including, Insulin-Like Growth Factor-1, Immunoglobulin G and Vitamin A of Black Bengal, Saanen and Their Crossbred Goats in Thailand. Vet. Sci. 2021, 8, 95. https://doi.org/10.3390/vetsci8060095
Buranakarl C, Thammacharoen S, Semsirmboon S, Sutayatram S, Nuntapaitoon M, Dissayabutra T, Katoh K. Effects of Litter Size and Parity Number on Mammary Secretions Including, Insulin-Like Growth Factor-1, Immunoglobulin G and Vitamin A of Black Bengal, Saanen and Their Crossbred Goats in Thailand. Veterinary Sciences. 2021; 8(6):95. https://doi.org/10.3390/vetsci8060095
Chicago/Turabian StyleBuranakarl, Chollada, Sumpun Thammacharoen, Sapon Semsirmboon, Saikaew Sutayatram, Morakot Nuntapaitoon, Thasinus Dissayabutra, and Kazuo Katoh. 2021. "Effects of Litter Size and Parity Number on Mammary Secretions Including, Insulin-Like Growth Factor-1, Immunoglobulin G and Vitamin A of Black Bengal, Saanen and Their Crossbred Goats in Thailand" Veterinary Sciences 8, no. 6: 95. https://doi.org/10.3390/vetsci8060095