Influence of Supplementing Sesbania grandiflora Pod Meal at Two Dietary Crude Protein Levels on Feed Intake, Fermentation Characteristics, and Methane Mitigation in Thai Purebred Beef Cattle
Abstract
:1. Introduction
2. Materials and Methods
2.1. S. grandiflora Pods Meal
2.2. Cattle, Design, and Feeding
2.3. Sample Collection and Sampling Procedures
2.4. Calculations and Statistical Analysis
3. Results
3.1. Chemical Composition of Diets
3.2. Feed Intakes and Digestibility Coefficients
3.3. pH, Ammonia Nitrogen, Protozoa, and Blood Urea Nitrogen
3.4. Ruminal Volatile Fatty Acids and Methane Estimation
3.5. Nitrogen Utilization
4. Discussion
4.1. Feed Intakes and Digestibility Coefficients
4.2. pH, Ammonia Nitrogen, Protozoa, and Blood Urea Nitrogen
4.3. Ruminal Volatile Fatty Acid Profiles and Methane Estimation
4.4. Nitrogen Utilization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. 2006 IPCC guidelines for national greenhouse gases inventories. In National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; Institute for Global Environmental Strategies (IGES): Kanagawa, Japan, 2006. [Google Scholar]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Cherdthong, A.; Prachumchai, R.; Wanapat, M. In vitro evaluations of pellets containing Delonix regia seed meal for ruminants. Trop. Anim. Health Prod. 2019, 51, 2003–2010. [Google Scholar] [CrossRef] [PubMed]
- Cherdthong, A.; Prachumchai, R.; Wanapat, M.; Foiklang, S.; Chanjula, P. Effects of supplementation with royal poinciana seed meal (Delonix regia) on ruminal fermentation pattern, microbial protein synthesis, blood metabolites and mitigation of methane emissions in native Thai beef cattle. Animals 2019, 9, 625. [Google Scholar] [CrossRef] [Green Version]
- Nunoi, A.; Wanapat, M.; Foiklang, S.; Ampapon, T.; Viennasay, B. Effects of replacing rice bran with tamarind seed meal in concentrate mixture diets on the changes in ruminal ecology and feed utilization of dairy steers. Trop. Anim. Health Prod. 2019, 51, 523–528. [Google Scholar] [CrossRef]
- Rira, M.; Chentli, A.; Boufener, S.; Boussebou, H. Effects of plants containing secondary metabolites on ruminal methanogenesis of sheep in vitro. Energ. Proced. 2015, 74, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Jafari, B.; Stringano, E.; Harvey, M.; Hendriks, W.H.; Hayot, C.; Smith, C.; Pel-likaan, W. Impact of variation in structure of condensed tannins from sainfoin (Onobrychis viciifolia) on in vitro ruminal methane production and fermentation characteristics. J. Anim. Physiol. Anim. Nutri. 2015, 100, 348–360. [Google Scholar]
- Frutos, P.; Hervas, G.; Giraldez, F.J.; Mantecon, A.R. Review. Tannins and ruminant nutrition. Span. J. Agric. Res. 2004, 2, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Jayanegara, A.; Goel, G.; Makkar, H.P.S.; Becker, K. Reduction in methane emissions from ruminants by plant secondary metabolites: Effects of polyphenols and saponins. In Sustainable Improvement of Animal Production and Health; Odongo, N.E., Garcia, M., Viljoen, G.J., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010; pp. 151–157. [Google Scholar]
- Ramesh, T.; Mahesh, R.; Begum, V.H. Effect of Sesbania grandiflora on membrane-bound ATPases in cigarette smoke exposed rats. J. Pharmacol. Toxicol. 2007, 2, 559–566. [Google Scholar] [CrossRef] [Green Version]
- Shareef, H.; Rizwani, G.H.; Zia-ul-Haq, M.; Ahmad, S.; Zahid, H. Tocopherol and phytosterol profile of Sesbania grandiflora (Linn.) seed oil. J. Med. Plants Res. 2012, 6, 3478–3481. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.J.; Ryu, Y.B.; Kim, Y.M.; Song, N.; Kim, C.Y.; Rho, M.C. In vitro antiviral activity of phlorotannins isolated from ecklonia cava, against porcine epidemic diarrhea coronavirus infection and hemagglutination. Bioorgan. Med. Chem. 2013, 21, 4706–4713. [Google Scholar] [CrossRef]
- Edeoga, H.O.; Okwu, D.E.; Mbaebie, B.O. Phytochemical constituents of some Nigerian medicinal plants. Afr. J. Biotechnol. 2005, 4, 685–688. [Google Scholar] [CrossRef]
- Burns, R.E. Method for Estimation of Tannin in Grain Sorghum. Agron. J. 1971, 63, 511–512. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Collaboration: Arlington, TX, USA, 1998. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Crocker, C.L. Rapid determination of urea nitrogen in serum or plasma without deproteinization. Am. J. Med. Technol. 1967, 33, 361–365. [Google Scholar] [PubMed]
- Mathew, S.; Sagathewan, S.; Thomas, J.; Mathen, G. An HPLC method for estimation of volatile fatty acids of ruminal fluid. Indian J. Anim. Sci. 1997, 67, 805–807. [Google Scholar]
- Moss, A.R.; Jouany, J.P.; Newbold, J. Methane production by ruminants: Its contribution to global warming. Ann. Zootech. 2000, 49, 231–253. [Google Scholar] [CrossRef] [Green Version]
- Tukey, J. Comparing Individual Means in the Analysis of Variance. Biometrics 1949, 5, 99–114. [Google Scholar] [CrossRef] [PubMed]
- NRC (National Research Council). Nutrient Requirements of Dairy Cattle, 7th ed.; National Academies Press: Washington, DC, USA, 2001.
- Norrapoke, T.; Wanapat, M.; Wanapat, S. Effects of protein level and mangosteen peel pellets (mago-pel) in concentrate diets on rumen fermentation and milk production in lactating dairy crossbreds. Anim. Biosci. 2012, 25, 971–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguerre, M.J.; Capozzolo, M.C.; Lencioni, P.; Cabral, C.; Wattiaux, M.A. Effect of quebracho-chestnut tannin extracts at 2 dietary crude protein levels on performance, rumen fermentation, and nitrogen partitioning in dairy cows. J. Dairy Sci. 2016, 99, 4476–4486. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, J.; Davis, R.E.; Lindahl, I.L. Characteristics of saponin-utilizing bacteria from the rumen of cattle. Appl. Microbiol. 1959, 7, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Freeland, W.J.; Calcott, P.H.; Anderson, L.R. Tannins and saponin: Interaction in herbivore diets. Biochem. Syst. Ecol. 1985, 13, 189–193. [Google Scholar] [CrossRef]
- Bhatta, R.; Saravanan, M.; Baruah, L.; Prasad, C.S. Effects of graded levels of tannin-containing tropical tree leaves on in vitro rumen fermentation, total protozoa and methane production. J. Appl. Microbiol. 2015, 118, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Hassanat, F.; Benchaar, C. Assessment of the effect of condensed (acacia and quebracho) and hydrolysable (chestnut and valonea) tannins on rumen fermentation and methane production in vitro. J. Sci. Food Agric. 2013, 93, 332–339. [Google Scholar] [CrossRef]
- Guyader, J.; Eugène, M.; Doreau, M.; Morgavi, D.P.; Gérard, C.; Martin, C. Tea saponin reduced methanogenesis in vitro but increased methane yield in lactating dairy cows. J. Dairy Sci. 2017, 100, 1845–1855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makkar, H.P.S.; Sen, S.; Blümmel, M.; Becker, K. Effects of fractions containing saponins from Yucca schidigera, Quillaja saponaria and Acacia auriculoformis on rumen fermentation. J. Agric. Food Chem. 1998, 46, 4324–4328. [Google Scholar] [CrossRef]
- Holtshausen, L.; Chaves, A.V.; Beauchemin, K.A.; McGinn, S.M.; McAllister, T.A.; Odongo, N.E.; Cheeke, P.R.; Benchaar, C. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. J. Dairy Sci. 2009, 92, 2809–2821. [Google Scholar] [CrossRef]
- Jafari, S.; Ebrahimi, M.; Goh, Y.M.; Rajion, M.A.; Jahromi, M.F.; Al-Jumaili, W.S. Manipulation of rumen fermentation and methane gas production by plant secondary metabolites (saponin, tannin and essential oil)—A review of ten-year studies. Ann. Anim. Sci. 2019, 19, 3–29. [Google Scholar] [CrossRef] [Green Version]
- Ampapon, T.; Wanapat, M. Rambutan fruit peel powder and dietary protein level influencing on fermentation characteristics, nutrient digestibility, ruminal microorganisms and gas production using in vitro fermentation techniques. Trop. Anim. Health Prod. 2019, 51, 1489–1496. [Google Scholar] [CrossRef]
- Campanile, G.; Di Palo, R.; Infascelli, F.; Gasparrini, B.; Neglia, G.; Zicarelli, F.; D’Occhio, M.J. Influence of rumen protein degradability on productive and reproductive performance in buffalo cows. Reprod. Nutr. Dev. 2003, 43, 557–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makkar, H.P.S.; Blummel, M.; Becker, K. In vitro effects and interaction between tannins and saponins and fate of tannins in the rumen. J. Sci. Food Agric. 1995, 69, 481–493. [Google Scholar] [CrossRef]
- Wallace, R.J.; McEwan, N.R.; McIntosh, F.M.; Teferedegne, B.; Newbold, C.J. Natural products as manipulators of rumen fermentation. Anim. Biosci. 2002, 15, 1458–1468. [Google Scholar] [CrossRef]
- Ku-Vera, J.C.; Jiménez-Ocampo, R.; Valencia-Salazar, S.S.; Montoya-Flores, M.D.; Molina-Botero, I.C.; Arango, J.; Gómez-Bravo, C.A.; Aguilar-Pérez, C.F.; Solorio-Sánchez, F.J. Role of secondary plant metabolites on enteric methane mitigation in ruminants. Front. Vet. Sci. 2020, 7. [Google Scholar] [CrossRef] [PubMed]
- Tavendale, M.H.; Meagher, L.P.; Pacheco, D.; Walker, N.; Attwood, G.T.; Sivakumaran, S. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Technol. 2005, 123–124, 403–419. [Google Scholar] [CrossRef]
- Animut, G.; Goetsch, A.L.; Puchala, R.; Patra, A.K.; Sahlu, T.; Varel, V.H.; Wells, J. Methane emission by goats consuming different sources of condensed tannins. Anim. Feed Sci. Technol. 2008, 144, 228–241. [Google Scholar] [CrossRef]
- Tan, H.Y.; Sieo, C.C.; Abdullah, N.; Liang, J.B.; Huang, X.D.; Ho, Y.W. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim. Feed Sci. Technol. 2011, 169, 185–193. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; McGinn, S.M.; Martinez, T.F.; McAllister, T.A. Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. J. Anim. Sci. 2007, 85, 1990–1996. [Google Scholar] [CrossRef] [Green Version]
- Castro-Montoya, J.M.; Makkar, H.P.S.; Becker, K. Chemical composition of rumen microbial fraction and fermentation parameters as affected by tannins and saponins using an in vitro rumen fermentation system. Can. J. Anim. Sci. 2011, 91, 433–448. [Google Scholar] [CrossRef]
- Segelman, A.B.; Farnsworth, N.R.; Quimby, M.D. False negative saponins test results induced by the presence of tannins. Lloydia 1969, 32, 52–58. [Google Scholar]
- Grainger, C.; Clarke, T.; Auldist, M.J.; Beauchemin, K.A.; McGinn, S.M.; Waghorn, G.C.; Eckard, R.J. Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows. Can. J. Anim. Sci. 2009, 89, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Bhatta, R.; Krishnamurty, U.; Mohammed, F. Effect of feeding tamarind (Tamarindus indica) seed husk as a source of tannin on dry matter intake, digestibility of nutrients and production performance of cross-bred dairy cows in mid lactation. Anim. Feed Sci. Technol. 2000, 83, 67–74. [Google Scholar] [CrossRef]
- Patra, A.K.; Saxena, J. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 2011, 91, 24–37. [Google Scholar] [CrossRef] [PubMed]
Items | Concentrate | Rice Straw | SG | |
---|---|---|---|---|
14% CP | 16% CP | |||
Ingredient, % dry matter | ||||
Cassava chip | 53.0 | 52.5 | - | - |
Soybean meal | 12.5 | 16.5 | - | - |
Rice bran | 15.0 | 12.0 | - | - |
Palm kernel meal | 14.0 | 13.5 | - | - |
Urea | 1.6 | 1.6 | - | - |
Premix * | 1.0 | 1.0 | - | - |
Molasses | 1.4 | 1.4 | - | - |
Sulfur | 0.5 | 0.5 | - | - |
Salt | 1.0 | 1.0 | - | - |
Chemical composition, % | ||||
Dry matter, % | 91.06 | 91.43 | 92.20 | 94.19 |
Organic matter, %DM | 84.97 | 86.10 | 90.61 | 93.86 |
Crude protein, %DM | 14.10 | 16.06 | 3.27 | 22.48 |
Ether extract, %DM | 2.05 | 2.17 | 1.46 | 4.42 |
Neutral detergent fiber, %DM | 30.87 | 28.76 | 71.74 | 56.67 |
Acid detergent fiber, %DM | 13.57 | 12.68 | 47.73 | 43.12 |
Gross energy (GE), MJ/kg DM | 4.06 | 4.14 | 3.83 | - |
Condensed tannin, (g/kg DM) | - | - | - | 108.7 |
Saponins, g/kg DM | - | - | - | 162.0 |
Items | 14% CP | 16% CP | ||
---|---|---|---|---|
0.4% SG | 0.6% SG | 0.4% SG | 0.6% SG | |
Dry matter, % | 91.81 | 91.74 | 91.81 | 91.72 |
Organic matter, % | 88.49 | 88.51 | 88.50 | 88.43 |
Crude protein, % | 7.97 | 7.86 | 7.94 | 8.02 |
Ether extract, % | 1.76 | 1.76 | 1.76 | 1.77 |
Neutral detergent fiber, % | 55.44 | 55.98 | 55.52 | 55.39 |
Acid detergent fiber, % | 34.31 | 34.79 | 34.37 | 34.31 |
Gross energy, MJ/kg DM | 3.82 | 3.80 | 3.82 | 3.81 |
Condensed tannin, % | 0.27 | 0.31 | 0.27 | 0.31 |
Saponin, % | 0.40 | 0.46 | 0.40 | 0.46 |
Item | 14% CP | 16% CP | CP | SG | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.4% SG | 0.6% SG | 0.4% SG | 0.6% SG | 14% | 16% | 0.4% | 0.6% | CP | SG | CP × SG | ||
Dry matter intake | ||||||||||||
Roughage intake, kg/d | 2.36 | 2.43 | 2.38 | 2.36 | 2.395 | 2.37 | 2.37 | 2.395 | 0.06 | 0.862 | 0.844 | 0.734 |
%BW | 1.57 | 1.63 | 1.55 | 1.55 | 1.60 | 1.55 | 1.56 | 1.59 | 0.03 | 0.489 | 0.631 | 0.613 |
g/kg BW0.75 | 54.88 | 57.06 | 54.68 | 54.53 | 55.97 | 54.605 | 54.78 | 55.795 | 1.17 | 0.572 | 0.673 | 0.630 |
Concentrate intake, kg/d | 1.57 | 1.52 | 1.57 | 1.57 | 1.545 | 1.57 | 1.57 | 1.545 | 0.03 | 0.712 | 0.712 | 0.712 |
%BW | 1.05 | 1.03 | 1.03 | 1.04 | 1.04 | 1.03 | 1.04 | 1.035 | 0.02 | 0.891 | 0.872 | 0.729 |
g/kg BW0.75 | 36.63 | 35.89 | 36.21 | 36.38 | 36.26 | 36.29 | 36.42 | 36.13 | 0.55 | 0.976 | 0.801 | 0.688 |
SG, kg/d | 0.100 | 0.116 | 0.100 | 0.116 | 0.11 | 0.11 | 0.10 | 0.12 | 0.01 | 1.000 | 0.068 | 1.000 |
Total intake kg/d | 4.03 | 4.07 | 4.05 | 4.05 | 4.05 | 4.05 | 4.04 | 4.06 | 0.09 | 0.991 | 0.931 | 0.918 |
%BW | 2.68 | 2.74 | 2.65 | 2.67 | 2.71 | 2.66 | 2.665 | 2.705 | 0.05 | 0.573 | 0.678 | 0.804 |
g/kg BW0.75 | 93.83 | 95.69 | 93.19 | 93.60 | 94.76 | 93.39 | 93.51 | 94.64 | 1.60 | 0.676 | 0.729 | 0.824 |
Nutrient digestibility, % | ||||||||||||
Dry matter | 65.82 | 65.52 | 67.56 | 69.27 | 65.67 | 68.41 | 66.69 | 67.39 | 4.40 | 0.395 | 0.825 | 0.752 |
Organic matter | 69.32 | 69.15 | 70.84 | 71.60 | 69.23 | 71.22 | 70.08 | 70.37 | 2.48 | 0.281 | 0.866 | 0.796 |
Crude protein | 70.01 | 67.82 | 73.16 | 67.62 | 68.915 | 70.39 | 71.58 a | 67.72 b | 1.90 | 0.296 | 0.014 | 0.239 |
Neutral detergent fiber | 68.46 | 69.48 | 68.52 | 67.39 | 68.97 | 67.95 | 68.49 | 68.43 | 2.01 | 0.490 | 0.969 | 0.468 |
Acid detergent fiber | 55.44 | 59.20 | 55.40 | 56.50 | 57.32 | 55.95 | 55.42 | 57.85 | 3.44 | 0.585 | 0.338 | 0.595 |
Item | 14% CP | 16% CP | CP | SG | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.4% SG | 0.6% SG | 0.4% SG | 0.6% SG | 14% | 16% | 0.4% | 0.6% | CP | SG | CP × SG | ||
pH | ||||||||||||
0 h pre-feeding | 6.76 | 6.80 | 6.77 | 6.81 | 6.78 | 6.79 | 6.76 | 6.80 | 0.16 | 0.933 | 0.738 | 0.983 |
4 h post-feeding | 6.59 | 6.71 | 6.62 | 6.70 | 6.65 | 6.66 | 6.60 | 6.70 | 0.09 | 0.850 | 0.148 | 0.762 |
Mean | 6.67 | 6.76 | 6.70 | 6.76 | 6.715 | 6.73 | 6.68 | 6.76 | 0.13 | 0.860 | 0.582 | 0.910 |
Ammonia nitrogen, mg/dL | ||||||||||||
0 h pre-feeding | 15.96 | 16.32 | 16.26 | 16.95 | 16.14 | 16.61 | 16.11 | 16.64 | 0.56 | 0.266 | 0.208 | 0.687 |
4 h post-feeding | 23.43 | 20.54 | 24.42 | 21.89 | 21.99 b | 23.16 a | 23.93 a | 21.22 b | 0.69 | 0.013 | <0.001 | 0.394 |
Mean | 19.70 | 18.43 | 20.34 | 19.42 | 19.07 b | 19.88 a | 20.02 a | 18.93 b | 0.42 | 0.008 | 0.003 | 0.334 |
Protozoa, ×105 cell/mL | ||||||||||||
0 h pre-feeding | 7.01 | 6.70 | 7.25 | 7.02 | 6.86 | 7.14 | 7.13 | 6.86 | 0.47 | 0.288 | 0.309 | 0.866 |
4 h post-feeding | 10.69 | 7.15 | 10.60 | 7.49 | 8.92 | 9.05 | 10.65 a | 7.32 b | 0.62 | 0.783 | <0.001 | 0.637 |
Mean | 9.13 | 6.49 | 9.31 | 6.96 | 7.81 | 8.14 | 9.22 a | 6.73 b | 0.27 | 0.251 | <0.001 | 0.905 |
Blood urea nitrogen concentration, mg/dL | ||||||||||||
0 h pre-feeding | 10.28 | 10.39 | 10.76 | 11.05 | 10.34 | 10.91 | 10.52 | 10.72 | 0.40 | 0.087 | 0.492 | 0.760 |
4 h post-feeding | 12.10 | 11.33 | 12.44 | 11.15 | 11.72 | 11.80 | 12.27 a | 11.24 b | 0.55 | 0.838 | 0.021 | 0.522 |
Mean | 11.19 | 10.86 | 11.60 | 11.10 | 11.03 | 11.35 | 11.40 | 10.98 | 0.32 | 0.069 | 0.224 | 0.713 |
Item | 14% CP | 16% CP | CP | SG | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.4% SG | 0.6% SG | 0.4% SG | 0.6% SG | 14% | 16% | 0.4% | 0.6% | CP | SG | CP × SG | ||
Total volatile fatty acid, mmol/L | ||||||||||||
0 h pre-feeding | 100.60 | 101.34 | 100.70 | 101.32 | 100.97 | 101.01 | 100.65 | 101.33 | 0.54 | 0.913 | 0.105 | 0.873 |
4 h post-feeding | 105.66 | 106.63 | 106.66 | 107.87 | 106.15 | 107.27 | 106.16 | 107.25 | 0.68 | 0.278 | 0.288 | 0.902 |
Mean | 103.13 | 103.98 | 103.68 | 104.59 | 103.56 | 104.14 | 103.41 b | 104.29 a | 0.69 | 0.456 | 0.013 | 0.830 |
Volatile fatty acid, profiles, % | ||||||||||||
Acetic acid | ||||||||||||
0 h pre-feeding | 65.14 | 63.92 | 65.10 | 63.68 | 64.53 | 64.39 | 65.12 | 63.80 | 0.55 | 0.779 | 0.061 | 0.384 |
4 h post-feeding | 67.43 | 65.40 | 67.08 | 64.76 | 66.42 | 65.92 | 67.26 a | 65.08 b | 0.51 | 0.065 | <0.001 | 0.961 |
Mean | 66.28 | 64.66 | 66.09 | 64.22 | 65.47 | 65.16 | 66.19 a | 64.44 b | 0.41 | 0.307 | <0.001 | 0.224 |
Propionic acid | ||||||||||||
0 h pre-feeding | 21.40 | 22.31 | 21.08 | 22.63 | 21.86 | 21.86 | 21.24 | 22.47 | 0.60 | 0.393 | 0.182 | 0.659 |
4 h post-feeding | 22.61 | 24.42 | 23.01 | 25.50 | 23.52 | 24.26 | 22.81 b | 24.96 a | 0.84 | 0.420 | <0.001 | 0.853 |
Mean | 22.00 | 23.37 | 22.05 | 24.06 | 22.69 | 23.06 | 22.03 b | 23.72 a | 0.55 | 0.890 | <0.001 | 0.975 |
Butyric acid | ||||||||||||
0 h pre-feeding | 13.45 | 13.76 | 13.80 | 13.68 | 13.61 | 13.74 | 13.63 | 13.72 | 0.53 | 0.504 | 0.567 | 0.671 |
4 h post-feeding | 10.22 | 10.17 | 9.90 | 9.73 | 10.20 | 9.82 | 10.06 | 9.95 | 0.62 | 0.574 | 0.595 | 0.893 |
Mean | 11.84 | 11.96 | 11.85 | 11.70 | 11.90 | 11.78 | 11.85 | 11.83 | 0.43 | 0.329 | 0.311 | 0.522 |
Acetic acid to propionic acid | 3.01 | 2.71 | 3.09 | 2.68 | 2.86 | 2.89 | 3.05 a | 2.70 b | 0.06 | 0.760 | <0.001 | 0.419 |
Methane estimation, mmol/L | ||||||||||||
0 h pre-feeding | 28.81 | 28.13 | 29.02 | 27.91 | 28.47 | 28.47 | 28.92 | 28.02 | 0.55 | 0.984 | 0.413 | 0.588 |
4 h post-feeding | 27.77 | 26.62 | 27.60 | 25.80 | 27.20 | 26.70 | 27.69 a | 26.21 b | 0.43 | 0.209 | <0.001 | 0.208 |
Mean | 28.29 | 27.38 | 28.31 | 26.85 | 27.84 | 27.58 | 28.30 a | 27.12 b | 0.35 | 0.409 | <0.001 | 0.223 |
Item | 14% CP | 16% CP | CP | SG | SEM | p-value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.4% SG | 0.6% SG | 0.4% SG | 0.6% SG | 14% | 16% | 0.4% | 0.6% | CP | SG | CP × SG | ||
N intake, g/d | 51.47 | 51.27 | 56.52 | 56.98 | 51.37 b | 56.75 a | 54.00 | 54.13 | 1.09 | 0.030 | 0.953 | 0.882 |
N excretion, g/d | 16.06 | 13.70 | 15.95 | 14.21 | 14.88 | 15.08 | 16.01 a | 13.96 b | 0.38 | 0.795 | 0.019 | 0.691 |
Fecal N excretion, g/d | 13.36 | 11.42 | 13.09 | 11.77 | 12.39 | 12.43 | 13.23 a | 11.60 b | 0.34 | 0.951 | 0.032 | 0.656 |
Urinary N excretion, g/d | 2.70 | 2.28 | 2.86 | 2.44 | 2.49 | 2.65 | 2.78 | 2.36 | 0.11 | 0.474 | 0.076 | 0.998 |
N absorption, g/d | 38.11 | 39.85 | 43.43 | 45.22 | 38.98 b | 44.33 a | 40.77 | 42.54 | 1.02 | 0.022 | 0.404 | 0.992 |
N retention, g/d | 35.41 | 37.57 | 40.57 | 42.77 | 36.49 b | 41.67 a | 37.99 | 40.17 | 1.06 | 0.031 | 0.325 | 0.992 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Unnawong, N.; Cherdthong, A.; So, S. Influence of Supplementing Sesbania grandiflora Pod Meal at Two Dietary Crude Protein Levels on Feed Intake, Fermentation Characteristics, and Methane Mitigation in Thai Purebred Beef Cattle. Vet. Sci. 2021, 8, 35. https://doi.org/10.3390/vetsci8020035
Unnawong N, Cherdthong A, So S. Influence of Supplementing Sesbania grandiflora Pod Meal at Two Dietary Crude Protein Levels on Feed Intake, Fermentation Characteristics, and Methane Mitigation in Thai Purebred Beef Cattle. Veterinary Sciences. 2021; 8(2):35. https://doi.org/10.3390/vetsci8020035
Chicago/Turabian StyleUnnawong, Narirat, Anusorn Cherdthong, and Sarong So. 2021. "Influence of Supplementing Sesbania grandiflora Pod Meal at Two Dietary Crude Protein Levels on Feed Intake, Fermentation Characteristics, and Methane Mitigation in Thai Purebred Beef Cattle" Veterinary Sciences 8, no. 2: 35. https://doi.org/10.3390/vetsci8020035
APA StyleUnnawong, N., Cherdthong, A., & So, S. (2021). Influence of Supplementing Sesbania grandiflora Pod Meal at Two Dietary Crude Protein Levels on Feed Intake, Fermentation Characteristics, and Methane Mitigation in Thai Purebred Beef Cattle. Veterinary Sciences, 8(2), 35. https://doi.org/10.3390/vetsci8020035