Reduced Efficacy of Fenbendazole and Pyrantel Pamoate Treatments against Intestinal Nematodes of Stud and Performance Horses
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nielsen, M.K.; Mittel, L.; Grice, A.; Erskine, M.; Graves, E.; Wendy, V.; Tully, R.C.; French, D.D.; Bowman, R.; Kaplan, R.M.; et al. Internal Parasite Control Guidelines; American Association of Equine Practitioners AAEP: Lexington, KY, USA, 2019. [Google Scholar]
- Peregrine, A.S.; Molento, M.B.; Kaplan, R.M.; Nielsen, M.K. Anthelmintic resistance in important parasites of horses: Does it really matter? Vet. Parasitol. 2014, 201, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Qamar, A.G.; Hayat, K.; Ashraf, S.; Williams, A.R. Anthelmintic resistance and novel control options in equine gastrointestinal nematodes. Parasitology 2018, 146, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Tzelos, T.; Morgan, E.R.; Easton, S.; Hodgkinson, J.E.; Matthews, J.B. A survey of the level of horse owner uptake of evidence-based anthelmintic treatment protocols for equine helminth control in the UK. Vet. Parasitol. 2019, 274, 108926. [Google Scholar] [CrossRef] [PubMed]
- Drudge, J.H.; Lyons, E.T. Control of internal parasites of the horse. J. Am. Vet. Med. Assoc. 1966, 148, 378–383. [Google Scholar]
- Leathwick, D.M.; Sauermann, C.W.; Nielsen, M.K. Managing anthelmintic resistance in cyathostomin parasites: Investigating the benefits of refugia-based strategies. Int. J. Parasitol. Drugs Drug Resist. 2019, 10, 118–124. [Google Scholar] [CrossRef] [PubMed]
- James, C.E.; Hudson, A.L.; Davey, M.W. Drug resistance mechanisms in helminths: Is it survival of the fittest? Trends Parasitol. 2009, 25, 328–335. [Google Scholar] [CrossRef]
- Gibson, T.E. Some experiences with small daily doses of phenothiazine as a means of control of strongylid worms in the horse. Vet. Rec. 1960, 72, 37–41. [Google Scholar]
- Pawar, P.; Das Singla, L.; Kaur, P.; Bal, M.S.; Javed, M. Evaluation and correlation of multiple anthelmintic resistances to gastrointestinal nematodes using different fecal egg count reduction methods in small ruminants of Punjab, India. Acta Parasitol. 2019, 64, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Castro, P.J.; Howell, S.B.; Schaefer, J.J.; Avramenko, R.W.; Gilleard, J.S.; Kaplan, R.M. Multiple drug resistance in the canine hookworm Ancylostoma caninum: An emerging threat? Parasites Vectors 2019, 12, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, R.M. Drug resistance in nematodes of veterinary importance: A status report. Trends Parasitol. 2004, 20, 477–481. [Google Scholar] [CrossRef]
- Ihler, C.E. A field survey on anthelmintic resistance in equine small strongyles in Norway. Acta Vet. Scand. 1995, 36, 135–143. [Google Scholar] [CrossRef]
- Matthews, J.B. An update on cyathostomins: Anthelmintic resistance and worm control. Equine Vet. Educ. 2008, 20, 552–560. [Google Scholar] [CrossRef]
- Von Samson-Himmelstjerna, G.; Fritzen, B.; Demeler, J.; Schürmann, S.; Rohn, K.; Schnieder, T.; Epe, C. Cases of reduced cyathostomin egg-reappearance period and failure of Parascaris equorum egg count reduction following ivermectin treatment as well as survey on pyrantel efficacy on German horse farms. Vet. Parasitol. 2007, 144, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Campbell, C.; Cringoli, G.; Coles, G. Ivermectine Resistance in Cyathostomins in UK horses. In Proceedings of the 21st Interna-tional Conference of the World Association for the Advancement of Veterinary Parasitology (WAAVP), Ghent, Belgium, 19–23 August 2007; p. 389. [Google Scholar]
- Traversa, D.; Von Samson-Himmelstjerna, G.; Demeler, J.; Milillo, P.; Schürmann, S.; Barnes, H.; Otranto, D.; Perrucci, S.; Di Regalbono, A.F.; Beraldo, P.; et al. Anthelmintic resistance in cyathostomin populations from horse yards in Italy, United Kingdom and Germany. Parasites Vectors 2009, 2, S2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molento, M.B.; Nielsen, M.K.; Kaplan, R.M. Resistance to avermectin/milbemycin anthelmintics in equine cyathostomins—Current situation. Vet. Parasitol. 2012, 185, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Corning, S. Equine cyathostomins: A review of biology, clinical significance and therapy. Parasites Vectors 2009, 2, S1. [Google Scholar] [CrossRef] [Green Version]
- Lind, E.O.; Höglund, J.; Ljungström, B.-L.; Nilsson, O.; Uggla, A. A field survey on the distribution of strongyle infections of horses in Sweden and factors affecting faecal egg counts. Equine Vet. J. 1999, 31, 68–72. [Google Scholar] [CrossRef]
- Kornaś, S.; Cabaret, J.; Skalska, M.; Nowosad, B. Horse infection with intestinal helminths in relation to age, sex, access to grass and farm system. Vet. Parasitol. 2010, 174, 285–291. [Google Scholar] [CrossRef]
- Chapman, M.; Klei, T.; French, D. Identification of thiabendazole-resistant cyathostome species in Louisiana. Vet. Parasitol. 1991, 39, 293–299. [Google Scholar] [CrossRef]
- Young, K.E.; Garza, V.; Snowden, K.; Dobson, R.; Powell, D.; Craig, T. Parasite diversity and anthelmintic resistance in two herds of horses. Vet. Parasitol. 1999, 85, 205–214. [Google Scholar] [CrossRef]
- De Castro, L.L.D.; Abrahão, C.L.; Buzatti, A.; Molento, M.B.; Bastianetto, E.; Rodrigues, D.S.; Lopes, L.B.; Silva, M.X.; De Freitas, M.G.; Conde, M.H.; et al. Comparison of McMaster and Mini-FLOTAC fecal egg counting techniques in cattle and horses. Vet. Parasitol. Reg. Stud. Rep. 2017, 10, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Bevilaqua, C.M.L.; Rodrigues, M.L.; Concordet, D. Identification of infective larvae of some common nematode strongylids of horses Strongylus vulgaris, S. equinus, S. edentatus, Triodontophorus spp., Poteriostomum spp., Gyalocephalus capitatus, Cylicocyclus radiatus, C. nassatus, C. minutus, C. poculatu. Rev. Med. Vet. 1993, 144, 989–995. [Google Scholar]
- Kornaś, S.; Gawor, J.; Cabaret, J.; Molenda, K.; Skalska, M.; Nowosad, B. Morphometric identification of equid cyathostome (Nematoda: Cyathostominae) infective larvae. Vet. Parasitol. 2009, 162, 290–294. [Google Scholar] [CrossRef]
- Santos, D.W.; De Castro, L.L.D.; Giese, E.G.; Molento, M.B. Morphometric study of infective larvae of cyathostomins of horses and their distribution. J. Equine Vet. Sci. 2016, 44, 49–53. [Google Scholar] [CrossRef]
- Santos, D.W.; De Carvalho, L.M.M.; Molento, M.B. Identification of third stage larval types of cyathostomins of equids: An improved perspective. Vet. Parasitol. 2018, 260, 49–52. [Google Scholar] [CrossRef]
- Von Samson-Himmelstjerna, G. Molecular diagnosis of anthelmintic resistance. Vet. Parasitol. 2006, 136, 99–107. [Google Scholar] [CrossRef]
- Development Core Team. R: A Language and Environment for Statistical Computing; Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- European Scientific Counsel on Companion Animal Parasites. Available online: https://www.esccap.org/guidelines/ (accessed on 14 December 2019).
- American Association of Equine Practitioners. Available online: https://aaep.org/guidelines (accessed on 14 December 2019).
- Scott, I.; Bishop, R.; Pomroy, W.; Pomroy, W. Anthelmintic resistance in equine helminth parasites—A growing issue for horse owners and veterinarians in New Zealand? N. Z. Vet. J. 2015, 63, 188–198. [Google Scholar] [CrossRef]
- Easton, S.; Bartley, D.J.; Hotchkiss, E.; Hodgkinson, J.E.; Pinchbeck, G.L.; Matthews, J.B. Use of a multiple choice questionnaire to assess UK prescribing channels’ knowledge of helminthology and best practice surrounding anthelmintic use in livestock and horses. Prev. Vet. Med. 2016, 128, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Wilkes, E.J.A.; Woodgate, R.G.; Raidal, S.L.; Hughes, K.J. The application of faecal egg count results and statistical inference for clinical decision making in foals. Vet Parasitol. 2019, 270, 7–12. [Google Scholar] [CrossRef]
- Geurden, T.; Van Doorn, D.; Claerebout, E.; Kooyman, F.; De Keersmaecker, S.; Vercruysse, J.; Besognet, B.; Vanimisetti, B.; Di Regalbono, A.F.; Beraldo, P.; et al. Decreased strongyle egg re-appearance period after treatment with ivermectin and moxidectin in horses in Belgium, Italy and The Netherlands. Vet. Parasitol. 2014, 204, 291–296. [Google Scholar] [CrossRef]
- Näreaho, A.; Vainio, K.; Oksanen, A. Impaired efficacy of ivermectin against Parascaris equorum, and both ivermectin and pyrantel against strongyle infections in trotter foals in Finland. Vet. Parasitol. 2011, 182, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Traversa, N.; Klei, T.R.; Iorio, R.; Paoletti, B.; Lia, R.P.; Otranto, D.; Sparagano, O.A.; Giangaspero, A. Occurrence of anthelmintic resistant equine cyathostome populations in central and southern Italy. Prev. Vet. Med. 2007, 82, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Kuzmina, T.A.; Zvegintsova, N.S.; Yasynetska, N.I.; Kharchenko, V.A. Anthelmintic resistance in strongylids (Nematoda: Strongylidae) parasitizing wild and domestic equids in the Askania Nova Biosphere Reserve, Ukraine. Ann. Parasitol. 2020, 66, 49–60. [Google Scholar]
- Relf, V.E.; Lester, H.E.; Morgan, E.R.; Hodgkinson, J.E.; Matthews, J.B. Anthelmintic efficacy on UK Thoroughbred stud farms. Int. J. Parasitol. 2014, 44, 507–514. [Google Scholar] [CrossRef]
- Meier, A.; Hertzberg, H. Strongyliden beim Pferd. II. vorkommen von anthelminthika-resistenzen in der Schweiz. Schweiz Arch. Tierheilkd 2005, 147, 389–396. [Google Scholar] [CrossRef]
- Nilsson, O.; Lindholm, A.; Christensson, D. A field evaluation of anthelmintics in horses in Sweden. Vet. Parasitol. 1989, 32, 163–171. [Google Scholar] [CrossRef]
- Bjørn, H.; Sommer, C.; Schougård, H.; Henriksen, S.A.; Nansen, P. Resistance to benzimidazole anthelmintics in small stron-gyles (Cyathostominae) of horses in Denmark. Acta Vet. Scand. 1991, 32, 253–260. [Google Scholar] [CrossRef]
- Čerňanská, D.; Paoletti, B.; Králová-Hromadová, I.; Iorio, R.; Čudeková, P.; Milillo, P.; Traversa, D. Application of a Reverse Line Blot hybridisation assay for the species-specific identification of cyathostomins (Nematoda, Strongylida) from benzimidazole-treated horses in the Slovak Republic. Vet. Parasitol. 2009, 160, 171–174. [Google Scholar] [CrossRef]
- Lind, E.O.; Kuzmina, T.; Uggla, A.; Waller, P.J.; Höglund, J. A field study on the effect of some anthelmintics on cyathostomins of horses in Sweden. Vet. Res. Commun. 2006, 31, 53–65. [Google Scholar] [CrossRef]
- Craven, J.; Bjørn, H.; Henriksen, S.A.; Nansen, P.; Larsen, M.; Lendal, S. Survey of anthelmintic resistance on Danish horse farms, using 5 different methods of calculating faecal egg count reduction. Equine Vet. J. 1998, 30, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Lyons, E.T.; Tolliver, S.C.; Collins, S.S. Study (1991 to 2001) of drug-resistant Population B small strongyles in critical tests in horses in Kentucky at the termination of a 40-year investigation. Parasitol. Res. 2007, 101, 689–701. [Google Scholar] [CrossRef]
- Matthews, J.B. Anthelmintic resistance in equine nematodes. Int. J. Parasitol. Drugs Drug Resist. 2014, 4, 310–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scare, J.; Steuer, A.; Gravatte, H.; Kálmán, C.; Ramires, L.; De Castro, L.D.; Norris, J.; Miller, F.; Camargo, F.; Lawyer, A.; et al. Management practices associated with strongylid parasite prevalence on horse farms in rural counties of Kentucky. Vet. Parasitol. Reg. Stud. Rep. 2018, 14, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Fritzen, B.; Rohn, K.; Schnieder, T.; Von Samson-Himmelstjerna, G. Endoparasite control management on horse farms—Lessons from worm prevalence and questionnaire data. Equine Vet. J. 2009, 42, 79–83. [Google Scholar] [CrossRef]
- Tzelos, T.; Barbeito, J.S.; Nielsen, M.K.; Morgan, E.R.; Hodgkinson, J.E.; Matthews, J.B. Strongyle egg reappearance period after moxidectin treatment and its relationship with management factors in UK equine populations. Vet. Parasitol. 2017, 237, 70–76. [Google Scholar] [CrossRef]
- Love, S.; Burden, F.A.; McGirr, E.C.; Gordon, L.; Denwood, M.J. Equine Cyathostominae can develop to infective third-stage larvae on straw bedding. Parasites Vectors 2016, 9, 478. [Google Scholar] [CrossRef] [Green Version]
Treatment Method | Facilities (N) |
---|---|
Strategic | 13 |
Strategic + symptomatology | 4 |
Selective | 0 |
Frequency | |
Every 3 months | 2 |
Every 4 months | 4 |
Every 6 months | 11 |
Active Principle | |
Ivermectin | 13 |
Fenbendazole | 3 |
Pyrantel Pamoate | 1 |
Facility | Total Sampled | Positive | Prevalence (IC95%) | Strongyles FEC (Mean EPG) | Parascaris Egg (Mean EPG) | Anthelmintic Treatment |
---|---|---|---|---|---|---|
Stud farm 1 | 8 | 8 | 100.00% (67.56–100) | 1538 | IVM | |
Stud farm 2 | 28 | 26 | 92.86% (77.35–98.02) | 620 | FBZ | |
Racecourse | 11 | 8 | 72.73% (43.44–90.25) | 745 | 36 | IVM |
Livery yard 1 | 21 | 11 | 52.38% (32.37–71.66) | 265 | IVM | |
Livery yard 2 | 2 | 2 | 100.00% (34.24–100) | 250 | IVM | |
Livery yard 3 | 37 | 30 | 81.08% (65.80–90.52) | 525 | 980 | IVM |
Livery yard 4 | 10 | 2 | 20.00% (5.67–50.98) | 90 | IVM | |
Livery yard 5 | 4 | 4 | 100.00% (51.01–100) | 225 | PYR | |
Livery yard 6 | 10 | 5 | 50.00% (23.66–76.34) | 140 | IVM | |
Livery yard 7 | 11 | 6 | 54.55% (28.01–78.73) | 255 | 9 | FBZ |
Livery yard 8 | 7 | 3 | 42.86% (15.82–74.95) | 100 | IVM | |
Livery yard 9 | 39 | 29 | 74.36% (58.92–85.43) | 340 | IVM | |
Livery yard 10 | 6 | 6 | 100.00% (60.9–100) | 1615 | FBZ | |
Livery yard 11 | 12 | 2 | 16.67% (4.70–44.80) | 50 | 50 | IVM |
Livery yard 12 | 2 | 2 | 100.00% (34.24–100) | 750 | IVM | |
Livery yard 13 | 2 | 2 | 100.00% (34.24–100) | 1250 | IVM | |
Livery yard 14 | 5 | 0 | 0.00% (0.00–43.45) | 0 | IVM |
Facility | Type D | Type C | Type A | S. edentatus |
---|---|---|---|---|
Stud farm 1 | 0 | 7 | 73 | 0 |
Stud farm 2 | 21 | 34 | 205 | 0 |
Racecourse | 7 | 2 | 68 | 4 |
Livery yard 1 | 5 | 0 | 105 | 0 |
Livery yard 2 | 1 | 0 | 19 | 0 |
Livery yard 3 | 0 | 60 | 240 | 0 |
Livery yard 4 | 2 | 2 | 16 | 0 |
Livery yard 5 | 3 | 0 | 26 | 0 |
Livery yard 6 | 10 | 5 | 35 | 0 |
Livery yard 7 | 0 | 0 | 60 | 0 |
Livery yard 8 | 2 | 6 | 24 | 0 |
Livery yard 9 | 0 | 0 | 290 | 0 |
Livery yard 10 | 3 | 5 | 54 | 0 |
Livery yard 11 | 0 | 0 | 18 | 0 |
Livery yard 12 | 0 | 0 | 20 | 0 |
Livery yard 13 | 1 | 1 | 18 | 0 |
Livery yard 14 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanet, S.; Battisti, E.; Labate, F.; Oberto, F.; Ferroglio, E. Reduced Efficacy of Fenbendazole and Pyrantel Pamoate Treatments against Intestinal Nematodes of Stud and Performance Horses. Vet. Sci. 2021, 8, 42. https://doi.org/10.3390/vetsci8030042
Zanet S, Battisti E, Labate F, Oberto F, Ferroglio E. Reduced Efficacy of Fenbendazole and Pyrantel Pamoate Treatments against Intestinal Nematodes of Stud and Performance Horses. Veterinary Sciences. 2021; 8(3):42. https://doi.org/10.3390/vetsci8030042
Chicago/Turabian StyleZanet, Stefania, Elena Battisti, Federico Labate, Francesca Oberto, and Ezio Ferroglio. 2021. "Reduced Efficacy of Fenbendazole and Pyrantel Pamoate Treatments against Intestinal Nematodes of Stud and Performance Horses" Veterinary Sciences 8, no. 3: 42. https://doi.org/10.3390/vetsci8030042
APA StyleZanet, S., Battisti, E., Labate, F., Oberto, F., & Ferroglio, E. (2021). Reduced Efficacy of Fenbendazole and Pyrantel Pamoate Treatments against Intestinal Nematodes of Stud and Performance Horses. Veterinary Sciences, 8(3), 42. https://doi.org/10.3390/vetsci8030042