Blood Microbiome: A New Marker of Gut Microbial Population in Dogs?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Fecal and Blood DNA Extraction, Sequencing, and Taxonomic Annotation
2.3. Quantitative Real-Time PCR (qPCR)
2.4. Computation and Statistical Analysis
3. Results
3.1. General Description of Blood Microbiome Related to Gut Microbiome
3.2. Characterization of Fecal Microbiome Related to Diets
3.3. Characterization of Blood Microbiome Related to Diets
3.4. Alpha and Beta Diversity of Gut and Blood Microbiome Related to Diets
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sandri, M.; Manfrin, C.; Pallavicini, A.; Stefanon, B. Microbial biodiversity of the liquid fraction of rumen content from lactating cows. Animal 2014, 8, 572–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, P.; Swanson, K.S. Gut microbiota of humans, dogs and cats: Current knowledge and future opportunities and challenges. Br. J. Nutr. 2015, 113, S6–S17. [Google Scholar] [CrossRef] [PubMed]
- Pilla, R.; Suchodolski, J.S. The Role of the Canine Gut Microbiome and Metabolome in Health and Gastrointestinal Disease. Front. Vet. Sci. 2020, 6, 498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jha, A.R.; Shmalberg, J.; Tanprasertsuk, J.; Perry, L.; Massey, D.; Honaker, R.W. Characterization of gut microbiomes of household pets in the United States using a direct-to-consumer approach. PLoS ONE 2020, 15, e0227289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forster, G.M.; Stockman, J.; Noyes, N.; Heuberger, A.L.; Broeckling, C.D.; Bantle, C.M.; Ryan, E.P. A Comparative Study of Serum Biochemistry, Metabolome and Microbiome Parameters of Clinically Healthy, Normal Weight, Overweight, and Obese Companion Dogs. Top. Companion Anim. Med. 2018, 33, 126–135. [Google Scholar] [CrossRef]
- Hand, D.; Wallis, C.; Colyer, A.; Penn, C.W. Pyrosequencing the Canine Faecal Microbiota: Breadth and Depth of Biodiversity. PLoS ONE 2013, 8, e53115. [Google Scholar] [CrossRef] [Green Version]
- Scarsella, E.; Stefanon, B.; Cintio, M.; Licastro, D.; Sgorlon, S.; Monego, S.D.; Sandri, M. Learning machine approach reveals microbial signatures of diet and sex in dog. PLoS ONE 2020, 15, e0237874. [Google Scholar] [CrossRef]
- Garcia-Mazcorro, J.F.; Barcenas-Walls, J.R.; Suchodolski, J.S.; Steiner, J.M. Molecular assessment of the fecal microbiota in healthy cats and dogs before and during supplementation with fructo-oligosaccharides (FOS) and inulin using high-throughput 454-pyrosequencing. PeerJ 2017, 5, e3184. [Google Scholar] [CrossRef] [Green Version]
- Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.-M.; et al. Enterotypes of the human gut microbiome. Nature 2011, 473, 174–180. [Google Scholar] [CrossRef]
- Petersen, C.; Round, J.L. Defining dysbiosis and its influence on host immunity and disease. Cell. Microbiol. 2014, 16, 1024–1033. [Google Scholar] [CrossRef]
- Mandal, R.K.; Jiang, T.; Al-Rubaye, A.A.; Rhoads, D.D.; Wideman, R.F.; Zhao, J.; Pevzner, I.; Kwon, Y.M. An investigation into blood microbiota and its potential association with Bacterial Chondronecrosis with Osteomyelitis (BCO) in Broilers. Sci. Rep. 2016, 6, 25882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vientós-Plotts, A.I.; Ericsson, A.C.; Rindt, H.; Grobman, M.E.; Graham, A.; Bishop, K.; Cohn, L.A.; Reinero, C.R. Dynamic changes of the respiratory microbiota and its relationship to fecal and blood microbiota in healthy young cats. PLoS ONE 2017, 12, e0173818. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, C.; Tang, C.; Zhao, X.; He, Q.; Li, J. Identification and Characterization of Blood and Neutrophil-Associated Microbiomes in Patients with Severe Acute Pancreatitis Using Next-Generation Sequencing. Front. Cell. Infect. Microbiol. 2018, 8, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whittle, E.; Leonard, M.O.; Harrison, R.; Gant, T.W.; Tonge, D.P. Multi-Method Characterization of the Human Circulating Microbiome. Front. Microbiol. 2019, 9, 3266. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Zhou, H.; Jing, Y.; Dong, C. Association between blood microbiome and type 2 diabetes mellitus: A nested case-control study. J. Clin. Lab. Anal. 2019, 33, e22842. [Google Scholar] [CrossRef] [Green Version]
- Païssé, S.; Valle, C.; Servant, F.; Courtney, M.; Burcelin, R.; Amar, J.; Lelouvier, B. Comprehensive description of blood microbiome from healthy donors assessed by 16S targeted metagenomic sequencing. Transfusion 2016, 56, 1138–1147. [Google Scholar] [CrossRef]
- Cogen, A.L.; Nizet, V.; Gallo, R.L. Skin microbiota: A source of disease or defence? Br. J. Dermatol. 2008, 158, 442–455. [Google Scholar] [CrossRef] [Green Version]
- Potgieter, M.; Bester, J.; Kell, D.B.; Pretorius, E. The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiol. Rev. 2015, 39, 567–591. [Google Scholar] [CrossRef] [Green Version]
- Mercier, R.; Kawai, Y.; Errington, J. General principles for the formation and proliferation of a wall-free (L-form) state in bacteria. eLife 2014, 3, e04629. [Google Scholar] [CrossRef]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- AlShawaqfeh, M.K.; Wajid, B.; Minamoto, Y.; Markel, M.; Lidbury, J.A.; Steiner, J.M.; Serpedin, E.; Suchodolski, J.S. A dysbiosis index to assess microbial changes in fecal samples of dogs with chronic inflammatory enteropathy. FEMS Microbiol. Ecol. 2017, 93, fix136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandri, M.; Sgorlon, S.; Conte, G.; Serra, A.; Monego, S.D.; Stefanon, B. Substitution of a commercial diet with raw meat complemented with vegetable foods containing chickpeas or peas affects faecal microbiome in healthy dogs. Ital. J. Anim. Sci. 2019, 18, 1205–1214. [Google Scholar] [CrossRef] [Green Version]
- Sandri, M.; Sgorlon, S.; Scarsella, E.; Stefanon, B. Effect of different starch sources in a raw meat-based diet on fecal microbiome in dogs housed in a shelter. Anim. Nutr. 2020, 6, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Addinsoft. XLSTAT Statistical and Data Analysis Solution. Addinsoft: Boston, MA, USA, 2020. [Google Scholar]
- Cintio, M.; Scarsella, E.; Sgorlon, S.; Sandri, M.; Stefanon, B. Gut Microbiome of Healthy and Arthritic Dogs. Vet. Sci. 2020, 7, 92. [Google Scholar] [CrossRef]
- Vilson, Å.; Ramadan, Z.; Li, Q.; Hedhammar, Å.; Reynolds, A.; Spears, J.; Labuda, J.; Pelker, R.; Björkstén, B.; Dicksved, J.; et al. Disentangling factors that shape the gut microbiota in German Shepherd dogs. PLoS ONE 2018, 13, e0193507. [Google Scholar] [CrossRef]
- Gupta, V.K.; Paul, S.; Dutta, C. Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity. Front. Microbiol. 2017, 8, 1162. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, É.D.M.; Peixoto, M.C.; Putarov, T.C.; Monti, M.; Pacheco, P.D.G.; Loureiro, B.A.; Pereira, G.T.; Carciofi, A.C. The effects of age and dietary resistant starch on digestibility, fermentation end products in faeces and postprandial glucose and insulin responses of dogs. Arch. Anim. Nutr. 2019, 73, 485–504. [Google Scholar] [CrossRef]
- Coelho, L.P.; Kultima, J.R.; Costea, P.I.; Fournier, C.; Pan, Y.; Czarnecki-Maulden, G.; Hayward, M.R.; Forslund, S.K.; Schmidt, T.S.B.; Descombes, P.; et al. Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome 2018, 6, 72. [Google Scholar] [CrossRef]
- Beloshapka, A.N.; Dowd, S.E.; Suchodolski, J.S.; Steiner, J.M.; Duclos, L.; Swanson, K.S. Fecal microbial communities of healthy adult dogs fed raw meat-based diets with or without inulin or yeast cell wall extracts as assessed by 454 pyrosequencing. FEMS Microbiol. Ecol. 2013, 84, 532–541. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Baeza, Y.; Hyde, E.R.; Suchodolski, J.S.; Knight, R. Dog and human inflammatory bowel disease rely on overlapping yet distinct dysbiosis networks. Nat. Microbiol. 2016, 1, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Ridyard, A.E.; Brown, J.K.; Rhind, S.M.; Else, R.W.; Simpson, J.W.; Miller, H.R.P. Apical Junction Complex Protein Expression in the Canine Colon: Differential Expression of Claudin-2 in the Colonic Mucosa in Dogs with Idiopathic Colitis. J. Histochem. Cytochem. 2007, 55, 1049–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suchodolski, J.S. Diagnosis and interpretation of intestinal dysbiosis in dogs and cats. Vet. J. 2016, 215, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.S.; Pratt-Phillips, S.; Gonzalez, L.M. Alterations in Intestinal Permeability: The Role of the “Leaky Gut” in Health and Disease. J. Equine Vet. Sci. 2017, 52, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Tizard, I.R.; Jones, S.W. The Microbiota Regulates Immunity and Immunologic Diseases in Dogs and Cats. Vet. Clin. Small Anim. Pract. 2018, 48, 307–322. [Google Scholar] [CrossRef]
- Damgaard, C.; Magnussen, K.; Enevold, C.; Nilsson, M.; Tolker-Nielsen, T.; Holmstrup, P.; Nielsen, C.H. Viable Bacteria Associated with Red Blood Cells and Plasma in Freshly Drawn Blood Donations. PLoS ONE 2015, 10, e0120826. [Google Scholar] [CrossRef] [Green Version]
- Kell, D.B.; Kaprelyants, A.S.; Weichart, D.H.; Harwood, C.R.; Barer, M.R. Viability and activity in readily culturable bacteria: A review and discussion of the practical issues. Antonie Van Leeuwenhoek 1998, 73, 169–187. [Google Scholar] [CrossRef]
- Kell, D.B.; Pretorius, E. On the translocation of bacteria and their lipopolysaccharides between blood and peripheral locations in chronic, inflammatory diseases: The central roles of LPS and LPS-induced cell death. Int. Biol. 2015, 7, 1339–1377. [Google Scholar] [CrossRef] [Green Version]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef]
- Rimoldi, M.; Chieppa, M.; Salucci, V.; Avogadri, F.; Sonzogni, A.; Sampietro, G.M.; Nespoli, A.; Viale, G.; Allavena, P.; Rescigno, M. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat. Immunol. 2005, 6, 507–514. [Google Scholar] [CrossRef]
- Costello, E.K.; Lauber, C.L.; Hamady, M.; Fierer, N.; Gordon, J.I.; Knight, R. Bacterial Community Variation in Human Body Habitats Across Space and Time. Science 2009, 326, 1694–1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
BARF | HOME | KIBBLE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |||||
Actinobacteria | feces | 65.0 | 83.9 | 18.2 | 30.8 | 21.6 | 32.2 | |||
blood | 8.8 | 10.2 | 21.2 | 17.2 | 12.7 | 7.2 | ||||
Bacteroidetes | feces | 97.3 | 119.8 | 69.7 | 97.2 | 106.1 | 89.1 | |||
blood | 2.8 | 5.1 | 3.1 | 3.9 | 10.9 | 8.2 | ||||
Firmicutes | feces | 1062.3 | 368.0 | 1064.2 | 474.6 | 896.3 | 345.7 | |||
blood | 24.6 | 11.9 | 30.7 | 25.9 | 31.0 | 12.8 | ||||
Fusobacteria | feces | 100.8 | 99.9 | 93.7 | 126.2 | 75.9 | 141.0 | |||
blood | 0.2 | b | 0.2 | 0.0 | a | 0.0 | 0.1 | ab | 0.4 | |
Proteobacteria | feces | 10.4 | 10.9 | 60.1 | 83.7 | 57.4 | 128.8 | |||
blood | 18.2 | 14.5 | 13.3 | 21.5 | 17.6 | 14.8 | ||||
OD1 | feces | n.a. | n.a. | n.a. | ||||||
blood | 1.9 | 2.6 | 0.8 | 2.6 | 0.0 | 0.1 |
BARF | HOME | KIBBLE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | p-Value | ||||
Clostridiaceae | 446.6 | b | 364.5 | 229.5 | ab | 268.3 | 175.4 | a | 195.7 | 0.045 |
Coriobacteriaceae | 75.5 | b | 75.7 | 29.1 | ab | 37.1 | 19.6 | a | 35.7 | 0.021 |
Fusobacteriaceae | 132.5 | b | 165.1 | 75.0 | ab | 79.8 | 16.0 | a | 20.2 | 0.015 |
Lachnospiraceae | 304.8 | 173.3 | 338.2 | 291.5 | 428.3 | 247.9 | 0.469 |
BARF | HOME | KIBBLE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | p-Value | ||||
Catenibacterium | 2.1 | 8.3 | 18.5 | 31.7 | 6.9 | 15.1 | 0.069 | |||
Clostridium | 389.0 | b | 389.4 | 139.9 | a | 227.8 | 122.7 | ab | 119.7 | 0.030 |
Collinsella | 56.4 | b | 74.6 | 11.8 | ab | 10.8 | 2.5 | a | 4.9 | 0.022 |
Slackia | 4.7 | 7.0 | 3.3 | 10.4 | 0.1 | 0.1 | 0.071 |
BARF | HOME | KIBBLE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | p-Value | ||||
Bifidobacteriaceae | 0.2 | 0.2 | 0.0 | 0.0 | 0.3 | 0.7 | 0.066 | |||
Coriobacteriaceae | 0.7 | 2.0 | 0.0 | 0.0 | 0.6 | 1.7 | 0.070 | |||
Corynebacteriaceae | 0.4 | ab | 0.6 | 0.7 | b | 0.6 | 0.0 | a | 0.0 | 0.003 |
Fusobacteriaceae | 0.2 | b | 0.2 | 0.0 | a | 0.0 | 0.1 | ab | 0.4 | 0.027 |
Lachnospiraceae | 3.5 | 3.6 | 0.3 | 0.5 | 3.8 | 6.5 | 0.054 | |||
Phyllobacteriaceae | 0.0 | a | 0.0 | 0.4 | b | 0.8 | 0.0 | ab | 0.0 | 0.016 |
Propionibacteriaceae | 6.0 | 10.0 | 19.5 | 16.0 | 9.9 | 9.7 | 0.057 | |||
Ruminococcaceae | 4.9 | b | 5.8 | 0.1 | a | 0.2 | 1.6 | ab | 2.8 | 0.031 |
Sphingomonadaceae | 10.2 | b | 11.3 | 0.6 | a | 1.6 | 1.9 | ab | 2.9 | 0.045 |
Turicibacteriaceae | 0.5 | 1.5 | 1.4 | 1.9 | 2.8 | 4.0 | 0.054 |
BARF | HOME | KIBBLE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | p-Value | ||||
Corynebacterium | 0.4 | ab | 0.6 | 0.7 | b | 0.6 | 0.0 | a | 0.0 | 0.003 |
Delftia | 0.5 | 1.6 | 1.1 | 1.3 | 0.8 | 0.8 | 0.058 | |||
Propionibacterium | 6.0 | 10.0 | 19.5 | 16.0 | 9.9 | 9.7 | 0.057 | |||
Sedimentibacter | 0.0 | 0.0 | 0.3 | 0.9 | 0.7 | 1.2 | 0.069 | |||
Sphingomonas | 9.7 | 11.5 | 0.3 | 0.8 | 1.5 | 1.9 | 0.071 | |||
Turicibacter | 0.5 | 1.5 | 1.4 | 1.9 | 2.8 | 4.0 | 0.054 |
BARF | HOME | KIBBLE | |||||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | ||
H’ | feces | 1.179 | 0.560 | 1.115 | 0.611 | 1.312 | 0.733 |
blood | 1.295 | 0.407 | 1.174 | 0.726 | 1.612 | 0.210 | |
J | feces | 0.358 | 0.170 | 0.338 | 0.185 | 0.398 | 0.223 |
blood | 0.342 | 0.108 | 0.310 | 0.192 | 0.426 | 0.055 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scarsella, E.; Sandri, M.; Monego, S.D.; Licastro, D.; Stefanon, B. Blood Microbiome: A New Marker of Gut Microbial Population in Dogs? Vet. Sci. 2020, 7, 198. https://doi.org/10.3390/vetsci7040198
Scarsella E, Sandri M, Monego SD, Licastro D, Stefanon B. Blood Microbiome: A New Marker of Gut Microbial Population in Dogs? Veterinary Sciences. 2020; 7(4):198. https://doi.org/10.3390/vetsci7040198
Chicago/Turabian StyleScarsella, Elisa, Misa Sandri, Simeone Dal Monego, Danilo Licastro, and Bruno Stefanon. 2020. "Blood Microbiome: A New Marker of Gut Microbial Population in Dogs?" Veterinary Sciences 7, no. 4: 198. https://doi.org/10.3390/vetsci7040198
APA StyleScarsella, E., Sandri, M., Monego, S. D., Licastro, D., & Stefanon, B. (2020). Blood Microbiome: A New Marker of Gut Microbial Population in Dogs? Veterinary Sciences, 7(4), 198. https://doi.org/10.3390/vetsci7040198