Efficacy of Antiviral Drugs against Feline Immunodeficiency Virus
Abstract
:1. Introduction
Reverse Transcriptase Inhibitors
2. Nucleoside Analogue Reverse Transcriptase Inhibitors
2.1. Zidovudine
2.2. Stavudine
2.3. Didanosine
2.4. Lamivudine
2.5. Emtricitabine
2.6. Abacavir
3. Nucleotide Analogue Reverse Transcriptase Inhibitors
3.1. Adefovir
3.2. Tenofovir
4. Non-Nucleoside Reverse Transcriptase Inhibitors
Suramin
5. Nucleotide Synthesis Inhibitors
5.1. Foscarnet
5.2. Ribavirin
6. Receptor Homologues/Antagonists
Plerixafor
7. Protease Inhibitors
7.1. Tipranavir
7.2. Lopinavir
7.3. Atazanavir
8. Integrase Inhibitors
Raltegravir
9. Interferons
9.1. Human Interferon-α
9.2. Feline Interferon-ω
10. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix
Drug | Efficacy In Vitro | Efficacy in Vivo | Author’s Personal Opinion | Ebm Level (I–Iv) |
---|---|---|---|---|
Nucleoside Analogue—Reverse Transcriptase Inhibitors | ||||
Zidovudine (AZT) | yes [27,14,16,17,18,19,20,22,23,24,25,26,38] | yes [76,28,29] | effective in some cats (e.g., with stomatitis, neurological disorders) | I |
Stavudine (d4T) | yes [14,18,20,21,22,23,26,76] | nd | possibly effective, but no data in cats available | IV |
Didanosine (ddI) | yes [14,18,19,20,21,22,23,24,26,38] | yes [39] | effective in one experimental study, but neurologic side effects | II |
Zalcitabine (ddC) | yes [14,15,17,19,21,22,23,26,47] | nd | possibly effective, but toxic | IV |
Lamivudine (3TC) | yes [16,17,20,21,22,23,76] | no [41] | not very effective, toxic in high dosages | II |
Emtricitabine (FTC) | yes [17,20,21,22] | nd | possibly effective, but no data in cats available | IV |
Abacavir (ABC) | yes [20] | nd | possibly effective but toxic | IV |
Nucleotide Analogue Reverse—Transcriptase Inhibitors | ||||
Adefovir (PMEA) | yes [28] | no [47,48,49,50,51,52] | effective in some cats, but relatively toxic | I |
Tenofovir (PMPA) | yes [25,35,45] | nd | possibly effective, but also likely relatively toxic | IV |
Non-Nucleoside Reverse Transcriptase Inhibitor | ||||
Suramin | no | nd | likely too toxic | IV |
Nucleotide Synthesis Inhibitors | ||||
Foscarnet (PFA) | yes [14] | nd | effective in vitro, but too toxic | IV |
Ribavirin | yes [23,76] | nd | possibly effective, but too toxic in cats | IV |
Receptor Homologues/Antagonists | ||||
Plerixafor | yes [82] | yes [53] | some effect in a study in privately-owened cats (thus, can be considered as treatment) | I |
Protease Inhibitors | ||||
Tipranavir | yes [85] | nd | potentially effective, but no in vivo data available | IV |
Lopinavir | yes [85] | nd | likely ineffective | IV |
Atazanavir | yes [85] | nd | likely ineffective | IV |
Integrase Inhibitors | ||||
Raltegravir | yes [85] | nd | possibly effective, but no data in FIV-infected cats available | IV |
Interferons | ||||
Human interferon-α (IFN-α) SC high dose (106 U/kg q 24 h on five consecutive days) | yes [105] | no [100] | likely ineffective | IV |
SC intermediate dose (105 U/kg q 24 h for 90 days) | yes [105] | nd | likely ineffective | IV |
PO low dose (50 U/kg every 24 h for long-term period) | yes [105] | yes [106] | some efficacy (most likely through effect on secondary infection) | I |
Feline interferon-ω (IFN-ω) SC high dose 106 U/kg q 24 h on FIVe consecutive days | yes [105] | yes [107] | some improvement of clinical signs (most likely through effect on secondary infection) | I |
PO intermediate dose 105 U/cat q 24 h for 90 consecutive days | yes [105] | yes [108] | potentially some efficacy (most likely through effect on secondary infection) | III |
PO low dose 105 U/cat q 24 h for 90 consecutive days | yes [105] | nd | potentially effective (most likely through effect on secondary infection) | IV |
References
- Gleich, S.E.; Krieger, S.; Hartmann, K. Prevalence of feline immunodeficiency virus and feline leukaemia virus among client-owned cats and risk factors for infection in germany. J. Feline Med. Surg. 2009, 11, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Addie, D.D.; Dennis, J.M.; Toth, S.; Callanan, J.J.; Reid, S.; Jarrett, O. Long-term impact on a closed household of pet cats of natural infection with feline coronavirus, feline leukaemia virus and feline immunodeficiency virus. Vet. Rec. 2000, 146, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.; Crawford, C.; Hartmann, K.; Hofmann-Lehmann, R.; Little, S.; Sundahl, E.; Thayer, V. 2008 american association of feline practitioners’ feline retrovirus management guidelines. J. Feline Med. Surg. 2008, 10, 300–316. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, E. Toward improved anti-HIV chemotherapy: Therapeutic strategies for intervention with HIV infections. J. Med. Chem. 1995, 38, 2491–2517. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, E. Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV. Int. J. Antimicrob. Agents 2009, 33, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, K. Antiviral and immunomodulatory chemotherapy. In Infectious Diseases of the Dog and Cat, 4th ed.; Greene, C.E., Ed.; Elsevier, Saunders: St Louis, MO, USA, 2012; pp. 10–24. [Google Scholar]
- Auwerx, J.; Esnouf, R.; de Clercq, E.; Balzarini, J. Susceptibility of feline immunodeficiency virus/human immunodeficiency virus type 1 reverse transcriptase chimeras to non-nucleoside RT inhibitors. Mol. Pharmacol. 2004, 65, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, H.; Bienzle, D. Pharmacological inhibition of feline immunodeficiency virus (FIV). Viruses 2012, 4, 708–724. [Google Scholar] [CrossRef] [PubMed]
- Tressler, R.; Godfrey, C. NRTI backbone in HIV treatment: Will it remain relevant? Drugs 2012, 72, 2051–2062. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, E. The nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors in the treatment of HIV infections (AIDS). Adv. Pharmacol. 2013, 67, 317–358. [Google Scholar] [PubMed]
- Horwitz, J.P.; Chua, J.; Noel, M. Nucleosides. V. The monomesylates of 1-(2'-deoxy-b-d-lyxofuranosyl)thymine. J. Org. Chem. 1964, 29, 2076–2078. [Google Scholar] [CrossRef]
- Mitsuya, H.; Weinhold, K.J.; Furman, P.A.; St Clair, M.H.; Lehrman, S.N.; Gallo, R.C.; Bolognesi, D.; Barry, D.W.; Broder, S. 3'-azido-3'-deoxythymidine (BW a509u): An antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type iii/lymphadenopathy-associated virus in vitro. Proc. Natl. Acad. Sci. USA 1985, 82, 7096–7100. [Google Scholar] [CrossRef] [PubMed]
- Ezzell, C. Azt given the green light for clinical treatment of AIDS. Nature 1987, 326, 430. [Google Scholar] [PubMed]
- Gobert, J.M.; Remington, K.M.; Zhu, Y.Q.; North, T.W. Multiple-drug-resistant mutants of feline immunodeficiency virus selected with 2',3'-dideoxyinosine alone and in combination with 3'-azido-3'-deoxythymidine. Antimicrob. Agents Chemother. 1994, 38, 861–864. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, K.; Donath, A.; Kraft, W. AZT in the treatment of feline immunodeficiency virus infection: Part 1. Feline Pract 1995, 23, 16–21. [Google Scholar]
- Bisset, L.R.; Lutz, H.; Boni, J.; Hofmann-Lehmann, R.; Luthy, R.; Schupbach, J. Combined effect of zidovudine (ZDV), lamivudine (3TC) and abacavir (ABC) antiretroviral therapy in suppressing in vitro FIV replication. Antivir. Res. 2002, 53, 35–45. [Google Scholar] [CrossRef]
- McCrackin Stevenson, M.A.; McBroom, D.G. In vitro characterization of FIV-pPPR, a pathogenic molecular clone of feline immunodeficiency virus, and two drug-resistant pol gene mutants. Am. J. Vet. Res. 2001, 62, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Remington, K.M.; Chesebro, B.; Wehrly, K.; Pedersen, N.C.; North, T.W. Mutants of feline immunodeficiency virus resistant to 3′-azido-3′-deoxythymidine. J. Virol. 1991, 65, 308–312. [Google Scholar] [PubMed]
- Remington, K.M.; Zhu, Y.Q.; Phillips, T.R.; North, T.W. Rapid phenotypic reversion of zidovudine-resistant feline immunodeficiency virus without loss of drug-resistant reverse transcriptase. J. Virol. 1994, 68, 632–637. [Google Scholar] [PubMed]
- Schwartz, A.M.; McCrackin, M.A.; Schinazi, R.F.; Hill, P.B.; Vahlenkamp, T.W.; Tompkins, M.B.; Hartmann, K. Antiviral efficacy of nine nucleoside reverse transcriptase inhibitors against feline immunodeficiency virus in feline peripheral blood mononuclear cells. Am. J. Vet. Res. 2014, 75, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.A.; Remington, K.M.; Lloyd, R.M., Jr.; Schinazi, R.F.; North, T.W. A novel Met-to-Thr mutation in the YMDD motif of reverse transcriptase from feline immunodeficiency virus confers resistance to oxathiolane nucleosides. J. Virol. 1997, 71, 2357–2362. [Google Scholar] [PubMed]
- Smith, R.A.; Remington, K.M.; Preston, B.D.; Schinazi, R.F.; North, T.W. A novel point mutation at position 156 of reverse transcriptase from feline immunodeficiency virus confers resistance to the combination of (-)-beta-2',3'-dideoxy-3'-thiacytidine and 3'-azido-3'-deoxythymidine. J. Virol. 1998, 72, 2335–2340. [Google Scholar] [PubMed]
- Smyth, N.R.; McCracken, C.; Gaskell, R.M.; Cameron, J.M.; Coates, J.A.; Gaskell, C.J.; Hart, C.A.; Bennett, M. Susceptibility in cell culture of feline immunodeficiency virus to eighteen antiviral agents. J. Antimicrob. Chemother. 1994, 34, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Tanabe-Tochikura, A.; Tochikura, T.S.; Blakeslee, J.R., Jr.; Olsen, R.G.; Mathes, L.E. Anti-human immunodeficiency virus (HIV) agents are also potent and selective inhibitors of feline immunodeficiency virus (FIV)-induced cytopathic effect: Development of a new method for screening of anti-FIV substances in vitro. Antivir. Res. 1992, 19, 161–172. [Google Scholar] [CrossRef]
- Vahlenkamp, T.W.; De Ronde, A.; Balzarini, J.; Naesens, L.; De Clercq, E.; van Eijk, M.J.; Horzinek, M.C.; Egberink, H.F. (r-9-(2-phosphonylmethoxypropyl)-2,6-diaminopurine is a potent inhibitor of feline immunodeficiency virus infection. Antimicrob. Agents Chemother. 1995, 39, 746–749. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.Q.; Remington, K.M.; North, T.W. Mutants of feline immunodeficiency virus resistant to 2',3'-dideoxy-2',3'-didehydrothymidine. Antimicrob. Agents Chemother. 1996, 40, 1983–1987. [Google Scholar] [PubMed]
- North, T.W.; North, G.L.; Pedersen, N.C. Feline immunodeficiency virus, a model for reverse transcriptase-targeted chemotherapy for acquired immune deficiency syndrome. Antimicrob. Agents Chemother. 1989, 33, 915–919. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, K.; Donath, A.; Kraft, W. Azt in the treatment of feline immunodeficiency virus infection: Part 2. Feline Pract. 1995, 23, 13–20. [Google Scholar]
- Hartmann, K. Feline immunodeficiency virus infection: An overview. Vet. J. 1998, 155, 123–137. [Google Scholar] [CrossRef]
- August, E.M.; Marongiu, M.E.; Lin, T.S.; Prusoff, W.H. Initial studies on the cellular pharmacology of 3'-deoxythymidin-2'-ene (D4T): A potent and selective inhibitor of human immunodeficiency virus. Biochem. Pharmacol. 1988, 37, 4419–4422. [Google Scholar] [CrossRef]
- Baba, M.; Pauwels, R.; Herdewijn, P.; de Clercq, E.; Desmyter, J.; Vandeputte, M. Both 2′,3′-dideoxythymidine and its 2',3'-unsaturated derivative (2',3'-dideoxythymidinene) are potent and selective inhibitors of human immunodeficiency virus replication in vitro. Biochem. Biophys. Res. Commun. 1987, 142, 128–134. [Google Scholar] [CrossRef]
- Balzarini, J.; Kang, G.J.; Dalal, M.; Herdewijn, P.; de Clercq, E.; Broder, S.; Johns, D.G. The anti-HTLV-III (anti-HIV) and cytotoxic activity of 2′,3′-didehydro-2',3'-dideoxyribonucleosides: A comparison with their parental 2',3'-dideoxyribonucleosides. Mol. Pharmacol. 1987, 32, 162–167. [Google Scholar] [PubMed]
- Lin, T.S.; Schinazi, R.F.; Prusoff, W.H. Potent and selective in vitro activity of 3'-deoxythymidin-2'-ene (3'-deoxy-2',3'-didehydrothymidine) against human immunodeficiency virus. Biochem. Pharmacol. 1987, 36, 2713–2718. [Google Scholar] [PubMed]
- Martin, J.C.; Hitchcock, M.J.; de Clercq, E.; Prusoff, W.H. Early nucleoside reverse transcriptase inhibitors for the treatment of HIV: A brief history of stavudine (D4T) and its comparison with other dideoxynucleosides. Antivir. Res. 2010, 85, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Balzarini, J.; Egberink, H.; Hartmann, K.; Cahard, D.; Vahlenkamp, T.; Thormar, H.; de Clercq, E.; McGuigan, C. Antiretrovirus specificity and intracellular metabolism of 2',3' -didehydro-2',3'-dideoxythymidine and its 5'-monophosphate triester prodrug SO324. Mol. Pharmacol. 1996, 50, 1207–1213. [Google Scholar] [PubMed]
- Tavares, L.; Roneker, C.; Postie, L.; de Noronha, F. Testing of nucleoside analogues in cats infected with feline leukemia virus: A model. Intervirology 1989, 30, 26–35. [Google Scholar] [PubMed]
- Mitsuya, H.; Broder, S. Inhibition of the in vitro infectivity and cytopathic effect of human T-lymphotrophic virus type iii/lymphadenopathy-associated virus (HTLV-III/LAV) by 2',3'-dideoxynucleosides. Proc. Natl. Acad. Sci. USA 1986, 83, 1911–1915. [Google Scholar] [CrossRef] [PubMed]
- Medlin, H.K.; Zhu, Y.Q.; Remington, K.M.; Phillips, T.R.; North, T.W. Selection and characterization of a mutant of feline immunodeficiency virus resistant to 2',3'-dideoxycytidine. Antimicrob. Agents Chemother. 1996, 40, 953–957. [Google Scholar] [PubMed]
- Zhu, Y.; Antony, J.M.; Martinez, J.A.; Glerum, D.M.; Brussee, V.; Hoke, A.; Zochodne, D.; Power, C. Didanosine causes sensory neuropathy in an HIV/AIDS animal model: Impaired mitochondrial and neurotrophic factor gene expression. Brain: J. Neurol. 2007, 130, 2011–2023. [Google Scholar] [CrossRef] [PubMed]
- FDA. Antiretroviral Drugs Used in the Treatment of Human Immunodeficiency Virus Infection. Available online: http://www.Fda.Gov/forpatients/illness/HIVAIDS/treatment/ucm118915.Htm (accessed on 14 July 2015).
- Arai, M.; Earl, D.D.; Yamamoto, J.K. Is AZT/3TC therapy effective against FIV infection or immunopathogenesis? Vet. Immunol. Immunopathol. 2002, 85, 189–204. [Google Scholar] [CrossRef]
- Ravichandran, S.; Veerasamy, R.; Raman, S.; Krishnan, P.N.; Agraval, R.K. An overview on HIV-1 reverse transcriptase inhibitors. Dig. J. Nanomater. Biostruct. 2008, 171–187. [Google Scholar]
- Cihlar, T.; Ray, A.S. Nucleoside and nucleotide HIV reverse transcriptase inhibitors: 25 years after zidovudine. Antivir. Res. 2010, 85, 39–58. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, E. Acyclic nucleoside phosphonates: Past, present and future. Bridging chemistry to HIV, HBV, HCV, HPV, adeno-, herpes-, and poxvirus infections: The phosphonate bridge. Biochem. Pharmacol. 2007, 73, 911–922. [Google Scholar] [CrossRef] [PubMed]
- Balzarini, J.; Vahlenkamp, T.; Egberink, H.; Hartmann, K.; Witvrouw, M.; Pannecouque, C.; Casara, P.; Nave, J.F.; de Clercq, E. Antiretroviral activities of acyclic nucleoside phosphonates [9-(2-phosphonylmethoxyethyl)adenine, 9-(2-phosphonylmethoxyethyl)guanine, (R)-9-(2-phosphonylmethoxypropyl)adenine, and mdl 74,968] in cell cultures and murine sarcoma virus-infected newborn nmri mice. Antimicrob. Agents Chemother. 1997, 41, 611–616. [Google Scholar] [PubMed]
- Balzarini, J.; Naesens, L.; Slachmuylders, J.; Niphuis, H.; Rosenberg, I.; Holy, A.; Schellekens, H.; de Clercq, E. 9-(2-phosphonylmethoxyethyl)adenine (PMEA) effectively inhibits retrovirus replication in vitro and simian immunodeficiency virus infection in Rhesus monkeys. AIDS 1991, 5, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, K.; Donath, A.; Beer, B.; Egberink, H.F.; Horzinek, M.C.; Lutz, H.; Hoffmann-Fezer, G.; Thum, I.; Thefeld, S. Use of two virustatica (AZT, PMEA) in the treatment of FIV and of FELV seropositive cats with clinical symptoms. Vet. Immunol. Immunopathol. 1992, 35, 167–175. [Google Scholar] [CrossRef]
- Egberink, H.; Borst, M.; Niphuis, H.; Balzarini, J.; Neu, H.; Schellekens, H.; de Clercq, E.; Horzinek, M.; Koolen, M. Suppression of feline immunodeficiency virus infection in vivo by 9-(2-phosphonomethoxyethyl)adenine. Proc. Natl. Acad. Sci. USA 1990, 87, 3087–3091. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, K. Clinical aspects of feline retroviruses: A review. Viruses 2012, 4, 2684–2710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartmann, K.; Kuffer, M.; Balzarini, J.; Naesens, L.; Goldberg, M.; Erfle, V.; Goebel, F.D.; de Clercq, E.; Jindrich, J.; Holy, A.; et al. Efficacy of the acyclic nucleoside phosphonates (S)-9-(3-fluoro-2-phosphonylmethoxypropyl)adenine (FPMPA) and 9-(2-phosphonylmethoxyethyl)adenine (PMEA) against feline immunodeficiency virus. J. Acquir. Immune Deficiency Syndr. Hum. Retrovirol. 1998, 17, 120–128. [Google Scholar] [CrossRef]
- Kuffer, M.; Balzarini, J.; Rolinski, B.; Goebel, F.; Erfle, V.; Goldberg, M.; Hartmann, K. comparative investigation of the efficacy of two nucleocapsid analogs in FIV infected cats. Tierarztliche Praxis Ausgabe K, Kleintiere/Heimtiere 1997, 25, 671–677. [Google Scholar] [PubMed]
- Philpott, M.S.; Ebner, J.P.; Hoover, E.A. Evaluation of 9-(2-phosphonylmethoxyethyl) adenine therapy for feline immunodeficiency virus using a quantitative polymerase chain reaction. Vet. Immunol. Immunopathol. 1992, 35, 155–166. [Google Scholar] [CrossRef]
- Hartmann, K.; Stengel, C.; Klein, D.; Egberink, H.; Balzarini, J. Efficacy and adverse effects of the antiviral compound plerixafor in feline immunodeficiency virus-infected cats. J. Vet. Intern. Med./Am. Coll. Vet. Intern. Med. 2012, 26, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Balzarini, J.; Aquaro, S.; Perno, C.F.; Witvrouw, M.; Holy, A.; de Clercq, E. Activity of the (R)-enantiomers of 9-(2-phosphonylmethoxypropyl)-adenine and 9-(2-phosphonylmethoxypropyl)-2,6-diaminopurine against human immunodeficiency virus in different human cell systems. Biochem. Biophys. Res. Commun. 1996, 219, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Radzio, J.; Anderson, K.S.; Sluis-Cremer, N. Probing nonnucleoside inhibitor-induced active-site distortion in HIV-1 reverse transcriptase by transient kinetic analyses. Protein Sci. 2007, 16, 1728–1737. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; Martinez, S.E.; Bauman, J.D.; Arnold, E. HIV-1 reverse transcriptase complex with DNA and nevirapine reveals non-nucleoside inhibition mechanism. Nat. Struct. Mol. Biol. 2012, 19, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Auwerx, J.; North, T.W.; Preston, B.D.; Klarmann, G.J.; De Clercq, E.; Balzarini, J. Chimeric human immunodeficiency virus type 1 and feline immunodeficiency virus reverse transcriptases: Role of the subunits in resistance/sensitivity to non-nucleoside reverse transcriptase inhibitors. Mol. Pharmacol. 2002, 61, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Schurmann, J.M.; Schulze, H.; Haupt, G.; Pastor, J.; Allolio, B.; Senge, T. Suramin treatment in hormone- and chemotherapy-refractory prostate cancer. Urology 1999, 53, 535–541. [Google Scholar] [CrossRef]
- Broder, S.; Yarchoan, R.; Collins, J.M.; Lane, H.C.; Markham, P.D.; Klecker, R.W.; Redfield, R.R.; Mitsuya, H.; Hoth, D.F.; Gelmann, E.; et al. Effects of suramin on HTLV-III/LAV infection presenting as Kaposi’s Sarcoma or AIDS-related complex: Clinical pharmacology and suppression of virus replication in vivo. Lancet 1985, 2, 627–630. [Google Scholar] [CrossRef]
- De Clercq, E. Suramin: A potent inhibitor of the reverse transcriptase of RNA tumor viruses. Cancer Lett. 1979, 8, 9–22. [Google Scholar] [CrossRef]
- Cogan, D.C.; Cotter, S.M.; Kitchen, L.W. Effect of suramin on serum viral replication in feline leukemia virus-infected pet cats. Am. J. Vet. Res. 1986, 47, 2230–2232. [Google Scholar] [PubMed]
- Abkowitz, J.L. Retrovirus-induced feline pure red blood cell aplasia: Pathogenesis and response to suramin. Blood 1991, 77, 1442–1451. [Google Scholar] [PubMed]
- Dorfinger, K.; Niederle, B.; Vierhapper, H.; Astrid, W.; Czernin, S.; Nowotny, P.; Waldhausl, W.; Grubeck-Loebenstein, B. Suramin and the human adrenocortex: Results of experimental and clinical studies. Surgery 1991, 110, 1100–1105. [Google Scholar] [PubMed]
- Kaur, M.; Reed, E.; Sartor, O.; Dahut, W.; Figg, W.D. Suramin’s development: What did we learn? Investig. New Drugs 2002, 20, 209–219. [Google Scholar] [CrossRef]
- O’Donnell, B.P.; Dawson, N.A.; Weiss, R.B.; Myers, C.E.; James, W.D. Suramin-induced skin reactions. Arch. Dermatol. 1992, 128, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Crumpacker, C.S. Mechanism of action of foscarnet against viral polymerases. Am. J. Med. 1992, 92, 3S–7S. [Google Scholar] [CrossRef]
- Wang, Y.; Smith, K.P. Safety of alternative antiviral agents for neonatal herpes simplex virus encephalitis and disseminated infection. J. Pediatr. Pharmacol. Ther. 2014, 19, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Straw, J.A.; Loo, T.L.; de Vera, C.C.; Nelson, P.D.; Tompkins, W.A.; Bai, S.A. Pharmacokinetics of potential anti-AIDS agents thiofoscarnet and foscarnet in the cat. J. Acquir. Immun. Defic. Syndr. 1992, 5, 936–942. [Google Scholar]
- Gerard, L.; Salmon-Ceron, D. Pharmacology and clinical use of foscarnet. Int. J. Antimicrob. Agents 1995, 5, 209–217. [Google Scholar] [CrossRef]
- Ryrfeldt, A.; Nordgren, T.; Lundstrom, J. Hypocalcemia induced by foscarnet (Foscavir) infusion in dogs. Fundam. Appl. Toxicol. 1992, 18, 126–130. [Google Scholar] [CrossRef]
- Beaucourt, S.; Vignuzzi, M. Ribavirin: A drug active against many viruses with multiple effects on virus replication and propagation. Molecular basis of ribavirin resistance. Curr. Opin. Virol. 2014, 8, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Lafeuillade, A.; Hittinger, G.; Chadapaud, S. Increased mitochondrial toxicity with ribavirin in HIV/HCV coinfection. Lancet 2001, 357, 280–281. [Google Scholar] [CrossRef]
- Povey, R.C. Effect of orally administered ribavirin on experimental feline calicivirus infection in cats. Am. J. Vet. Res. 1978, 39, 1337–1341. [Google Scholar] [PubMed]
- Weiss, R.C.; Cox, N.R.; Boudreaux, M.K. Toxicologic effects of ribavirin in cats. J. Vet. Pharmacol. Ther. 1993, 16, 301–316. [Google Scholar] [CrossRef] [PubMed]
- Weiss, R.C.; Cox, N.R.; Martinez, M.L. Evaluation of free or liposome-encapsulated ribavirin for antiviral therapy of experimentally induced feline infectious peritonitis. Res. Vet. Sci. 1993, 55, 162–172. [Google Scholar] [CrossRef]
- Greene, C.E.; Watson, A.D.J. Antiviral drugs. In Infectious Diseases of the Dog and Cat, 2nd ed.; Greene, C.E., Ed.; Elsevier Saunders: St. Louis, MO, USA, 1998; pp. 6–9. [Google Scholar]
- Rucker, J.; Edinger, A.L.; Sharron, M.; Samson, M.; Lee, B.; Berson, J.F.; Yi, Y.; Margulies, B.; Collman, R.G.; Doranz, B.J.; et al. Utilization of chemokine receptors, orphan receptors, and herpesvirus-encoded receptors by diverse human and simian immunodeficiency viruses. J. Virol. 1997, 71, 8999–9007. [Google Scholar] [PubMed]
- Willett, B.J.; Hosie, M.J. The role of the chemokine receptor CXCR4 in infection with feline immunodeficiency virus. Mol. Membr. Biol. 1999, 16, 67–72. [Google Scholar] [PubMed]
- Willett, B.J.; Picard, L.; Hosie, M.J.; Turner, J.D.; Adema, K.; Clapham, P.R. Shared usage of the chemokine receptor CXCR4 by the feline and human immunodeficiency viruses. J. Virol. 1997, 71, 6407–6415. [Google Scholar] [PubMed]
- Wells, T.N.; Proudfoot, A.E.; Power, C.A.; Marsh, M. Chemokine receptors—The new frontier for AIDS research. Chem. Biol. 1996, 3, 603–609. [Google Scholar] [CrossRef]
- Donzella, G.A.; Schols, D.; Lin, S.W.; Este, J.A.; Nagashima, K.A.; Maddon, P.J.; Allaway, G.P.; Sakmar, T.P.; Henson, G.; de Clercq, E.; et al. AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nat. Med. 1998, 4, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Egberink, H.F.; de Clercq, E.; van Vliet, A.L.; Balzarini, J.; Bridger, G.J.; Henson, G.; Horzinek, M.C.; Schols, D. Bicyclams, selective antagonists of the human chemokine receptor CXCR4, potently inhibit feline immunodeficiency virus replication. J. Virol. 1999, 73, 6346–6352. [Google Scholar] [PubMed]
- Schols, D.; Este, J.A.; Henson, G.; de Clercq, E. Bicyclams, a class of potent anti-HIV agents, are targeted at the HIV coreceptor Fusin/CXCR-4. Antivir. Res. 1997, 35, 147–156. [Google Scholar] [CrossRef]
- Liles, W.C.; Broxmeyer, H.E.; Rodger, E.; Wood, B.; Hubel, K.; Cooper, S.; Hangoc, G.; Bridger, G.J.; Henson, G.W.; Calandra, G.; et al. Mobilization of hematopoietic progenitor cells in healthy volunteers by amd3100, a CXCR4 antagonist. Blood 2003, 102, 2728–2730. [Google Scholar] [CrossRef] [PubMed]
- Norelli, S.; El Daker, S.; D’Ostilio, D.; Mele, F.; Mancini, F.; Taglia, F.; Ruggieri, A.; Ciccozzi, M.; Cauda, R.; Ciervo, A.; et al. Response of feline immunodeficiency virus (FIV) to tipranavir may provide new clues for development of broad-based inhibitors of retroviral proteases acting on drug-resistent HIV-1. Curr. HIV Res. 2008, 6, 306–317. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Laco, G.S.; Torbett, B.E.; Fox, H.S.; Lerner, D.L.; Elder, J.H.; Wong, C.H. Analysis of the S3 and S3' subsite specificities of feline immunodeficiency virus (FIV) protease: development of a broad-based protease inhibitor efficacious against FIV, SIV, and HIV in vitro and ex vivo. Proc. Natl. Acad. Sci. USA 1998, 95, 939–944. [Google Scholar] [CrossRef] [PubMed]
- Huitron-Resendiz, S.; de Rozières, S.; Sanchez-Alavez, M.; Bühler, B.; Lin, Y.C.; Lerner, D.L.; Henriksen, N.W.; Burudi, M.; Fox, H.S.; Torbett, B.E.; et al. Resolution and prevention of feline immunodeficiency virus-induced neurological deficits by treatment with the protease inhibitor TL-3. J. Virol. 2004, 78, 4525–4532. [Google Scholar] [CrossRef] [PubMed]
- Zeinalipour-Loizidou, E.; Nicolaou, C.; Nicolaides, A.; Kostrikis, L.G. HIV-1 integrase: From biology to chemotherapeutics. Curr. HIV Res. 2007, 5, 365–388. [Google Scholar] [CrossRef] [PubMed]
- Mouscadet, J.F.; Arora, R.; Andre, J.; Lambry, J.C.; Delelis, O.; Malet, I.; Marcelin, A.G.; Calvez, V.; Tchertanov, L. HIV-1 in alternative molecular recognition of DNA induced by raltegravir resistance mutations. J. Mol. Recognit. 2009, 22, 480–494. [Google Scholar] [CrossRef] [PubMed]
- Cattori, V.; Weibel, B.; Lutz, H. Inhibition of feline leukemia virus replication by the integrase inhibitor raltegravir. Vet. Microbiol. 2011, 152, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Greggs, W.M., 3rd; Clouser, C.L.; Patterson, S.E.; Mansky, L.M. Discovery of drugs that possess activity against feline leukemia virus. J. Gen. Virol. 2012, 93, 900–905. [Google Scholar] [CrossRef] [PubMed]
- Togami, H.; Shimura, K.; Okamoto, M.; Yoshikawa, R.; Miyazawa, T.; Matsuoka, M. Comprehensive in vitro analysis of simian retrovirus type 4 susceptibility to antiretroviral agents. J. Virol. 2013, 87, 4322–4329. [Google Scholar] [CrossRef] [PubMed]
- Boesch, A.; Cattori, V.; Riond, B.; Willi, B.; Meli, M.L.; Rentsch, K.M.; Hosie, M.J.; Hofmann-Lehmann, R.; Lutz, H. Evaluation of the effect of short-term treatment with the integrase inhibitor raltegravir (Isentress) on the course of progressive feline leukemia virus infection. Vet. Microbial. 2015, 175, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Domenech, A.; Miro, G.; Collado, V.M.; Ballesteros, N.; Sanjose, L.; Escolar, E.; Martin, S.; Gomez-Lucia, E. Use of recombinant interferon omega in feline retrovirosis: From theory to practice. Vet. Immunol. Immunopathol. 2011, 143, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Stark, J.J.; Dillman, R.O.; Schulof, R.; Wiemann, M.C.; Barth, N.M.; Honeycutt, P.J.; Soori, G. Interferon-alpha and chemohormonal therapy for patients with advanced melanoma: Final results of a phase I–II study of the cancer biotherapy research group and the mid-atlantic oncology program. Cancer 1998, 82, 1677–1681. [Google Scholar] [CrossRef]
- Gil, S.; Leal, R.O.; Duarte, A.; McGahie, D.; Sepulveda, N.; Siborro, I.; Cravo, J.; Cartaxeiro, C.; Tavares, L.M. Relevance of feline interferon omega for clinical improvement and reduction of concurrent viral excretion in retrovirus infected cats from a rescue shelter. Res. Vet. Sci. 2013, 94, 753–763. [Google Scholar] [CrossRef] [PubMed]
- Goodbourn, S.; Didcock, L.; Randall, R.E. Interferons: Cell signalling, immune modulation, antiviral response and virus countermeasures. J. Gen. Virol. 2000, 81, 2341–2364. [Google Scholar] [CrossRef] [PubMed]
- Gerlach, N.; Gibbert, K.; Alter, C.; Nair, S.; Zelinskyy, G.; James, C.M.; Dittmer, U. Anti-retroviral effects of type I IFN subtypes in vivo. Eur. J. Immunol. 2009, 39, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Lucia, E.; Collado, V.M.; Miro, G.; Domenech, A. Effect of type-I interferon on retroviruses. Viruses 2009, 1, 545–573. [Google Scholar] [CrossRef] [PubMed]
- Zeidner, N.S.; Myles, M.H.; Mathiason-DuBard, C.K.; Dreitz, M.J.; Mullins, J.I.; Hoover, E.A. Alpha interferon (2β) in combination with zidovudine for the treatment of presymptomatic feline leukemia virus-induced immunodeficiency syndrome. Antimicrob. Agents Chemother. 1990, 34, 1749–1756. [Google Scholar] [CrossRef] [PubMed]
- Cantell, K.; Pyhala, L. Circulating interferon in rabbits after administration of human interferon by different routes. J. Gen. Virol. 1973, 20, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Cummins, J.M.; Beilharz, M.W.; Krakowka, S. Oral use of interferon. J. Interferon Cytokine Res. 1999, 19, 853–857. [Google Scholar] [CrossRef] [PubMed]
- Koech, D.K.; Obel, A.O. Efficacy of kemron (low dose oral natural human interferon alpha) in the management of HIV-1 infection and acquired immune deficiency syndrome (AIDS). East. Afr. Med. J. 1990, 67, 64–70. [Google Scholar]
- Tompkins, W.A. Immunomodulation and therapeutic effects of the oral use of interferon-alpha: Mechanism of action. J. Interferon Cytokine Res. 1999, 19, 817–828. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, T.; Yamamoto, J.K. Feline immunodeficiency virus lacks sensitivity to the antiviral activity of feline ifn-gamma. J. Interferon Cytokine Res. 2001, 21, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Pedretti, E.; Passeri, B.; Amadori, M.; Isola, P.; di Pede, P.; Telera, A.; Vescovini, R.; Quintavalla, F.; Pistello, M. Low-dose interferon-alpha treatment for feline immunodeficiency virus infection. Vet. Immunol. Immunopathol. 2006, 109, 245–254. [Google Scholar] [CrossRef] [PubMed]
- De Mari, K.; Maynard, L.; Sanquer, A.; Lebreux, B.; Eun, H.M. Therapeutic effects of recombinant feline interferon-omega on feline leukemia virus (FELV)-infected and FELV/feline immunodeficiency virus (FIV)-coinfected symptomatic cats. J. Vet. Intern. Med./Am. Coll. Vet. Intern. Med. 2004, 18, 477–482. [Google Scholar] [CrossRef]
- Gil, S.; Leal, R.O.; McGahie, D.; Sepulveda, N.; Duarte, A.; Niza, M.M.; Tavares, L. Oral recombinant feline interferon-omega as an alternative immune modulation therapy in FIV positive cats: Clinical and laboratory evaluation. Res. Vet. Sci. 2014, 96, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Leal, R.O.; Gil, S.; Duarte, A.; McGahie, D.; Sepulveda, N.; Niza, M.M.; Tavares, L. Evaluation of viremia, proviral load and cytokine profile in naturally feline immunodeficiency virus infected cats treated with two different protocols of recombinant feline interferon omega. Res. Vet. Sci. 2015, 99, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Hosie, M.J.; Addie, D.; Belak, S.; Boucraut-Baralon, C.; Egberink, H.; Frymus, T.; Gruffydd-Jones, T.; Hartmann, K.; Lloret, A.; Lutz, H.; et al. Feline immunodeficiency. ABCD guidelines on prevention and management. J. Feline Med. Surg. 2009, 11, 575–584. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hartmann, K.; Wooding, A.; Bergmann, M. Efficacy of Antiviral Drugs against Feline Immunodeficiency Virus. Vet. Sci. 2015, 2, 456-476. https://doi.org/10.3390/vetsci2040456
Hartmann K, Wooding A, Bergmann M. Efficacy of Antiviral Drugs against Feline Immunodeficiency Virus. Veterinary Sciences. 2015; 2(4):456-476. https://doi.org/10.3390/vetsci2040456
Chicago/Turabian StyleHartmann, Katrin, Anita Wooding, and Michèle Bergmann. 2015. "Efficacy of Antiviral Drugs against Feline Immunodeficiency Virus" Veterinary Sciences 2, no. 4: 456-476. https://doi.org/10.3390/vetsci2040456
APA StyleHartmann, K., Wooding, A., & Bergmann, M. (2015). Efficacy of Antiviral Drugs against Feline Immunodeficiency Virus. Veterinary Sciences, 2(4), 456-476. https://doi.org/10.3390/vetsci2040456