Microbial Profile of the Ventriculum of Honey Bee (Apis mellifera ligustica Spinola, 1806) Fed with Veterinary Drugs, Dietary Supplements and Non-Protein Amino Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Microbiological Analyses
2.3. Statistical Analysis
3. Results
3.1. Effects of VarroMed® and Api-Bioxal® on the Viable Honey Bee Ventriculum Microbial Profile
3.2. Effects of ApiGo® and ApiHerb® on the Viable Honey Bee Ventriculum Microbial Profile
3.3. Effects of GABA and Beta-Alanine on the Viable Honey Bee Ventriculum Microbial Profile
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gallai, N.; Salles, J.M.; Settele, J.; Vaissière, B.E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 2009, 68, 810–821. [Google Scholar] [CrossRef]
- Potts, S.G.; Roberts, S.P.M.; Dean, R.; Marris, G.; Brown, M.A.; Jones, R.; Neumann, P.; Settele, J. Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 2010, 49, 15–22. [Google Scholar] [CrossRef]
- Watson, K.; Stallins, J.A. Honey Bees and Colony Collapse Disorder: A Pluralistic Reframing. Geogr. Compass 2016, 10, 222–236. [Google Scholar] [CrossRef]
- McMenamin, A.J.; Genersch, E. Honey bee colony losses and associated viruses. Curr. Opin. Insect Sci. 2015, 8, 121–129. [Google Scholar] [CrossRef]
- Crotti, E.; Balloi, A.; Hamdi, C.; Sansonno, L.; Marzorati, M.; Gonella, E.; Favia, G.; Cherif, A.; Bandi, C.; Alma, A.; et al. Microbial symbionts: A resource for the management of insect-related problems. Microb. Biotechnol. 2012, 5, 307–317. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Chen, Y.; Li, Z.; Peng, W. Environmental factors have a strong impact on the composition and diversity of the gut bacterial community of Chinese black honeybees. J. Asia. Pac. Entomol. 2018, 21, 261–267. [Google Scholar] [CrossRef]
- Koch, H.; Schmid-Hempel, P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl. Acad. Sci. USA 2011, 108, 19288–19292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maes, P.W.; Rodrigues, P.A.P.; Oliver, R.; Mott, B.M.; Anderson, K.E. Diet-related gut bacterial dysbiosis correlates with impaired development, increased mortality and Nosema disease in the honeybee (Apis mellifera). Mol. Ecol. 2016, 25, 5439–5450. [Google Scholar] [CrossRef] [PubMed]
- Erban, T.; Ledvinka, O.; Kamler, M.; Nesvorna, M.; Hortova, B.; Tyl, J.; Titera, D.; Markovic, M.; Hubert, J. Honeybee (Apis mellifera)-associated bacterial community affected by American foulbrood: Detection of Paenibacillus larvae via microbiome analysis. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Kwong, W.K.; Mancenido, A.L.; Moran, N.A. Immune system stimulation by the native gut microbiota of honey bees. R. Soc. Open Sci. 2017, 4. [Google Scholar] [CrossRef] [Green Version]
- Raymann, K.; Shaffer, Z.; Moran, N.A. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol. 2017, 15, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Gilliam, M.; Valentine, D.K. Enterobacteriaceae Isolated from Foraging worker honey bee, Apis mellifera. J. Invertebr. Pathol. 1974, 23, 38–41. [Google Scholar] [CrossRef]
- Gilliam, M.; Morton, H.L. Bacteria belonging to the genus Bacillus isolated from honey bee, Apis mellifera, fed 2,4-d and antibiotics. Apidologie 1978, 9, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Hayden, C.; Road, E.A.; Gilliam, M. Identification and roles of non-pathogenic microflora associated with honey bees. FEMS Microbiol. Lett. 2006, 155, 1–10. [Google Scholar]
- Martinson, V.G.; Moy, J.; Moran, N.A. Establishment of characteristic gut bacteria during development of the honeybee worker. Appl. Environ. Microbiol. 2012, 78, 2830–2840. [Google Scholar] [CrossRef] [Green Version]
- Genersch, E.; Aubert, M. Emerging and re-emerging viruses of the honey bee (Apis mellifera L.). Vet. Res. 2010, 41. [Google Scholar] [CrossRef] [Green Version]
- Underwood, R.M.; Currie, R.W. The effects of temperature and dose of formic acid on treatment efficacy against Varroa destructor (Acari: Varroidae), a parasite of Apis mellifera (Hymenoptera: Apidae). Exp. Appl. Acarol. 2003, 29, 303–313. [Google Scholar] [CrossRef]
- Charriére, J.-D.; Imdorf, A. Oxalic acid treatment by trickling against Varroa destructor: Recommendations for use in central Europe and under temperate climate conditions. Bee World 2002, 83, 51–60. [Google Scholar] [CrossRef]
- Giusti, M.; Sabelli, C.; Di Donato, A.; Lamberti, D.; Paturzo, C.E.; Polignano, V.; Lazzari, R.; Felicioli, A. Efficacy and safety of Varterminator, a new formic acid medicine against the varroa mite. J. Apic. Res. 2017, 56, 162–167. [Google Scholar] [CrossRef]
- Anderson, K.; Sheehan, T.H.; Eckholm, B.J.; Mott, B.M.; DeGrandi-Hoffman, G. An emerging paradigm of colony health: Microbial balance of the honey bee and hive (Apis mellifera). Insectes Soc. 2011, 58, 431–444. [Google Scholar] [CrossRef]
- Felicioli, A.; Cilia, G.; Mancini, S.; Turchi, B.; Galaverna, G.; Cirlini, M.; Cerri, D.; Fratini, F. In vitro antibacterial activity and volatile characterisation of organic Apis mellifera ligustica (Spinola, 1906) beeswax ethanol extracts. Food Biosci. 2019, 29, 102–109. [Google Scholar] [CrossRef]
- Czech, A.; Smolczyk, A.; Ognik, K.; Wlazło, Ł.; Nowakowicz-Dębek, B.; Kiesz, M. Effect of dietary supplementation with Yarrowia lipolytica or Saccharomyces cerevisiae yeast and probiotic additives on haematological parameters and the gut microbiota in piglets. Res. Vet. Sci. 2018, 119, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Nicolson, S.W.; Nepi, M.; Pacini, E. Nectaries and Nectar; Springer: Berlin, Germany, 2007; ISBN 9781402059377. [Google Scholar]
- Heil, M. Nectar: Generation, regulation and ecological functions. Trends Plant Sci. 2011, 16, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Petanidou, T.; Van Laere, A.; Ellis, W.N.; Smets, E. What shapes amino acid and sugar composition in Mediterranean floral nectars? Oikos 2006, 115, 155–169. [Google Scholar] [CrossRef] [Green Version]
- Nepi, M.; Soligo, C.; Nocentini, D.; Abate, M.; Guarnieri, M.; Cai, G.; Bini, L.; Puglia, M.; Bianchi, L.; Pacini, E. Amino acids and protein profile in floral nectar: Much more than a simple reward. Flora Morphol. Distrib. Funct. Ecol. Plants 2012, 207, 475–481. [Google Scholar] [CrossRef]
- Felicioli, A.; Sagona, S.; Galloni, M.; Bortolotti, L.; Bogo, G.; Guarnieri, M.; Nepi, M. Effects of nonprotein amino acids on survival and locomotion of Osmia bicornis. Insect Mol. Biol. 2018, 27, 556–563. [Google Scholar] [CrossRef]
- Bogo, G.; Bortolotti, L.; Sagona, S.; Felicioli, A.; Galloni, M.; Barberis, M.; Nepi, M. Effects of Non-Protein Amino Acids in Nectar on Bee Survival and Behavior. J. Chem. Ecol. 2019, 1–8. [Google Scholar] [CrossRef]
- Williams, G.R.; Alaux, C.; Costa, C.; Csáki, T.; Doublet, V.; Eisenhardt, D.; Fries, I.; Kuhn, R.; Mcmahon, D.P.; Medrzycki, P.; et al. Standard methods for maintaining adult Apis mellifera in cages under in vitro laboratory conditions. J. Apic. Res. 2013, 52, 1–36. [Google Scholar] [CrossRef] [Green Version]
- R Core Team R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org (accessed on 5 June 2020).
- Kwak, A.-M.; Lee, I.-K.; Lee, S.-Y.; Yun, B.-S.; Kang, H.-W. Oxalic Acid from Lentinula edodes Culture Filtrate: Antimicrobial Activity on Phytopathogenic Bacteria and Qualitative and Quantitative Analyses. Mycobiology 2016, 44, 338–342. [Google Scholar] [CrossRef] [Green Version]
- Fratini, F.; Cilia, G.; Turchi, B.; Felicioli, A. Insects, arachnids and centipedes venom: A powerful weapon against bacteria. A literature review. Toxicon 2017, 130, 91–103. [Google Scholar] [CrossRef]
- Matsuda, T.; Yano, T.; Maruyama, A.; Kumagai, H. Antimicrobial Activities of Organic Acids Determined by Minimum Inhibitory Concentrations at Different pH Ranged from 4.0 to 7.0. Nippon Shokuhin Kogyo Gakkaishi 1994, 41, 687–701. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.L.; Hinton, M. Antibacterial activity of formic and propionic acids in the diet of hens on salmonellas in the crop. Br. Poult. Sci. 1997, 38, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Raftari, M.; Jalilian, F.A.; Abdulamir, A.S.; Son, R.; Sekawi, Z.; Fatimah, A.B. Effect of organic acids on Escherichia coli O157:H7 and Staphylococcus aureus contaminated meat. Open Microbiol. J. 2009, 3, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Nagarajkumar, M.; Jayaraj, J.; Muthukrishnan, S.; Bhaskaran, R.; Velazhahan, R. Detoxification of oxalic acid by Pseudomonas fluorescens strain PfMDU2: Implications for the biological control of rice sheath blight caused by Rhizoctonia solani. Microbiol. Res. 2005, 160, 291–298. [Google Scholar] [CrossRef]
- Hamel, R.; Levasseur, R.; Appanna, V.D. Oxalic acid production and aluminum tolerance in Pseudomonas fluorescens. J. Inorg. Biochem. 1999, 76, 99–104. [Google Scholar] [CrossRef]
- Hokama, S.; Honma, Y.; Toma, C.; Ogawa, Y. Oxalate-degrading Enterococcus faecalis. Microbiol. Immunol. 2000, 44, 235–240. [Google Scholar] [CrossRef]
- de Castilho, A.L.; da Silva, J.P.C.; Saraceni, C.H.C.; Díaz, I.E.C.; Paciencia, M.L.B.; Varella, A.D.; Suffredini, I.B. In vitro activity of Amazon plant extracts against Enterococcus faecalis. Braz. J. Microbiol. 2014, 45, 769–779. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.B.; Alimova, Y.; Myers, T.M.; Ebersole, J.L. Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Arch. Oral Biol. 2011, 56, 650–654. [Google Scholar] [CrossRef] [Green Version]
- Dirusso, C.C.; Black, P.N. Bacterial long chain fatty acid transport: Gateway to a fatty acid-responsive signaling system. J. Biol. Chem. 2004, 279, 49563–49566. [Google Scholar] [CrossRef] [Green Version]
- Van Immerseel, F.; Russell, J.B.; Flythe, M.D.; Gantois, I.; Timbermont, L.; Pasmans, F.; Haesebrouck, F.; Ducatelle, R. The use of organic acids to combat Salmonella in poultry: A mechanistic explanation of the efficacy. Avian Pathol. 2006, 35, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Diaz, T.; del-Val, E.; Ayala, R.; Larsen, J. Alterations in honey bee gut microorganisms caused by Nosema spp. and pest control methods. Pest Manag. Sci. 2018, 75, 835–843. [Google Scholar] [CrossRef]
- Sakamoto, I.; Igarashi, M.; Kimura, K.; Takagi, A.; Miwa, T.; Koga, Y. Suppressive effect of Lactobacillus gasseri OLL 2716 (LG21) on Helicobacter pylori infection in humans. J. Antimicrob. Chemother. 2001, 47, 709–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halami, P.M.; Chandrashekar, A.; Nand, K. Lactobacillus farciminis MD, a newer strain with potential for bacteriocin and antibiotic assay. Lett. Appl. Microbiol. 2000, 30, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Burt, S.A.; Reinders, R.D. Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7. Lett. Appl. Microbiol. 2003, 36, 162–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casella, S.; Leonardi, M.; Melai, B.; Fratini, F.; Pistelli, L. The Role of Diallyl Sulfides and Dipropyl Sulfides in the In Vitro Antimicrobial Activity of the Essential Oil of Garlic, Allium sativum L., and Leek, Allium porrum L. Phyther. Res. 2013, 27, 380–383. [Google Scholar] [CrossRef] [PubMed]
- Bjarnsholt, T.; Jensen, P.Ø.; Rasmussen, T.B.; Christophersen, L.; Calum, H.; Hentzer, M.; Hougen, H.-P.; Rygaard, J.; Moser, C.; Eberl, L.; et al. Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology 2005, 151, 3873–3880. [Google Scholar] [CrossRef] [Green Version]
- Tsao, S.-M.; Yin, M.-C. In-vitro antimicrobial activity of four diallyl sulphides occurring naturally in garlic and Chinese leek oils. J. Med. Microbiol. 2001, 50, 646–649. [Google Scholar] [CrossRef] [Green Version]
- González-Fandos, E.; García-López, M.L.; Sierra, M.L.; Otero, A. Staphylococcal growth and enterotoxins (A-D) and thermonuclease synthesis in the presence of dehydrated garlic. J. Appl. Bacteriol. 1994, 77, 549–552. [Google Scholar] [CrossRef]
- Moreira, M.R.; Ponce, A.; del Valle, C.E.; Roura, S.I. Inhibitory parameters of essential oils to reduce a foodborne pathogen. LWT-Food Sci. Technol. 2005, 38, 565–570. [Google Scholar] [CrossRef]
- Marino, M.; Bersani, C.; Comi, G. Impedance measurements to study the antimicrobial activity of essential oils from Lamiaceae and Compositae. Int. J. Food Microbiol. 2001, 67, 187–195. [Google Scholar] [CrossRef]
- Hajlaoui, H.; Trabelsi, N.; Noumi, E.; Snoussi, M.; Fallah, H.; Ksouri, R.; Bakhrouf, A. Biological activities of the essential oils and methanol extract of tow cultivated mint species (Mentha longifolia and Mentha pulegium) used in the Tunisian folkloric medicine. World J. Microbiol. Biotechnol. 2009, 25, 2227–2238. [Google Scholar] [CrossRef]
- Rota, M.C.; Herrera, A.; Martínez, R.M.; Sotomayor, J.A.; Jordán, M.J. Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control 2008, 19, 681–687. [Google Scholar] [CrossRef]
- Turchi, B.; Mancini, S.; Pistelli, L.; Najar, B.; Fratini, F. Sub-inhibitory concentration of essential oils induces antibiotic resistance in Staphylococcus aureus. Nat. Prod. Res. 2017, 1–5. [Google Scholar] [CrossRef]
- Firmino, D.F.; Cavalcante, T.T.A.; Gomes, G.A.; Firmino, N.C.S.; Rosa, L.D.; de Carvalho, M.G.; Catunda, F.E.A., Jr. Antibacterial and antibiofilm activities of Cinnamomum Sp. essential oil and cinnamaldehyde: Antimicrobial activities. Sci. World J. 2018, 2018, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, O.; Cho, S.K.; Kim, J.; Park, C.G.; Kim, J. In vitro antibacterial activity and major bioactive components of Cinnamomum verum essential oils against cariogenic bacteria, Streptococcus mutans and Streptococcus sobrinus. Asian Pac. J. Trop. Biomed. 2016, 6, 308–314. [Google Scholar] [CrossRef] [Green Version]
- Kalia, M.; Yadav, V.K.; Singh, P.K.; Sharma, D.; Pandey, H.; Narvi, S.S.; Agarwal, V. Effect of Cinnamon Oil on Quorum Sensing-Controlled Virulence Factors and Biofilm Formation in Pseudomonas aeruginosa. PLoS ONE 2015, 10, e0135495. [Google Scholar] [CrossRef] [Green Version]
- Utchariyakiat, I.; Surassmo, S.; Jaturanpinyo, M.; Khuntayaporn, P.; Chomnawang, M.T. Efficacy of cinnamon bark oil and cinnamaldehyde on anti-multidrug resistant Pseudomonas aeruginosa and the synergistic effects in combination with other antimicrobial agents. BMC Complement. Altern. Med. 2016, 16, 158. [Google Scholar] [CrossRef] [Green Version]
- Abubakar, E.-M.M. Efficacy of crude extracts of garlic (Allium sativum Linn.) against nosocomial Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniea and Pseudomonas aeruginosa. J. Med. Plant Res. 2009, 3, 179–185. [Google Scholar]
- Palaksha, M.N.; Ahmed, M.; Das, S. Antibacterial activity of garlic extract on streptomycin-resistant Staphylococcus aureus and Escherichia coli solely and in synergism with streptomycin. J. Nat. Sci. Biol. Med. 2010, 1, 12–15. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, X.; Wang, Y.; Jiang, P.; Quek, S. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control 2016, 59, 282–289. [Google Scholar] [CrossRef]
- Burns, P.; Borgo, M.F.; Binetti, A.; Puntillo, M.; Bergamini, C.; Páez, R.; Mazzoni, R.; Reinheimer, J.; Vinderola, G. Isolation, Characterization and Performance of Autochthonous Spray Dried Lactic Acid Bacteria in Maize Micro and Bucket-Silos. Front. Microbiol. 2018, 9, 2861. [Google Scholar] [CrossRef] [PubMed]
- Kavitake, D.; Kandasamy, S.; Devi, P.B.; Shetty, P.H. Recent developments on encapsulation of lactic acid bacteria as potential starter culture in fermented foods—A review. Food Biosci. 2018, 21, 34–44. [Google Scholar] [CrossRef]
- Unlu, M.; Ergene, E.; Unlu, G.V.; Zeytinoglu, H.S.; Vural, N. Composition, antimicrobial activity and in vitro cytotoxicity of essential oil from Cinnamomum zeylanicum Blume (Lauraceae). Food Chem. Toxicol. 2010, 48, 3274–3280. [Google Scholar] [CrossRef] [PubMed]
- Buru, A.S.; Pichika, M.R.; Neela, V.; Mohandas, K. In vitro antibacterial effects of Cinnamomum extracts on common bacteria found in wound infections with emphasis on methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol. 2014, 153, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Manson, J.S.; Cook, D.; Gardner, D.R.; Irwin, R.E. Dose-dependent effects of nectar alkaloids in a montane plant-pollinator community. J. Ecol. 2013, 101, 1604–1612. [Google Scholar] [CrossRef] [Green Version]
- Shelp, B.J.; Bown, A.W.; Zarei, A. 4-Aminobutyrate (GABA): A metabolite and signal with practical significance. Botany 2017, 95, 1015–1032. [Google Scholar] [CrossRef] [Green Version]
- Bouché, N.; Fromm, H. GABA in plants: Just a metabolite? Trends Plant Sci. 2004, 9, 110–115. [Google Scholar] [CrossRef]
- Thiruvengadam, M.; Kim, S.-H.; Chung, I.-M. Influence of amphetamine, γ-aminobutyric acid, and fosmidomycin on metabolic, transcriptional variations and determination of their biological activities in turnip (Brassica rapa ssp. rapa). South Afr. J. Bot. 2016, 103, 181–192. [Google Scholar] [CrossRef]
- Soma, Y.; Fujiwara, Y.; Nakagawa, T.; Tsuruno, K.; Hanai, T. Reconstruction of a metabolic regulatory network in Escherichia coli for purposeful switching from cell growth mode to production mode in direct GABA fermentation from glucose. Metab. Eng. 2017, 43, 54–63. [Google Scholar] [CrossRef]
- Dover, S.; Halpern, Y.S. Utilization of -aminobutyric acid as the sole carbon and nitrogen source by Escherichia coli K-12 mutants. J. Bacteriol. 1972, 109, 835–843. [Google Scholar] [CrossRef] [Green Version]
- Cronan, J.E.J. Beta-alanine synthesis in Escherichia coli. J. Bacteriol. 1980, 141, 1291–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, F.; Kramer, R.; Burkovski, A. Identification and characterization of the main β-alanine uptake system in Escherichia coli. Appl. Microbiol. Biotechnol. 2004, 65, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, A.; Malik, A. Beta-alanine: Design, synthesis and antimicrobial evaluation of synthesized derivatives. Der Pharm. Lett. 2016, 8, 135–142. [Google Scholar]
- Kadhum Shneine, J.; Ziad Qassem, D.; Saad Mahmoud, S. Synthesis, Characterization and Antibacterial Activity of Some Amino Acid Derivatives. Der Pharma Chem. 2017, 9, 100–104. [Google Scholar]
Bacteria | Time 0 | Diet (Veterinary Drugs and Control) One Week | p-Value § | ||
---|---|---|---|---|---|
C | VM | AB | |||
Total viable aerobic counts | 5.36 ± 0.51 | 7.28 ± 0.71 * | 7.03 ± 0.88 * | 7.40 ± 0.11 * | 0.798 |
Enterobacteriaceae | 3.34 ± 0.77 | 5.88 ± 0.89 * | 5.18 ± 0.04 * | 5.59 ± 0.75 * | 0.455 |
Escherichia coli | 2.43 ± 1.28 | 2.52 ± 0.95 b | 0.00 ± 0.00 *,c | 4.72 ± 0.44 *,a | <0.001 |
Pseudomonas spp. | 2.69 ± 0.96 | 2.93 ± 0.32 b | 3.36 ± 0.93 a,b | 4.38 ± 0.37 *,a | 0.013 |
Staphylococcus spp. | 1.47 ± 0.69 | 1.50 ± 0.55 b | 0.00 ± 0.00 *,c | 3.48 ± 0.13 *,a | <0.001 |
Enterococcus spp. | 1.24 ± 0.34 | 2.45 ± 1.58 | 3.88 ± 1.04 * | 3.81 ± 0.63 * | 0.237 |
Lactic acid bacteria | 2.87 ± 0.67 | 3.91 ± 1.03 a,b | 5.26 ± 0.97 *,b | 2.74 ± 0.05 a | 0.023 |
Bacteria | Time 0 | Diet with Dietary Supplements, One Week | p-Value § | ||
---|---|---|---|---|---|
C | AG | AH | |||
Total viable aerobic counts | 5.36 ± 0.51 | 7.28 ± 0.71 * | 6.76 ± 0.59 * | 6.62 ± 0.56 * | 0.328 |
Enterobacteriaceae | 3.34 ± 0.77 | 5.88 ± 0.89 *,a | 5.61 ± 1.16 *,a | 3.16 ± 0.13 b | 0.004 |
Escherichia coli | 2.43 ± 1.28 | 2.52 ± 0.95 a | 3.20 ± 0.32 a | 0.00 ± 0.00 *,b | 0.001 |
Pseudomonas spp. | 2.69 ± 0.96 | 2.93 ± 0.32 a | 3.11 ± 0.49 a | 0.00 ± 0.00 *,b | <0.001 |
Staphylococcus spp. | 1.47 ± 0.69 | 1.50 ± 0.55 b | 3.29 ± 0.03 *,a | 0.00 ± 0.00 c | <0.001 |
Enterococcus spp. | 1.24 ± 0.34 | 2.45 ± 1.58 * | 3.68 ± 1.03 * | 3.86 ± 0.42 * | 0.250 |
Lactic acid bacteria | 2.87 ± 0.67 | 3.91 ± 1.03 | 4.51 ± 0.70 * | 3.05 ± 0.28 | 0.160 |
Bacteria | Time 0 | Diet with Non-Protein Amino Acids, One Week | p-Value § | ||||
---|---|---|---|---|---|---|---|
Control | β-Alanine | β-Alanine 20x | GABA | GABA 20x | |||
Total viable aerobic counts | 5.36 ± 0.51 | 7.28 ± 0.71 * | 7.42 ± 0.8 * | 6.97 ± 0.47 * | 7.26 ± 0.54 * | 6.79 ± 0.90 * | 0.793 |
Enterobacteriaceae | 3.34 ± 0.77 | 5.88 ± 0.89 * | 5.48 ± 0.86 * | 6.12 ± 0.25 * | 5.55 ± 1.08 * | 6.12 ± 0.50 * | 0.787 |
Escherichia coli | 2.43 ± 1.28 | 2.52 ± 0.95 b | 3.43 ± 0.94 a,b | 5.00 ± 0.55 *,a | 0.00 ± 0.00 *,c | 2.73 ± 0.64 b | <0.001 |
Pseudomonas spp. | 2.69 ± 0.96 | 2.93 ± 0.32 a | 0.00 ± 0.00 *,b | 0.00 ± 0.00 *,b | 0.00 ± 0.00 *,b | 0.00 ± 0.00 *,b | <0.001 |
Staphylococcus spp. | 1.47 ± 0.69 | 1.50 ± 0.55 a | 0.00 ± 0.00 *,b | 0.00 ± 0.00 *,b | 0.00 ± 0.00 *,b | 0.00 ± 0.00 *,b | <0.001 |
Enterococcus spp. | 1.24 ± 0.34 | 2.45 ± 1.58 a | 1.39 ± 0.67 a,b | 1.52 ± 0.23 a,b | 0.00 ± 0.00 *,b | 0.73 ± 0.03 *,a,b | 0.044 |
Lactic acid bacteria | 2.87 ± 0.67 | 3.91 ± 1.03 | 3.51 ± 0.59 | 4.83 ± 1.14 * | 4.67 ± 1.36 * | 4.39 ± 0.57 * | 0.503 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cilia, G.; Fratini, F.; Tafi, E.; Turchi, B.; Mancini, S.; Sagona, S.; Nanetti, A.; Cerri, D.; Felicioli, A. Microbial Profile of the Ventriculum of Honey Bee (Apis mellifera ligustica Spinola, 1806) Fed with Veterinary Drugs, Dietary Supplements and Non-Protein Amino Acids. Vet. Sci. 2020, 7, 76. https://doi.org/10.3390/vetsci7020076
Cilia G, Fratini F, Tafi E, Turchi B, Mancini S, Sagona S, Nanetti A, Cerri D, Felicioli A. Microbial Profile of the Ventriculum of Honey Bee (Apis mellifera ligustica Spinola, 1806) Fed with Veterinary Drugs, Dietary Supplements and Non-Protein Amino Acids. Veterinary Sciences. 2020; 7(2):76. https://doi.org/10.3390/vetsci7020076
Chicago/Turabian StyleCilia, Giovanni, Filippo Fratini, Elena Tafi, Barbara Turchi, Simone Mancini, Simona Sagona, Antonio Nanetti, Domenico Cerri, and Antonio Felicioli. 2020. "Microbial Profile of the Ventriculum of Honey Bee (Apis mellifera ligustica Spinola, 1806) Fed with Veterinary Drugs, Dietary Supplements and Non-Protein Amino Acids" Veterinary Sciences 7, no. 2: 76. https://doi.org/10.3390/vetsci7020076
APA StyleCilia, G., Fratini, F., Tafi, E., Turchi, B., Mancini, S., Sagona, S., Nanetti, A., Cerri, D., & Felicioli, A. (2020). Microbial Profile of the Ventriculum of Honey Bee (Apis mellifera ligustica Spinola, 1806) Fed with Veterinary Drugs, Dietary Supplements and Non-Protein Amino Acids. Veterinary Sciences, 7(2), 76. https://doi.org/10.3390/vetsci7020076