Prevalence of the Microsporidian Nosema spp. in Honey Bee Populations (Apis mellifera) in Some Ecological Regions of North Asia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ecological and Geographical Characteristics of the Region
2.2. Historical Background
2.3. Research Algorithm
2.4. Experimental Procedures
2.5. Meteorological Data
2.6. Statistical Analysis
3. Results
3.1. Infestation of Apiaries with Nosema Species in Four Ecoregions of North Asia in 2016–2017
- (i)
- In the southern taiga, the number of apiaries infected with either N. apis or N. ceranae was the same (16.7%).
- (ii)
- In the forest steppe and mountain taiga forests (similar climatic conditions—warm summer continental climate), the spread of Nosema species is similar: 9.1% and 11.1% of apiaries with only N. apis; 16.7% and 18.2% of apiaries with only N. ceranae; 22.2% and 36.4% of apiaries with coinfection (N. apis and N. ceranae), respectively (proportion Z-test; Z < 0.39, p > 0.05).
- (iii)
- In the sub-taiga zone, the spread of Nosema infection in apiaries is different from that in the other ecoregions. The smallest number of apiaries with only N. ceranae (7.4%) and the highest number of apiaries with mixed infection (48.2%) were revealed. In addition, about a quarter of apiaries (18.5% of Nosema-positive apiaries) are infected only with N. apis (similar to the southern taiga zone; subarctic climate).
3.2. Dynamics of Infection of Apiaries with Different Nosema Species in Sub-Taiga from 2012 to 2017
4. Discussion
- (i)
- The presence of bee colonies infected with pure N. ceranae in all the study ecoregions;
- (ii)
- No significant differences were identified in the incidence of Nosema infection between subarctic and warm summer continental climates. There is only a trend towards a high proportion of apiaries with only N. apis infection in the subarctic climate, and vice versa, towards a higher proportion of apiaries with only N. ceranae infection in warm summer continental climate;
- (iii)
- Coinfection detected in most study apiaries of North Asia;
- (iv)
- A higher proportion of coinfection apiaries and a lower presence of colonies with pure N. ceranae in the sub-taiga zone (subarctic climate);
- (v)
- There is no replacement of N. apis by N. ceranae in the study honey bee populations of North Asia, but their coexistence is registered.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zander, E. Tierische Parasiten als Krankheitserreger bei der Biene. Münchener Bienenztg. 1909, 31, 196–204. [Google Scholar]
- Fries, I.; Feng, F.; da Silva, A.; Slemenda, S.B.; Pieniazek, N.J. Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur. J. Protistol. 1996, 32, 356–365. [Google Scholar] [CrossRef]
- Fries, I. Nosema apis—A parasite in the honey bee colony. Bee World 1993, 74, 5–19. [Google Scholar] [CrossRef]
- Fries, I.; Martin, R.; Meana, A.; García-Palencia, P.; Higes, M. Natural infections of Nosema ceranae in European honey bees. J. Apic. Res. 2006, 47, 230–233. [Google Scholar] [CrossRef]
- Higes, M.; Martin, R.; Meana, A. Nosema ceranae, a new microsporidian parasite in honeybees in Europe. J. Invertebr. Pathol. 2006, 92, 93–95. [Google Scholar] [CrossRef]
- Klee, J.; Besana, A.M.; Genersch, E.; Gisder, S.; Nanetti, A.; Tam, D.Q.; Chinh, T.X.; Puerta, F.; Ruz, J.M.; Kryger, P.; et al. Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J. Invertebr. Pathol. 2007, 96, 1–10. [Google Scholar] [CrossRef]
- Martín-Hernández, R.; Meana, A.; Prieto, L.; Salvador, A.M.; Garrido-Bailon, E.; Higes, M. Outcome of colonization of Apis mellifera by Nosema ceranae. Appl. Environ. Microbiol. 2007, 73, 6331–6338. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Evans, J.D.; Smith, I.B.; Pettis, J.S. Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee (Apis mellifera) in the United States. J. Invertebr. Pathol. 2008, 97, 186–188. [Google Scholar] [CrossRef]
- Williams, G.R.; Shafer, A.B.; Rogers, R.E.; Shutler, D.; Stewart, D.T. First detection of Nosema ceranae, a microsporidian parasite of European honey bees (Apis mellifera), in Canada and central USA. J. Invertebr. Pathol. 2008, 97, 189–192. [Google Scholar] [CrossRef]
- Giersch, T.; Berg, T.; Galea, F.; Hornitzky, M. Nosema ceranae infects honey bees (Apis mellifera) and contaminates honey in Australia. Apidologie 2009, 40, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.P.; Huang, Z.Y. Nosema ceranae, a newly identified pathogen of Apis mellifera in the USA and Asia. Apidologie 2010, 41, 364–374. [Google Scholar] [CrossRef] [Green Version]
- Yoshiyama, M.; Kimura, K. Distribution of Nosema ceranae in the European honeybee, Apis mellifera in Japan. J. Invertebr. Pathol. 2011, 106, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Ostroverkhova, N.V.; Kucher, A.N.; Golubeva, E.P.; Rosseykina, S.A.; Konusova, O.L. Study of Nosema spp. in the Tomsk region, Siberia: Co-infection is widespread in honeybee colonies. Far East. Entomol. 2019, 378, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Higes, M.; Martín-Hernández, R.; Botías, C.; Bailón, G.E.; González-Porto, A.V.; Barrios, L.; del Nozal, M.J.; Bernal, J.L.; Jiménez, J.J.; García-Palencia, P.; et al. How natural infection by Nosema ceranae causes honeybee colony collapse. Environ. Microbiol. 2008, 10, 2659–2669. [Google Scholar] [CrossRef] [PubMed]
- Higes, M.; Martín-Hernández, R.; Garrido-Bailon, E.; Gonzalez-Porto, A.V.; Garcia-Palencia, P.; Meana, A.; Del Nozal, M.J.; Mayo, R.; Bernal, J.L. Honeybee colony collapse due to Nosema ceranae in professional apiaries. Environ. Microbiol. Rep. 2009, 1, 110–113. [Google Scholar] [CrossRef] [PubMed]
- Botías, C.; Martín-Hernández, R.; Barrios, L.; Meana, A.; Higes, M. Nosema spp. infection and its negative effects on honey bees (Apis mellifera iberiensis) at the colony level. Vet. Res. 2013, 44, 25. [Google Scholar] [CrossRef] [Green Version]
- Higes, M.; García-Palencia, P.; Botias, C.; Meana, A.; Martín-Hernández, R. The differential development of microsporidia infecting worker honey bee (Apis mellifera) at increasing incubation temperature. Environ. Microbiol. Rep. 2010, 2, 745–748. [Google Scholar] [CrossRef]
- Martín-Hernández, R.; Meana, A.; Garcia-Palencia, P.; Marin, P.; Botías, C.; Garrido Bailon, E.; Barrios, L.; Higes, M. Effect of temperature on the biotic potential of honeybee microsporidia. Appl. Environ. Microbiol. 2009, 75, 2554–2557. [Google Scholar] [CrossRef] [Green Version]
- Forsgren, E.; Fries, I. Comparative virulence of Nosema ceranae and Nosema apis in individual European honey bees. Vet. Parasitol. 2010, 170, 212–217. [Google Scholar] [CrossRef]
- Martín-Hernández, R.; Botías, C.; Barrios, L.; Martinez-Salvador, A.; Meana, A.; Mayack, C.; Higes, M. Comparison of the energetic stress associated with experimental Nosema ceranae and Nosema apis infection of honeybees (Apis mellifera). Parasitol. Res. 2011, 109, 605–612. [Google Scholar] [CrossRef]
- Huang, W.F.; Solter, L.F. Comparative development and tissue tropism of Nosema apis and Nosema ceranae. J. Invertebr. Pathol. 2013, 113, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Pettis, J.S.; Zhao, Y.; Liu, X.; Tallon, L.J.; Sadzewicz, L.D.; Li, R.; Zheng, H.; Huang, S.; Zhang, X.; et al. Genome sequencing and comparative genomics of honey bee microsporidia, Nosema apis reveal novel insights into host-parasite interactions. BMC Genom. 2013, 14, 451–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Zee, R.; Gomez-Moracho, T.; Pisa, L.; Sagastume, S.; Garcia-Palencia, P.; Maside, X.; Bartolomé, C.; Martín-Hernández, R.; Higes, M. Virulence and polar tube protein genetic diversity of Nosema ceranae (Microsporidia) field isolates from Northern and Southern Europe in honeybees (Apis mellifera iberiensis). Environ. Microbiol. Rep. 2014, 6, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-F.; Solter, L.; Aronstein, K.; Huang, Z. Infectivity and virulence of Nosema ceranae and Nosema apis in commercially available North American honey bees. J. Invertebr. Pathol. 2015, 124, 107–113. [Google Scholar] [CrossRef]
- Bacandritsos, N.; Granato, A.; Budge, G.; Papanastasiou, I.; Roinioti, E.; Caldon, M.; Falcaro, C.; Gallina, A.; Mutinelli, F. Sudden deaths and colony population decline in Greek honey bee colonies. J. Invertebr. Pathol. 2010, 105, 335–340. [Google Scholar] [CrossRef]
- Fries, I. Nosema ceranae in European honey bees (Apis mellifera). J. Invertebr. Pathol. 2010, 103, S73–S79. [Google Scholar] [CrossRef]
- Gisder, S.; Hedtke, K.; Möckel, N.; Frielitz, M.C.; Linde, A.; Genersch, E. Five-year cohort study of Nosema spp. in Germany: Does climate shape virulence and assertiveness of Nosema ceranae? Appl. Environ. Microbiol. 2010, 76, 3032–3038. [Google Scholar] [CrossRef] [Green Version]
- Higes, M.; Martín-Hernández, R.; Martínez-Salvador, A.; Garrido Bailon, E.; González-Porto, A.V.; Meana, A.; Bernal, J.L.; Del Nozal, M.J.; Bernal, J. A preliminary study of the epidemiological factors related to honey bee colony loss in Spain. Environ. Microbiol. Rep. 2010, 2, 243–250. [Google Scholar] [CrossRef]
- Soroker, V.; Hetzroni, A.; Yakobson, B.; David, D.; David, A.; Voet, H.; Slabezki, Y.; Efrat, H.; Levski, S.; Kamer, Y.; et al. Evaluation of colony losses in Israel in relation to the incidence of pathogens and pests. Apidologie 2011, 42, 192–199. [Google Scholar] [CrossRef] [Green Version]
- Gisder, S.; Schüler, V.; Horchler, L.L.; Groth, D.; Genersch, E. Long-term temporal trends of Nosema spp. infection prevalence in northeast Germany: Continuous spread of Nosema ceranae, an emerging pathogen of honey bees (Apis mellifera), but no general replacement of Nosema apis. Front. Cell. Infect. Microbiol. 2017, 7, 301. [Google Scholar] [CrossRef] [Green Version]
- Urbieta-Magro, A.; Higes, M.; Meana, A.; Barrios, L.; Martín-Hernández, R. Age and method of inoculation influence the infection of worker honey bees (Apis mellifera) by Nosema ceranae. Insects 2019, 10, 417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taric, E.; Glavinic, U.; Vejnovic, B.; Stanojkovic, A.; Aleksic, N.; Dimitrijevic, V.; Stanimirovic, Z. Oxidative stress, endoparasite prevalence and social immunity in bee colonies kept traditionally vs. those kept for commercial purposes. Insects 2020, 11, 266. [Google Scholar] [CrossRef] [PubMed]
- Bourgeois, A.L.; Rinderer, T.E.; Sylvester, H.A.; Holloway, B.; Oldroyd, B.P. Patterns of Apis mellifera infestation by Nosema ceranae support the parasite hypothesis for the evolution of extreme polyandry in eusocial insects. Apidologie 2012, 43, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Fontbonne, R.; Garnery, L.; Vidau, C.; Aufauvre, J.; Texier, C.; Tchamitchian, S.; El Alaoui, H.; Brunet, J.L.; Delbac, F.; Biron, D.G. Comparative susceptibility of three Western honeybee taxa to the microsporidian parasite Nosema ceranae. Infect. Genet. Evol. 2013, 17, 188–194. [Google Scholar] [CrossRef]
- Mendoza, Y.; Antúnez, K.; Branchiccela, B.; Anido, M.; Santos, E.; Invernizzi, C. Nosema ceranae and RNA viruses in European and Africanized honeybee colonies (Apis mellifera) in Uruguay. Apidologie 2014, 45, 224–234. [Google Scholar] [CrossRef]
- Fenoy, S.; Rueda, C.; Higes, M.; Martín-Hernández, R.; del Aguila, C. High-level resistance of Nosema ceranae, a parasite of the honeybee, to temperature and desiccation. Appl. Environ. Microbiol. 2009, 75, 6886–6889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cilia, G.; Cabbri, R.; Maiorana, G.; Cardaio, I.; Dall’Olio, R.; Nanetti, A. A novel TaqMan® assay for Nosema ceranae quantification in honey bee, based on the protein coding gene Hsp70. Eur. J. Protistol. 2018, 63, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Forsgren, E.; Fries, I. Temporal study of Nosema spp. in a cold climate. Environ. Microbiol. Rep. 2013, 5, 78–82. [Google Scholar] [CrossRef]
- Martín-Hernández, R.; Bartolomé, C.; Chejanovsky, N.; Le Conte, Y.; Dalmon, A.; Dussaubat, C.; García-Palencia, P.; Meana, A.; Pinto, M.A.; Soroker, V.; et al. Nosema ceranae in Apis mellifera: A 12 years post-detection perspective. Environ. Microbiol. 2018, 20, 1302–1329. [Google Scholar] [CrossRef] [Green Version]
- Bollan, K.A.; Hothersall, J.D.; Moffat, C.; Durkacz, J.; Saranzewa, N.; Wright, G.A.; Raine, N.E.; Highet, F.; Connolly, C.N. The microsporidian parasites Nosema ceranae and Nosema apis are widespread in honeybee (Apis mellifera) colonies across Scotland. Parasitol. Res. 2013, 112, 751–759. [Google Scholar] [CrossRef] [Green Version]
- Shumkova, R.; Georgieva, A.; Radoslavov, G.; Sirakova, D.; Dzhebir, G.; Neov, B.; Bouga, M.; Hristov, P. The first report of the prevalence of Nosema ceranae in Bulgaria. PeerJ 2018, 6, e4252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matović, K.; Vidanović, D.; Manić, M.; Stojiljković, M.; Radojičić, S.; Debeljak, Z.; Šekler, M.; Ćirić, J. Twenty-five-year study of Nosema spp. in honey bees (Apis mellifera) in Serbia. Saudi J. Biol. Sci. 2020, 27, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Nabian, S.; Ahmadi, K.; Nazem Shirazi, M.H.; Gerami Sadeghian, A. First detection of Nosema ceranae, a microsporidian protozoa of European honeybees (Apis mellifera) in Iran. Iran. J. Parasitol. 2011, 6, 89–95. [Google Scholar] [PubMed]
- Tunca, R.I.; Oskay, D.; Gosterit, A.; Tekin, O.K. Does Nosema ceranae wipe out Nosema apis in Turkey? Iran. J. Parasitol. 2016, 11, 259–264. [Google Scholar]
- Ansari, M.J.; Al-Ghamdi, A.; Adgaba, N.; Khan, K.A.; Alattal, Y. Geographical distribution and molecular detection of Nosema ceranae from indigenous honey bees of Saudi Arabia. Saudi J. Biol. Sci. 2017, 24, 983–991. [Google Scholar] [CrossRef]
- Oğuz, B.; Karapinar, E.; Dinçer, E.; Değer, M.S. Molecular detection of Nosema spp. and black queen-cell virus in honeybees in Van Province, Turkey. Turk. J. Vet. Anim. Sci. 2017, 41, 221–227. [Google Scholar] [CrossRef]
- Khezri, M.; Moharrami, M.; Modirrousta, H.; Torkaman, M.; Salehi, S.; Rokhzad, B.; Khanbabai, H. Molecular detection of Nosema ceranae in the apiaries of Kurdistan province, Iran. Vet. Res. Forum 2018, 9, 273–278. [Google Scholar] [CrossRef]
- Tlak Gajger, I.; Vugrek, O.; Grilec, D.; Petrinec, Z. Prevalence and distribution of Nosema ceranae in Croatian honeybee colonies. Vet. Med. 2010, 55, 457–462. [Google Scholar] [CrossRef] [Green Version]
- Papini, R.; Mancianti, F.; Canovai, R.; Cosci, F.; Rocchigiani, G.; Benelli, G.; Canale, A. Prevalence of the microsporidian Nosema ceranae in honeybee (Apis mellifera) apiaries in Central Italy. Saudi J. Biol. Sci. 2017, 24, 979–982. [Google Scholar] [CrossRef]
- Cilia, G.; Sagona, S.; Giusti, M.; dos Santos, P.E.J.; Nanetti, A.; Felicioli, A. Nosema ceranae infection in honeybee samples from Tuscanian Archipelago (Central Italy) investigated by two qPCR methods. Saudi J. Biol. Sci. 2019, 26, 1553–1556. [Google Scholar] [CrossRef]
- Sánchez Collado, J.G.; Higes, M.; Barrio, L.; Martín-Hernández, R. Flow cytometry analysis of Nosema species to assess spore viability and longevity. Parasitol. Res. 2014, 113, 1695–1701. [Google Scholar] [CrossRef] [PubMed]
- Chauzat, M.P.; Jacques, A.; Laurent, M.; Bougeard, S.; Hendrikx, P.; Ribière-Chabert, M.; EPILOBEE Consortium. Risk indicators affecting honey bee colony survival in Europe: One year of surveillance. Apidologie 2016, 47, 348–378. [Google Scholar] [CrossRef] [Green Version]
- Seitz, N.; Traynor, K.S.; Steinhauer, N.; Rennich, K.; Wilson, M.E.; Ellis, J.D. A national survey of managed honey bee 2014–2015 annual colony losses in the USA. J. Apic. Res. 2016, 54, 292–304. [Google Scholar] [CrossRef]
- Gomes, T.; Feás, X.; Iglesias, A.; Estevinho, L.M. Study of organic honey from the Northeast of Portugal. Molecules 2011, 16, 5374–5386. [Google Scholar] [CrossRef] [PubMed]
- Cepero, A.; Ravoet, J.; Gómez-Moracho, T.; Bernal, J.L.; del Nozal, M.J.; Bartolomé, C.; Maside, X.; Meana, A.; González-Porto, A.V.; de Graaf, D.C.; et al. Holistic screening of collapsing honey bee colonies in Spain: A case study. BMC Res. Notes 2014, 7, 649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meana, A.; Llorens-Picher, M.; Euba, A.; Bernal, J.L.; Bernal, J.; García-Chao, M.; Dagnac, T.; Castro-Hermida, J.A.; González-Porto, A.V.; Higes, M.; et al. Risk factors associated with honey bee colony loss in apiaries in Galicia, NW Spain. Span. J. Agric. Res. 2017, 15, e0501. [Google Scholar] [CrossRef] [Green Version]
- Genersch, E.; Der Ohe, W.V.; Kaatz, H.; Schroeder, A.; Otten, C.; Büchler, R.; Berg, S.; Ritter, W.; Mühlen, W.; Gisder, S.; et al. The German bee monitoring project: A long term study to understand periodically high winter losses of honey bee colonies. Apidologie 2010, 41, 332–352. [Google Scholar] [CrossRef] [Green Version]
- Tokarev, Y.S.; Zinatullina, Z.Y.; Ignatieva, A.N.; Zhigileva, O.N.; Malysh, J.M.; Sokolova, Y.Y. Detection of two Microsporidia pathogens of the European honey bee Apis mellifera (Insecta: Apidae) in Western Siberia. Acta Parasitol. 2018, 63, 728–732. [Google Scholar] [CrossRef]
- Ostroverkhova, N.V. Prevalence of Nosema ceranae (Microsporidia) in the Apis mellifera mellifera bee colonies from long time isolated apiaries of Siberia. Far East. Entomol. 2020, 407, 8–20. [Google Scholar] [CrossRef]
- Ostroverkhova, N.V.; Konusova, O.L.; Kucher, A.N.; Sharakhov, I.V. A comprehensive characterization of the honeybees in Siberia (Russia). In Beekeeping and Bee Conservation—Advances in Research; Dechechi Chambo, E., Ed.; InTech: Rijeka, Croatia, 2016; pp. 1–37. [Google Scholar] [CrossRef] [Green Version]
- Shumny, V.K.; Shokin, Y.I.; Kolchanov, N.A. Biodiversity and Ecosystem Dynamics (Information Technology and Modeling); Siberian Branch of the Russian Academy of Sciences: Novosibirsk, Russia, 2006; 648p, Available online: https://znanium.com/catalog/product/924641 (accessed on 28 July 2020).
- North Eurasian Climate Center. Available online: http://seakc.meteoinfo.ru/ (accessed on 28 July 2020).
- Federal Service for Hydrometeorology and Environmental Monitoring. All-Russian Research Institute of hydrometeorological information—World Data Center. Available online: http://meteo.ru/ (accessed on 28 July 2020).
- Selyaninov, G.T. About climate agricultural estimation. Proc. Agric. Meteorol. 1928, 20, 165–177. [Google Scholar]
- Polyakov, D.V.; Barashkova, N.K.; Kuzhevskaya, I.V. Weather and climate description of anomalous summer 2012 in Tomsk Region. Russ. Meteorol. Hydrol. 2014, 39, 22–28. [Google Scholar] [CrossRef]
- Martín-Hernández, R.; Botías, C.; Bailón, E.G.; Martínez-Salvador, A.; Prieto, L.; Meana, A.; Higes, M. Microsporidia infecting Apis mellifera: Coexistence or competition. Is Nosema ceranae replacing Nosema apis? Environ. Microbiol. 2012, 14, 2127–2138. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.W.; Chung, W.P.; Wang, C.H.; Solter, L.F.; Huang, W.F. Nosema ceranae infection intensity highly correlates with temperature. J. Invertebr. Pathol. 2012, 111, 264–267. [Google Scholar] [CrossRef]
- Pacini, A.; Mira, A.; Molineri, A.; Giacobino, A.; Cagnolo, N.B.; Aignasse, A.; Zago, L.; Izaguirre, M.; Merke, J.; Orellano, E.; et al. Distribution and prevalence of Nosema apis and N. ceranae in temperate and subtropical eco-regions of Argentina. J. Invertebr. Pathol. 2016, 141, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Milbrath, M.O.; van Tran, T.; Huang, W.F.; Solter, L.F.; Tarpy, D.R.; Lawrence, F.; Huang, Z.Y. Comparative virulence and competition between Nosema apis and Nosema ceranae in honey bees (Apis mellifera). J. Invertebr. Pathol. 2015, 125, 9–15. [Google Scholar] [CrossRef]
- Konusova, O.L.; Pogorelov, Y.L.; Ostroverkhova, N.V.; Nechipurenko, A.O.; Vorotov, A.A.; Klimova, E.A.; Prokopiev, A.S. Honey bee and bee-farming in the Tomsk region: Past, present and future. Tomsk State Univ. J. Biol. 2009, 4, 15–28, (In Russian, English Summary). [Google Scholar]
- Sorokin, V.S. A Short Guide to Caring for Bees in Frame Hives for Siberia, 2nd ed.; Tomsk Beekeeping Society: Tomsk, USSR, 1924; p. 180. [Google Scholar]
- Smolyakova, E.O. The development of beekeeping in the Altai Territory. In Actual Issues of the Functioning of the Economy in the Altai Territory; Mishchenko, V.V., Ed.; Altai State University: Barnaul, Russia, 2018; pp. 177–186. [Google Scholar]
- Meixner, M.D.; Büchler, R.; Costa, C.; Francis, R.M.; Hatjina, F.; Kryger, P.; Uzunov, A.; Carreck, N.L. Honey bee genotypes and the environment. J. Apic. Res. 2014, 53, 183–187. [Google Scholar] [CrossRef] [Green Version]
- Meixner, M.D.; Francis, R.M.; Gajda, A.; Kryger, P.; Andonov, S.; Uzunov, A.; Topolska, G.; Costa, C.; Amiri, E.; Berg, S.; et al. Occurrence of parasites and pathogens in honey bee colonies used in a European genotype-environment interactions experiment. J. Apic. Res. 2014, 53, 215–229. [Google Scholar] [CrossRef]
- Büchler, R.; Costa, C.; Hatjina, F.; Andonov, S.; Meixner, M.D.; Le Conte, Y.; Uzunov, A.; Berg, S.; Bienkowska, M.; Bouga, M.; et al. The influence of genetic origin and its interaction with environmental effects on the survival of Apis mellifera L. colonies in Europe. J. Apic. Res. 2014, 53, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Branchiccela, B.; Arredondo, D.; Higes, M.; Invernizzi, C.; Martín-Hernández, R.; Tomasco, I.; Zunino, P.; Antúnez, K. Characterization of Nosema ceranae genetic variants from different geographic origin. Microb. Ecol. 2017, 73, 978–987. [Google Scholar] [CrossRef]
Ecological Region | Area Coordinates | Climate (Group D) # | Altitude, m | Average Temperature (°C) | Average Annual Precipitation, mm | Frost-Free Period (Days) | Σt, Degree Days * | ||
---|---|---|---|---|---|---|---|---|---|
Annual | In January | In July | |||||||
Southern taiga (boreal forest) | from 57°00′00″–59°50′00″ to 82°39′00″–92°08′00″ | Subarctic climate | 60–130 | −0.9–(−2.0) | −19.8–(−21.6) | 17.9–18.3 | 250–500 | 90–120 | 1472–1820 |
Sub-taiga zone | from 56°15′00″–56°48′21″ to 83°58′00″–86°42′00″ | Subarctic climates | 90–120 | −0.6 | −19.2 | 18.1 | 350–550 | 100–120 | 1650–1800 |
Forest steppe | from 51°00′00″–55°19′59″ to 81°28′00″–85°30′00″ | Warm summer continental climate | 200–250 | 2.1–2.6 | −16–(−19) | 18–20 | 350–450 | 120–123 | 1900–2100 |
Mountain taiga forests | from 48°34′03″–53°45′00″ to 82°18′25″–87°07′00″ | Warm summer continental climate | 290–1685 | 0.3–2.4 | −12.6–(−24.0) | 17–22 | 500–900 | 123–135 | 2200–2400 |
Ecoregion | Total Number of Analyzed Apiaries | Nosema Infection not Detected | Infected Apiaries (Infection Categories) | ||||||
---|---|---|---|---|---|---|---|---|---|
N. apis | N. ceranae | N. apis and N. ceranae | |||||||
N | % | N | % | N | % | N | % | ||
Southern taiga | 24 | 8 | 33.33 | 4 | 16.67 | 4 | 16.67 | 8 | 33.33 |
Sub-taiga zone | 27 | 7 | 25.93 | 5 | 18.52 | 2 | 7.41 | 13 | 48.15 |
Forest steppe | 18 | 9 | 50.00 | 2 | 11.11 | 3 | 16.67 | 4 | 22.22 |
Mountain taiga forests | 11 | 4 | 36.36 | 1 | 9.10 | 2 | 18.18 | 4 | 36.36 |
Total | 80 | 28 | 35.00 | 12 | 15.00 | 11 | 13.75 | 29 | 36.25 |
Study Period | Total Number of Analyzed Apiaries | Nosema Infection not Detected | Infected Apiaries (Infection Categories) | ||
---|---|---|---|---|---|
N. apis | N. ceranae | Coinfection | |||
2012–2013 | 26 | 53.85 | 42.31 | 3.85 | 0 |
2014–2015 | 26 | 42.31 | 42.31 | 3.85 | 11.54 |
2016–2017 | 27 | 25.93 | 18.52 | 7.41 | 48.15 |
Total | 79 | 40.51 | 34.18 | 5.06 | 20.25 |
Year of Study | Average Annual Temperature (°C) | Σt, Degree Days * | Period with Active Temperatures, Days | Amount of Precipitation for the Period with Active Temperatures, mm | Hydrothermal Coefficient (HTC) |
---|---|---|---|---|---|
2012 | 0.6 | 2064 | 121 | 199 | 0.96 |
2013 | 1.7 | 1587 | 86 | 200 | 1.26 |
2014 | 0.8 | 1590 | 90 | 162 | 1.01 |
2015 | 2.5 | 2107 | 128 | 277 | 1.31 |
2016 | 1.7 | 2217 | 128 | 203 | 0.92 |
2017 | 2.2 | 1912 | 124 | 285 | 1.49 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostroverkhova, N.V.; Konusova, O.L.; Kucher, A.N.; Kireeva, T.N.; Rosseykina, S.A. Prevalence of the Microsporidian Nosema spp. in Honey Bee Populations (Apis mellifera) in Some Ecological Regions of North Asia. Vet. Sci. 2020, 7, 111. https://doi.org/10.3390/vetsci7030111
Ostroverkhova NV, Konusova OL, Kucher AN, Kireeva TN, Rosseykina SA. Prevalence of the Microsporidian Nosema spp. in Honey Bee Populations (Apis mellifera) in Some Ecological Regions of North Asia. Veterinary Sciences. 2020; 7(3):111. https://doi.org/10.3390/vetsci7030111
Chicago/Turabian StyleOstroverkhova, Nadezhda V., Olga L. Konusova, Aksana N. Kucher, Tatyana N. Kireeva, and Svetlana A. Rosseykina. 2020. "Prevalence of the Microsporidian Nosema spp. in Honey Bee Populations (Apis mellifera) in Some Ecological Regions of North Asia" Veterinary Sciences 7, no. 3: 111. https://doi.org/10.3390/vetsci7030111
APA StyleOstroverkhova, N. V., Konusova, O. L., Kucher, A. N., Kireeva, T. N., & Rosseykina, S. A. (2020). Prevalence of the Microsporidian Nosema spp. in Honey Bee Populations (Apis mellifera) in Some Ecological Regions of North Asia. Veterinary Sciences, 7(3), 111. https://doi.org/10.3390/vetsci7030111