Flow Cytometry-Detected Immunological Markers and on Farm Recorded Parameters in Composite Cow Milk as Related to Udder Health Status
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Milk Samples Collection
2.2. Purification of Milk Somatic Cells
2.3. Flow Cytometric Analysis
2.4. Statistical Analysis
3. Results
3.1. Flow Cytometry-Detected Immunological Markers and on Farm Recorded Parameters in Different Bacteriological Conditions
3.2. Linear and Canonical Discriminant Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Paape, M.J.; Bannerman, D.D.; Zhao, X.; Lee, J.W. The bovine neutrophil: Structure and function in blood and milk. Vet. Res. 2003, 34, 597–627. [Google Scholar] [PubMed] [Green Version]
- Rainard, P.; Riollet, C. Innate immunity of the bovine mammary gland. Vet. Res. 2006, 37, 369–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, D.; Diesterbeck, U.S.; König, S.; Brügemann, K.; Schlez, K.; Zschöck, M.; Wolter, W.; Czerny, C.P. Flow cytometric differential cell counts in milk for the evaluation of inflammatory reactions in clinically healthy and subclinically infected bovine mammary glands. J. Dairy Sci. 2011, 94, 5033–5044. [Google Scholar] [CrossRef] [Green Version]
- Pilla, R.; Malvisi, M.; Snel, G.G.; Schwarz, D.; König, S.; Czerny, C.P.; Piccinini, R. Differential cell count as an alternative method to diagnose dairy cow mastitis. J. Dairy Sci. 2013, 96, 1653–1660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damm, M.; Holm, C.; Blaabjerg, M.; Bro, M.N.; Schwarz, D. Differential somatic cell count-A novel method for routine mastitis screening in the frame of Dairy Herd Improvement testing programs. J. Dairy Sci. 2017, 100, 4926–4940. [Google Scholar] [CrossRef] [Green Version]
- Wall, S.K.; Wellnitz, O.; Bruckmaier, R.M.; Schwarz, D. Differential somatic cell count in milk before, during, and after lipopolysaccharide-and lipoteichoic-acid-induced mastitis in dairy cows. J. Dairy Sci. 2018, 101, 5362–5373. [Google Scholar] [CrossRef] [Green Version]
- Zecconi, A.; Vairani, D.; Cipolla, M.; Rizzi, N.; Zanini, L. Assessment of Subclinical Mastitis Diagnostic Accuracy by Differential Cell Count in Individual Cow Milk. Ital. J. Anim. Sci. 2018, 18, 435–440. [Google Scholar] [CrossRef] [Green Version]
- Borjesson, D.L.; Simon, S.I.; Hodzic, E.; Ballantyne, C.M.; Barthold, S.W. Kinetics of CD11b/CD18 up-regulation during infection with the agent of human granulocytic ehrlichiosis in mice. Lab. Investig. 2002, 82, 303–311. [Google Scholar] [CrossRef] [Green Version]
- McFarland, H.I.; Nahill, S.R.; Maciaszek, J.W.; Welsh, R.M. CD11b (Mac1): A marker for CD8+ cytotoxic T cell activation and memory in virus infection. J. Immunol. 1992, 149, 1326–1333. [Google Scholar]
- Wagner, C.; Hänsch, G.M.; Stegmaier, S.; Denefleh, B.; Hug, F.; Schoels, M. The complement receptor 3, CR3 (CD11b/CD18), on T lymphocytes: Activation-dependent up-regulation and regulatory function. Eur. J. Immunol. 2001, 31, 1173–1180. [Google Scholar] [CrossRef]
- Nielsen, H.V.; Christensen, J.P.; Andersson, E.C.; Marker, O.; Thomsen, A.R. Expression of type 3 complement receptor on activated CD8+ T cells facilitates homing to inflammatory sites. J. Immunol. 1994, 153, 2021–2028. [Google Scholar] [PubMed]
- Berckmans, D. Precision livestock farming technologies for welfare management in intensive livestock systems. Rev. Sci. Tech. 2014, 33, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, L.P.; Bjerring, M.; Løvendahl, P. Monitoring individual cow udder health in automated milking systems using online somatic cell counts. J. Dairy Sci. 2016, 99, 608–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schukken, Y.H.; Wilson, D.J.; Welcome, F.; Garrison-Tikofsky, L.; Gonzalez, R.N. Monitoring udder health and milk quality using somatic cell counts. Vet. Res. 2003, 34, 579–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyher, K.K.; Dohoo, I.R. Diagnosing intramammary infections: Evaluation of composite milk samples to detect intramammary infections. J. Dairy Sci. 2011, 94, 3387–3396. [Google Scholar] [CrossRef] [PubMed]
- Mahalanobis, P.C. On the Generalized Distance in Statistics. Proc. Natl. Inst. Sci. India 1936, 2, 49–55. [Google Scholar]
- Riollet, C.; Rainard, P.; Poutrel, B. Cells and cytokines in inflammatory secretions of bovine mammary gland. Adv. Exp. Med. Biol. 2000, 480, 247–258. [Google Scholar]
- Sarikaya, H.; Schlamberger, G.; Meyer, H.H.; Bruckmaier, R.M. Leukocyte populations and mRNA expression of inflammatory factors in quarter milk fractions at different somatic cell score levels in dairy cows. J. Dairy Sci. 2006, 89, 2479–2486. [Google Scholar] [CrossRef] [Green Version]
- Duan, M.; Steinfort, D.P.; Smallwood, D.; Hew, M.; Chen, W.; Ernst, M.; Irving, L.B.; Anderson, G.P.; Hibbs, M.L. CD11b immunophenotyping identifies inflammatory profiles in the mouse and human lungs. Mucosal Immunol. 2016, 9, 550–563. [Google Scholar] [CrossRef] [Green Version]
- Diez-Fraile, A.; Meyer, E.; Duchateau, L.; Burvenich, C. L-Selectin and β2-Integrin expression on circulating bovine polymorphonuclear leukocytes during endotoxin mastitis. J. Dairy Sci. 2003, 86, 2334–2342. [Google Scholar] [CrossRef]
- Gray, K.A.; Maltecca, C.; Bagnato, A.; Doleza, M.; Rossoni, A.; Samore, A.B.; Cassady, J.P. Estimates of marker effects for measures of milk flow in the Italian brown Swiss dairy cattle population. BMC Vet. Res. 2012, 8, 199–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norberg, E. Electrical conductivity of milk as a phenotypic and genetic indicator of bovine mastitis: A review. Livest. Sci. 2005, 96, 129–139. [Google Scholar] [CrossRef]
- Vilas Boas, D.F.; Vercesi Filho, A.E.; Pereira, M.A.; Roma Junior, L.C.; El Faro, L. Association between electrical conductivity and milk production traits in Dairy Gyr cows. J. Appl. Anim. Res. 2017, 45, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Alhussien, M.; Manjari, P.; Mohammed, S.; Ahmad Sheikh, A.; Reddi, S.; Dixit, S.; Dang, A.K. Incidence of mastitis and activity of milk neutrophils in Tharparkar cows reared under semi-arid conditions. Trop. Anim. Health Prod. 2016, 48, 1291–1295. [Google Scholar] [CrossRef] [PubMed]
Item | n | Mean | St. Dev | Minimum | Maximum |
---|---|---|---|---|---|
Cell viability (%) | 40 | 54.70 | 17.76 | 15.50 | 91.50 |
Lymphocytes (%) | 38 | 42.18 | 26.04 | 3.15 | 88.06 |
PMN (%) | 38 | 43.20 | 24.26 | 6.20 | 90.32 |
Macrophages (%) | 38 | 14.32 | 9.11 | 2.31 | 35.66 |
Leucocytes CD11b+ (%) | 40 | 61.80 | 23.99 | 16.00 | 97.00 |
CD11b PMN (MFI) | 38 | 64.45 | 11.16 | 40.92 | 87.62 |
CD11b macrophages (MFI) | 38 | 107.53 | 23.91 | 75.09 | 177.47 |
CD11b leucocytes (MFI) | 40 | 58.99 | 14.89 | 27.36 | 88.47 |
SCC × 1000 cells/mL | 42 | 501.10 | 952.70 | 10.00 | 5771.00 |
Milk electrical conductivity (mS/cm) | 42 | 6.11 | 0.41 | 5.15 | 7.15 |
Milk flow rate (L/min) | 42 | 2.36 | 0.61 | 0.91 | 3.92 |
Item | Group 1 | LS Mean | SE | p-Value |
---|---|---|---|---|
Cell viability (%) | POS | 56.31 | 6.25 | 0.81 |
NEG | 54.64 | 3.37 | ||
Lymphocytes (%) | POS | 26.26 | 8.38 | 0.04 |
NEG | 45.90 | 4.59 | ||
PMN (%) | POS | 55.22 | 8.1 | 0.13 |
NEG | 40.91 | 4.44 | ||
Macrophages (%) | POS | 18.26 | 2.96 | 0.12 |
NEG | 12.89 | 1.52 | ||
Leucocytes CD11b+ (%) | POS | 77.56 | 7.69 | 0.03 |
NEG | 58.31 | 4.08 | ||
CD11b PMN (MFI 2) | POS | 67.70 | 4.08 | 0.50 |
NEG | 64.54 | 2.23 | ||
CD11b macrophages (MFI 2) | POS | 102.97 | 7.93 | 0.52 |
NEG | 108.80 | 4.34 | ||
CD11b leucocytes (MFI 2) | POS | 62.98 | 5.21 | 0.11 |
NEG | 58.87 | 2.76 | ||
SCC × 1000 cells/mL | POS | 1428.14 | 419.26 | 0.04 |
NEG | 448.20 | 203.42 | ||
Milk electrical conductivity (mS/cm) | POS | 6.45 | 0.14 | 0.01 |
NEG | 6.03 | 0.07 | ||
Milk flow rate (L/min) | POS | 1.98 | 0.19 | 0.03 |
NEG | 2.46 | 0.09 |
Class | A-NEG | B-NEG | B-POS | C-NEG | C-POS | Total |
---|---|---|---|---|---|---|
A-NEG | 13 | 0 | 0 | 0 | 0 | 13 |
100 | 0 | 0 | 0 | 0 | 100 | |
B-NEG | 1 | 2 | 0 | 2 | 1 | 6 |
16.67 | 33.33 | 0 | 33.33 | 16.67 | 100 | |
B-POS | 1 | 0 | 2 | 0 | 1 | 4 |
25 | 0 | 50 | 0 | 25 | 100 | |
C-NEG | 0 | 0 | 0 | 11 | 0 | 11 |
0 | 0 | 0 | 100 | 0 | 100 | |
C-POS | 0 | 0 | 0 | 0 | 5 | 5 |
0 | 0 | 0 | 0 | 100 | 100 | |
Total | 15 | 2 | 2 | 13 | 7 | 39 |
38.46 | 5.13 | 5.13 | 33.33 | 17.95 | 100 | |
Error (%) | 0 | 0.67 | 0.50 | 0 | 0 | 0.15 |
Prior probability | 0.33 | 0.15 | 0.10 | 0.28 | 0.13 |
Item | Can1 | Can2 | Can3 | Can4 |
---|---|---|---|---|
Cell viability | −0.05 | 0.05 | 0.01 | 0.00 |
Lymphocytes (%) | −1.29 | −0.70 | −0.86 | −0.24 |
PMN (%) | −1.54 | −0.76 | −0.38 | −0.44 |
Macrophages (%) | −1.67 | −0.75 | −0.44 | −0.51 |
Leukocytes CD11b+ (%) | 0.22 | 0.03 | −0.49 | 0.24 |
CD11b PMN (MFI) | −0.12 | 0.03 | 0.03 | −0.02 |
CD11b macrophages (MFI) | 0.00 | 0.00 | 0.02 | 0.03 |
CD11b leukocytes (MFI) | 0.12 | 0.02 | −0.06 | 0.00 |
Milk electrical conductivity (mS/cm) | −0.72 | −0.06 | 0.18 | 1.28 |
Milk flow rate (L/min) | 0.29 | 2.21 | −0.71 | 0.42 |
Variance | 0.62 | 0.26 | 0.09 | 0.03 |
Wilks’ Lambda | 0.11 | 0.36 | 0.69 | 0.91 |
p-Value | 0.007 | 0.272 | 0.796 | 0.897 |
Class | A-NEG | B-NEG | B-POS | C-NEG | C-POS |
---|---|---|---|---|---|
A-NEG | 1 | 0.1741 | 0.1657 | 0.0017 | 0.0012 |
B-NEG | 0.1741 | 1 | 0.9438 | 0.542 | 0.2541 |
B-POS | 0.1657 | 0.9438 | 1 | 0.3011 | 0.2834 |
C-NEG | 0.0017 | 0.542 | 0.3011 | 1 | 0.038 |
C-POS | 0.0012 | 0.2541 | 0.2834 | 0.038 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Matteis, G.; Grandoni, F.; Scatà, M.C.; Catillo, G.; Moioli, B.; Buttazzoni, L. Flow Cytometry-Detected Immunological Markers and on Farm Recorded Parameters in Composite Cow Milk as Related to Udder Health Status. Vet. Sci. 2020, 7, 114. https://doi.org/10.3390/vetsci7030114
De Matteis G, Grandoni F, Scatà MC, Catillo G, Moioli B, Buttazzoni L. Flow Cytometry-Detected Immunological Markers and on Farm Recorded Parameters in Composite Cow Milk as Related to Udder Health Status. Veterinary Sciences. 2020; 7(3):114. https://doi.org/10.3390/vetsci7030114
Chicago/Turabian StyleDe Matteis, Giovanna, Francesco Grandoni, Maria Carmela Scatà, Gennaro Catillo, Bianca Moioli, and Luca Buttazzoni. 2020. "Flow Cytometry-Detected Immunological Markers and on Farm Recorded Parameters in Composite Cow Milk as Related to Udder Health Status" Veterinary Sciences 7, no. 3: 114. https://doi.org/10.3390/vetsci7030114
APA StyleDe Matteis, G., Grandoni, F., Scatà, M. C., Catillo, G., Moioli, B., & Buttazzoni, L. (2020). Flow Cytometry-Detected Immunological Markers and on Farm Recorded Parameters in Composite Cow Milk as Related to Udder Health Status. Veterinary Sciences, 7(3), 114. https://doi.org/10.3390/vetsci7030114