Isolation and Histopathological Changes Associated with Non-Tuberculous Mycobacteria in Lymph Nodes Condemned at a Bovine Slaughterhouse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Lymph Nodes
2.2. Mycobacterial Isolation and Biochemical Identification
2.3. Histopathology
3. Results
3.1. Collection of Lymph Nodes and Gross Changes
3.2. Mycobacterial Isolation and Biochemical Identification
3.3. Histopathology
4. Discussion
4.1. Species of NTM Isolated from Lymph Nodes
4.2. Types of Inflammation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bercovier, H.; Vicent, V. Mycobacterial Infections in Domestic and Wild Animals Due to Mycobacterium marinum, Mycobacterium fortuitum, Mycobacterium chelonae, Mycobacterium porcinum, Mycobacterium farcinogenes, Mycobacterium smegmatis, Mycobacterium scrofulaceum, Mycobacterium xenopi, Mycobacterium kansasii, Mycobacterium simiae and Mycobacterium genavense. Rev. Sci. Technol. 2001, 20, 265–290. [Google Scholar] [CrossRef]
- Fonseca, K.L.; Rodrigues, P.N.; Olsson, I.A.S.; Saraiva, M. Experimental Study of Tuberculosis: From Animal Models to Complex Cell Systems and Organoids. PLoS Pathog. 2017, 13, e1006421. [Google Scholar] [CrossRef] [PubMed][Green Version]
- World Health Organization. Global Tuberculosis Report 2018; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Prevots, D.R.; Marras, T.K. Epidemiology of human pulmonary infection with nontuberculous mycobacteria: A review. Clin. Chest Med. 2015, 36, 13–34. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Falkinham, J.O., III. Surrounded by Mycobacteria: Nontuberculous Mycobacteria in the Human Environment. J. Appl. Microbiol. 2009, 107, 356–367. [Google Scholar] [CrossRef] [PubMed]
- Crispell, J.; Benton, C.H.; Balaz, D.; De Maio, N.; Ahkmetova, A.; Allen, A.; Biek, R.; Presho, E.L.; Dale, J.; Hewinson, G.; et al. Combining genomics and epidemiology to analyse bi-directional transmission of Mycobacterium bovis in a multi-host system. eLife 2019, 8, e45833. [Google Scholar] [CrossRef] [PubMed]
- Hauer, A.; De Cruz, K.; Cochard, T.; Godreuil, S.; Karoui, C.; Henault, S.; Bulach, T.; Bañuls, A.L.; Biet, F.; Boschiroli, M.L. Genetic evolution of Mycobacterium bovis causing tuberculosis in livestock and wildlife in France since 1978. PLoS ONE 2015, 10, e0117103. [Google Scholar] [CrossRef]
- Napp, S.; Allepuz, A.; Mercader, I.; Nofrarías, M.; López-Soria, S.; Domingo, M.; Romero, B.; Bezos, J.; De Val, B.P. Evidence of goats acting as domestic reservoirs of bovine tuberculosis. Vet. Rec. 2013, 172, 663. [Google Scholar] [CrossRef][Green Version]
- Broughan, J.M.; Judge, J.; Ely, E.; Delahay, R.J.; Wilson, G.; Clifton-Hadley, R.S.; Goodchild, A.V.; Bishop, H.; Parry, J.E.; Downs, S.H. A review of risk factors for bovine tuberculosis infection in cattle in the UK and Ireland. Epidemiol. Infect. 2016, 144, 2899–2926. [Google Scholar] [CrossRef][Green Version]
- LaHue, N.P.J.; Vicente, J.; Acevedo, P.; Gortázar, C.; Martínez-López, B. Spatially explicit modeling of animal tuberculosis at the wildlife-livestock interface in Ciudad Real province. Spain Prev. Vet. Med. 2016, 128, 101–111. [Google Scholar] [CrossRef]
- Djouaka, R.; Zeukeng, F.; Bigoga, J.D.; Kakou-Ngazoa, S.E.; Akoton, R.; Tchigossou, G.; Coulibaly, D.N.; Tchebe, S.J.; Aboubacar, S.; Nguepdjo, C.N.; et al. Domestic animals infected with Mycobacterium ulcerans—Implications for transmission to humans. PLoS Negl. Trop. Dis. 2018, 12, e0006572. [Google Scholar] [CrossRef][Green Version]
- Fyfe, M.A.J.; Lavender, J.C.; Handasyde, A.K.; Legione O’Brien, R.C.; Stinear, P.T.; Pidot, J.S.; Seemann, T.; Benbow, E.M.; Wallace, R.J.; McCowan, C.; et al. A Major Role for Mammals in the Ecology of Mycobacterium ulcerans. PLoS Negl. Trop. Dis. 2010, 4, e791. [Google Scholar] [CrossRef]
- Durnez, L.; Katakweba, A.; Sadiki, H.; Katholi, R.C.; Kazwala, R.R.; Machang’u, R.R.; Portaels, F.; Leirs, H. Mycobacteria in Terrestrial Small Mammals on Cattle Farms in Tanzania. Vet. Med. Int. 2011, 2011, 12. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Webster, J.P.; Borlase, A.; Rudge, J.W. Who acquires infection from whom and how? Disentangling multi-host and multi-mode transmission dynamics in the ‘elimination’ era. PhilOS. Trans. R. Soc. B 2017, 372, 20160091. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Barasona, J.A.; Gortázar, C.; de la Fuente, J.; Vicente, J. Host richness increases tuberculosis disease risk in game-managed areas. Microorganisms 2019, 7, 182. [Google Scholar] [CrossRef][Green Version]
- Zaragoza Bastida, A.; Rivero Pérez, N.; Valladares Carranza, B.; Isaac-Olivé, K.; Moreno Pérez, P.; Sandoval Trujillo, H.; Ramírez Durán, N. Molecular Identification of Mycobacterium Species of Public Health and Veterinary Importance from Cattle in the South State of Mexico. Can. J. Infect. Dis. Med. Microbiol. 2017, 2017, 6094587. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Waters, W.R.; Whelan, A.O.; Lyashchenko, K.P.; Greenwald, R.; Palmer, M.V.; Harris, B.N.; Hewinson, R.G.; Vordermeier, H.M. Immune Responses in Cattle Inoculated with Mycobacterium bovis, Mycobacterium tuberculosis, or Mycobacterium kansasii. Clin. Vaccine Immunol. 2010, 17, 247–252. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Waters, W.R.; Palmer, M.V.; Thacker, T.C.; Payeur, J.B.; Harris, N.B.; Minion, F.C.; Greenwald, R.; Esfandiari, J.; Andersen, P.; McNair, J.; et al. Immune Responses to Defined Antigens of Mycobacterium bovis in Cattle Experimentally Infected with Mycobacterium kansasii. Clin. Vaccine Immunol. 2006, 13, 611–619. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Van Ingen, J.; de Zwaan, R.; Dekhuijzen, R.; Boeree, M.; van Soolingen, D. Region of Difference 1 in Nontuberculous Mycobacterium Species Adds a Phylogenetic and Taxonomical Character. J. Bacteriol. 2009, 191, 5865–5867. [Google Scholar] [CrossRef][Green Version]
- Devulver, G.; de Montclos, M.P.; Flandrois, J.P. A Multigene Approach to Phylogenetic Analysis Using the Genus Mycobacterium as a Model. Int. J. Syst. Evol. Microbiol. 2005, 55, 293–302. [Google Scholar] [CrossRef]
- Pardo, R.B.; Langoni, H.; Mendonça, L.J.; Chi, K.D. Isolation of Mycobacterium spp. in milk from cows suspected or positive to tuberculosis. Braz. J. Vet. Res. Anim. Sci. 2001, 38, 284–287. [Google Scholar] [CrossRef]
- Proaño-Perez, F.; Rigouts, L.; Brandt, J.; Dorny, P.; Ron, J.; Chavez, M.A.; Rodriguez, R.; Fissette, K.; van Aerde, A.; Portaels, F.; et al. Preliminary Observations on Mycobacterium spp. in Dairy Cattle in Ecuador. Am. J. Trop. Med. Hyg. 2006, 75, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Rigouts, L.; Maregeya, B.; Traore, H.; Collart, J.P.; Fissette, K.; Portaels, F. Use of DNA Restriction Fragment Typing in the Differentiation of Mycobacterium tuberculosis Complex Isolates from Animals and Humans in Burundi. Tuber. Lung Dis. 1996, 77, 264–268. [Google Scholar] [CrossRef]
- Buijtles, P.C.; Petit, P.L. Comparison of NaOH-N-Acetyl Cysteine and Sulfuric Acid Decontamination Methods for Recovery of Mycobacteria from Clinical Specimens. J. Microbiol. Methods 2005, 62, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Martínez, I.; Ponce-De-León, A.; Bobadilla, M.; Villegas-Sepúlveda, N.; Pérez-García, M.; Sifuentes-Osornio, J.; González-y-Merchand, J.A.; Estrada-García, T. A Novel Identification Scheme for Genus Mycobacterium, M. Tuberculosis Complex, and Seven Mycobacteria Species of Human Clinical Impact. Eur. J. Clin. Microbiol. Infect. Dis. 2008, 27, 451. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Torres, N.; González-y-Merchand, J.A.; González-Bonilla, C.; García-Elorriaga, G. Molecular Analysis of Mycobacteria Isolated in Mexican Patients with Different Immunodeficiencies in a Tertiary Care Hospital. Arch. Med. Res. 2013, 44, 562–569. [Google Scholar] [CrossRef]
- Escobar-Escamilla, N.; Ramírez-González, J.E.; González-Villa, M.; Torres-Mazadiego, P.; Mandujano-Martínez, A.; Barrón-Rivera, C.; Bäcker, C.E.; Fragoso-Fonseca, D.E.; Olivera-Díaz, H.; Alcántara-Pérez, P.; et al. Hsp65 Phylogenetic Assay for Molecular Diagnosis of Nontuberculous Mycobacteria Isolated in Mexico. Arch. Med. Res. 2014, 45, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Orduña, P.; Castillo-Rodal, A.I.; Mercado, M.E.; Ponce de León, S.; López-Vidal, Y. Specific Proteins in Nontuberculous Mycobacteria: New Potential Tools. Biomed Res. Int. 2015, 2015, 964178. [Google Scholar] [CrossRef][Green Version]
- Castillo-Rodal, A.I.; Mazari-Hiriart, M.; Lloret-Sánchez, L.T.; Sachman-Ruiz, B.; Vinuesa, P.; López-Vidal, Y. Potentially Pathogenic Nontuberculous Mycobacteria Found in Aquatic Systems. Analysis from a Reclaimed Water and Water Distribution System in Mexico City. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 683–694. [Google Scholar] [CrossRef]
- Perez-Martinez, I.; Aguilar-Ayala, D.A.; Fernandez-Rendon, E.; Carrillo-Sanchez, A.K.; Helguera-Repetto, A.C.; Rivera-Gutierrez, S.; Estrada-Garcia, T.; Cerna-Cortes, J.F.; Gonzalez-Y-Merchand, J.A. Occurrence of Potentially Pathogenic Nontuberculous Mycobacteria in Mexican Household Potable Water: A Pilot Study. BMC Res. Notes 2013, 6, 531. [Google Scholar] [CrossRef][Green Version]
- Cerna-Cortes, J.F.; Leon-Montes, N.; Cortes-Cueto, A.L.; Salas-Rangel, L.P.; Helguera-Repetto, A.C.; Lopez-Hernandez, D.; Rivera-Gutierrez, S.; Fernandez-Rendon, E.; Gonzalez-y-Merchand, J.A. Microbiological Quality of Ready-to-Eat Vegetables Collected in Mexico City: Occurrence of Aerobic-Mesophilic Bacteria, Fecal Coliforms, and Potentially Pathogenic Nontuberculous Mycobacteria. Biomed Res. Int. 2015, 2015, 1–9. [Google Scholar] [CrossRef][Green Version]
- Gortazar, C.; Torres, M.J.; Acevedo, P.; Aznar, J.; Negro, J.J.; de la Fuente, J.; Vicente, J. Fine-Tuning the Space, Time, and Host Distribution of Mycobacteria in Wildlife. BMC Microbiol. 2011, 11, 27. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Biet, F.; Boschiroli, M.L. Non-Tuberculous Mycobacterial Infections of Veterinary Relevance. Res. Vet. Sci. 2014, 97, S69–S77. [Google Scholar] [CrossRef] [PubMed]
- Katale, B.Z.; Mbugi, E.V.; Botha, L.; Keyyu, J.D.; Kendall, S.; Dockrell, H.M.; Michel, A.L.; Kazwala, R.R.; Rweyemamu, M.M.; van Helden, P.; et al. Species Diversity of Non-Tuberculous Mycobacteria Isolated from Humans, Livestock and Wildlife in the Serengeti Ecosystem, Tanzania. BMC Infect. Dis. 2014, 14, 616. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cheng, G.; Xu, D.; Wang, J.; Liu, C.; Zhou, Y.; Cui, Y.; Liu, H.; Wan, K.; Zhou, X. Isolation and Identification of Multiple Drug Resistant Nontuberculous Mycobacteria from Organs of Cattle Produced Typical Granuloma Lesions. Microb. Pathog. 2017, 107, 313–316. [Google Scholar] [CrossRef]
- Ghielmetti, G.; Friedel, U.; Scherrer, S.; Sarno, E.; Landolt, P.; Dietz, O.; Hilbe, M.; Zweifel, C.; Stephan, R. Non-Tuberculous Mycobacteria Isolated from Lymph Nodes and Faecal Samples of Healthy Slaughtered Cattle and the Abattoir Environment. Transbound. Emerg. Dis. 2018, 65, 711–718. [Google Scholar] [CrossRef][Green Version]
- Bolaños, C.A.D.; Franco, M.M.J.; Souza Filho, A.F.; Ikuta, C.Y.; Burbano-Rosero, E.M.; Ferreira Neto, J.S.; Heinemann, M.B.; Motta, R.G.; Paula, C.L.; Morais, A.B.C.; et al. N Nontuberculous Mycobacteria in Milk from Positive Cows in the Intradermal Comparative Cervical Tuberculin Test: Implications for Human Tuberculosis Infections. Rev. Inst. Med. Trop. Sao Paulo 2018, 60, e6. [Google Scholar] [CrossRef][Green Version]
- Belachew, T. Review on Bovine Tuberculosis. Dairy Vet. Sci. J. 2017, 3, 555611. [Google Scholar] [CrossRef]
- Ackerman, M.R. Inflammation and Healing. In Pathologic Basis of Veterinary Disease; Zachary, J.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 73–131. [Google Scholar]
- Miller, M.A.; Zachary, J.F. Pathologic Basis of Veterinary Disease. Zachary, J.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 2–43. [Google Scholar]
- Gcebe, N.; Hlokwe, T.M. Non-tuberculous Mycobacteria in South African Wildlife: Neglected Pathogens and Potential Impediments for Bovine Tuberculosis Diagnosis. Front. Cell. Infect. Microbiol. 2017, 7, 15. [Google Scholar] [CrossRef][Green Version]
- Piersimoni, C.; Scarparo, C. Pulmonary infections associated with nontuberculous mycobacteria in immunocompetent patients. Lancet Infect Dis. 2008, 8, 323–334. [Google Scholar] [CrossRef]
- Je, S.; Quan, H.; Na, Y.; Cho, S.N.; Kim, B.J.; Seok, S.H. An In Vitro Model of Granuloma-Like Cell Aggregates Substantiates Early Host Immune Responses Against Mycobacterium Massiliense Infection. Biol. Open 2016, 5, 1118–1127. [Google Scholar] [CrossRef][Green Version]
- Kasahara, K.; Sato, I.; Ogura, K.; Takeuchi, H.; Kobayashi, K.; Adachi, M. Expression of chemokines and induction of rapid cell death in human blood neutrophils by Mycobacterium tuberculosis. J. Infect. Dis. 1998, 178, 127–137. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chakraborty, P.; Kulkarni, S.; Rajan, R.; Sainis, K. Mycobacterium Tuberculosis Strains from Ancient and Modern Lineages Induce Distinct Patterns of Immune Responses. J. Infect. Dev. Ctries. 2018, 11, 904–911. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gao, X.; Guo, X.; Li, M.; Jia, H.; Lin, W.; Fang, L.; Jiang, Y.; Zhu, H.; Zhang, Z.; Ding, J.; et al. Interleukin 8 and Pentaxin (C-Reactive Protein) as Potential New Biomarkers of Bovine Tuberculosis. J. Clin. Microbiol. 2019, 57, e00274-19. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Remot, A.; Doz, E.; Winter, N. Neutrophils and Close Relatives in the Hypoxic Environment of the Tuberculous Granuloma: New Avenues for Host-Directed Therapies? Front. Immunol. 2019, 10, 417. [Google Scholar] [CrossRef] [PubMed]
- Hall, P.B.; Bender, L.; Garner, M.M. Mycobacteriosis in a Black-Tailed Deer (Odocoileus hemionus colombianus) Caused by Mycobacerium kansasii. J. Zoo Wildl. Med. 2005, 36, 115–117. [Google Scholar] [CrossRef]
- Reyes-Montes, M.R.; Pérez-Huitrón, M.A.; Ocaña-Monroy, J.L.; Frías-De-León, M.G.; Martínez-Herrera, E.; Arenas, R.; Duarte-Escalante, E. The habitat of Coccidioides spp. and the role of animals as reservoirs and disseminators in nature. BMC Infect. Dis. 2016, 16, 550. [Google Scholar] [CrossRef][Green Version]
- Ramírez-Romero, R.; Rodríguez-Tovar, L.E.; Nevárez-Garza, A.M.; López, A. Chlorella Infection in a Sheep in Mexico and Minireview of Published Reports from Humans and Domestic Animals. Mycopathologia 2010, 169, 461–466. [Google Scholar] [CrossRef]
- Matos, A.C.; Dias, A.P.; Morais, M.; Figueira, L.; Martins, M.H.; Matos, M.; Pinto, M.L.; Coelho, A.C. Granuloma Coinfection with Mycobacterium bovis, Mycobacterium avium subsp. paratuberculosis and Corynebacterium pseudotuberculosis in Five Hunted Red Deer (Cervus elaphus) in Portugal. J. Wildl. Dis. 2015, 51, 793–794. [Google Scholar] [CrossRef] [PubMed]
- Barry, C.; Corbett, D.; Bakker, D.; Andersen, P.; McNair, J.; Strain, S. The Effect of Mycobacterium avium complex Infections on Routine Mycobacterium bovis Diagnostic Tests. Vet. Med. Int. 2011, 2011, 1–7. [Google Scholar] [CrossRef][Green Version]
- Boadella, M.; Lyashchenko, K.; Greenwald, R.; Esfandiari, J.; Jaroso, R.; Carta, T.; Garrido, J.M.; Vicente, J.; de la Fuente, J.; Gortázar, C. Serologic Tests for Detecting Antibodies against Mycobacterium bovis and Mycobacterium avium subspecies paratuberculosis in Eurasian Wild Boar (Sus scrofa scrofa). J. Vet. Diagn. Investig. 2011, 23, 77–83. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Thacker, T.C.; Robbe-Austerman, S.; Harris, B.; van Palmer, M.; Waters, W.R. Isolation of Mycobacteria from Clinical Samples Collected in the United States from 2004 to 2011. BMC Vet. Res. 2013, 9, 100. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Seva, J.; Sanes, J.M.; Ramis, G.; Mas, A.; Quereda, J.J.; Villarreal-Ramos, B.; Villar, D.; Pallares, F.J. Evaluation of the Single Cervical Skin Test and Interferon Gamma Responses to Detect Mycobacterium bovis Infected Cattle in a Herd Co-Infected with Mycobacterium avium subsp. paratuberculosis. Vet. Microbiol. 2014, 171, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Hishamnuri, W.N.; Nakagun, S.; Maezawa, M.; Sakaguchi, K.; Akiyama, N.; Watanabe, K.I.; Horiuchi, N.; Kobayashi, Y.; Inokuma, H. Disseminated thymic B-cell lymphoma in a Holstein heifer. J. Vet. Diagn. Investig. 2019, 31, 852–855. [Google Scholar] [CrossRef] [PubMed]
Year | Total of Samples | Tuberculin Reactors | Gross Lesions Compatible with TB | M. bovis Isolated | NTM Isolated |
---|---|---|---|---|---|
2007 | 109 | 11 | 43 | 8 | 5 |
2008 | 169 | 13 | 69 | 12 | 6 |
2009 | 19 | 8 | 8 | 2 | 1 |
2010 | 139 | 2 | 67 | 3 | 5 |
2011 | 92 | 8 | 48 | 4 | 4 |
Total | 528 | 42 | 235 | 29 | 21 |
Number of Samples | % | Microscopic Changes | NTM Isolates |
---|---|---|---|
6 | 28.6 | Granulomas | M. scrofulaceum, M. triviale, M. terrae, M. szulgai. |
7 | 33.3 | Pyogranulomas | M. szulgai, M. kansasii, M. phlei, M. scrofulaceum. |
7 | 33.3 | Without changes | M. szulgai, M. phlei, M. chelonae, M. fortuitum, M. scrofulaceum. |
1 | 4.8 | Unknown | M. kansasii. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Jarguín, A.M.; Martínez-Burnes, J.; Molina-Salinas, G.M.; de la Cruz-Hernández, N.I.; Palomares-Rangel, J.L.; López Mayagoitia, A.; Barrios-García, H.B. Isolation and Histopathological Changes Associated with Non-Tuberculous Mycobacteria in Lymph Nodes Condemned at a Bovine Slaughterhouse. Vet. Sci. 2020, 7, 172. https://doi.org/10.3390/vetsci7040172
Hernández-Jarguín AM, Martínez-Burnes J, Molina-Salinas GM, de la Cruz-Hernández NI, Palomares-Rangel JL, López Mayagoitia A, Barrios-García HB. Isolation and Histopathological Changes Associated with Non-Tuberculous Mycobacteria in Lymph Nodes Condemned at a Bovine Slaughterhouse. Veterinary Sciences. 2020; 7(4):172. https://doi.org/10.3390/vetsci7040172
Chicago/Turabian StyleHernández-Jarguín, Angélica M., Julio Martínez-Burnes, Gloria M. Molina-Salinas, Ned I. de la Cruz-Hernández, José L. Palomares-Rangel, Alfonso López Mayagoitia, and Hugo B. Barrios-García. 2020. "Isolation and Histopathological Changes Associated with Non-Tuberculous Mycobacteria in Lymph Nodes Condemned at a Bovine Slaughterhouse" Veterinary Sciences 7, no. 4: 172. https://doi.org/10.3390/vetsci7040172