Characterization and Comparative Analysis of Gut Microbiomes in Fourteen Parrot Species
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fecal Sample Collection
2.2. DNA Extraction
2.3. Library Preparation and Sequencing
2.4. Microbial 16S rRNA Gene Sequencing Data Analysis
3. Results
3.1. Sequencing Workflow and Data Processing
3.2. Alpha Diversity Across Parrot Species
3.3. Beta Diversity and Community Structuring
3.4. Microbial Community Composition
3.5. Genus-Level Variation and Dietary Influence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DNB | DNA nanoballs |
| PCR | Polymerase chain reaction |
| PCoA | Principal coordinate analysis |
References
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef] [PubMed]
- McFall-Ngai, M.; Hadfield, M.G.; Bosch, T.C.G.; Carey, H.V.; Domazet-Lošo, T.; Douglas, A.E.; Dubilier, N.; Eberl, G.; Fukami, T.; Gilbert, S.F.; et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA 2013, 110, 3229–3236. [Google Scholar] [CrossRef]
- Thaiss, C.A.; Zmora, N.; Levy, M.; Elinav, E. The microbiome and innate immunity. Nature 2016, 535, 65–74. [Google Scholar] [CrossRef]
- Lloyd-Price, J.; Mahurkar, A.; Rahnavard, G.; Crabtree, J.; Orvis, J.; Hall, A.B.; Brady, A.; Creasy, H.H.; McCracken, C.; Giglio, M.G.; et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 2017, 550, 61–66. [Google Scholar] [CrossRef]
- Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2020, 19, 55–71. [Google Scholar] [CrossRef]
- Ley, R.E.; Bäckhed, F.; Turnbaugh, P.; Lozupone, C.A.; Knight, R.D.; Gordon, J.I. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 2005, 102, 11070–11075. [Google Scholar] [CrossRef]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef]
- Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A.; et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014, 514, 181–186. [Google Scholar] [CrossRef]
- Kasun, H.B.; Hird, S.M.; Grond, K.; Poulsen, M.; Jønsson, K.A. Avian gut microbiomes taking flight. Trends Microbiol. 2022, 30, 268–280. [Google Scholar] [CrossRef] [PubMed]
- Oakley, B.B.; Lillehoj, H.S.; Kogut, M.H.; Kim, W.K.; Maurer, J.J.; Pedroso, A.A.; Lee, M.D.; Collett, S.R.; Johnson, T.J.; Cox, N.A. The chicken gastrointestinal microbiome. FEMS Microbiol. Lett. 2014, 360, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Waite, D.W.; Taylor, M.W. Exploring the avian gut microbiota: Current trends and future directions. Front. Microbiol. 2015, 6, 673. [Google Scholar] [CrossRef] [PubMed]
- Xenoulis, P.G.; Gray, P.L.; Brightsmith, D.; Palculict, B.; Hoppes, S.; Steiner, J.M.; Tizard, I.; Suchodolski, J.S. Molecular characterization of the cloacal microbiota of wild and captive parrots. Vet. Microbiol. 2010, 146, 320–325. [Google Scholar] [CrossRef]
- Alcaraz, L.D.; Hernández, A.M.; Peimbert, M. Exploring the cockatiel (Nymphicus hollandicus) fecal microbiome, bacterial inhabitants of a worldwide pet. PeerJ 2016, 4, e2837. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Z.; Gao, G.; Sun, C.; Li, Y.; Zhu, Y. Characterization and comparison of gut microbiomes in nine species of parrots in captivity. Symbiosis 2019, 78, 241–250. [Google Scholar] [CrossRef]
- Schmiedová, L.; Černá, K.; Li, T.; Těšický, M.; Kreisinger, J.; Vinkler, M. Bacterial communities along parrot digestive and respiratory tracts: The effects of sample type, species and time. Int. Microbiol. 2024, 27, 127–142. [Google Scholar] [CrossRef]
- Young, A.M.; Hobson, E.A.; Lackey, L.B.; Wright, T.F. Survival on the ark: Life history trends in captive parrots. Anim. Conserv. 2012, 15, 28–53. [Google Scholar] [CrossRef]
- Blanco, G.; Hiraldo, F.; Rojas, A.; Dénes, F.V.; Tella, J.L. Parrots as key multilinkers in ecosystem structure and functioning. Ecol. Evol. 2015, 5, 4141–4160. [Google Scholar] [CrossRef]
- Feng, X.; Zhu, R.; Luo, C.; Zhan, T.; Feng, Y.; Zhu, Y.; Zhang, H.; Liu, J.; Li, S.; Zhang, J.; et al. Alterations in captive Alexandrine parakeet (Palaeornis eupatria) gut microbiome and metabolome in response to dietary change. Comp. Biochem. Physiol. Part D Genom. Proteom. 2024, 52, 101302. [Google Scholar] [CrossRef]
- Sands, N.; Malka, S.; Vecere, G.; Lee, M.; Stockman, J.; Krumbeck, J.A. Determining the fecal microbiome of healthy cockatiels (Nymphicus hollandicus) fed seeds versus formulated pelleted diets by next-generation DNA sequencing. J. Avian Med. Surg. 2025, 39, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Liukkonen, M.; Muriel, J.; Martínez-Padilla, J.; Nord, A.; Pakanen, V.M.; Rosivall, B.; Tilgar, V.; van Oers, K.; Grond, K.; Ruuskanen, S. Seasonal and environmental factors contribute to the variation in the gut microbiome: A large-scale study of a small bird. J. Anim. Ecol. 2024, 93, 1475–1492. [Google Scholar] [CrossRef] [PubMed]
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA Gene Database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef]
- Ley, R.E.; Hamady, M.; Lozupone, C.; Turnbaugh, P.J.; Ramey, R.R.; Bircher, J.S.; Schlegel, M.L.; Tucker, T.A.; Schrenzel, M.D.; Knight, R.; et al. Evolution of mammals and their gut microbes. Science 2008, 320, 1647–1651. [Google Scholar] [CrossRef]
- Brooks, A.W.; Kohl, K.D.; Brucker, R.M.; van Opstal, E.J.; Bordenstein, S.R. Phylosymbiosis: Relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 2016, 14, e2000225. [Google Scholar] [CrossRef]
- Amato, K.R.; G Sanders, J.; Song, S.J.; Nute, M.; Metcalf, J.L.; Thompson, L.R.; Morton, J.T.; Amir, A.; J McKenzie, V.; Humphrey, G.; et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 2018, 13, 576–587. [Google Scholar] [CrossRef]
- Hird, S.M.; Sánchez, C.; Carstens, B.C.; Brumfield, R.T. Comparative gut microbiota of 59 neotropical bird species. Front. Microbiol. 2015, 6, 1403. [Google Scholar] [CrossRef]
- Grond, K.; Sandercock, B.K.; Jumpponen, A.; Zeglin, L.H. The avian gut microbiota: Community, physiology and function in wild birds. J. Avian Biol. 2018, 49, e01788. [Google Scholar] [CrossRef]
- Waite, D.W.; Deines, P.; Taylor, M.W. Gut microbiome of the critically endangered New Zealand parrot, the kakapo (Strigops habroptilus). PLoS ONE 2012, 7, e35803. [Google Scholar] [CrossRef]
- Clayton, J.B.; Vangay, P.; Huang, H.; Ward, T.; Hillmann, B.M.; Al-Ghalith, G.A.; Travis, D.A.; Long, H.T.; Tuan, B.V.; Minh, V.V.; et al. Captivity humanizes the primate microbiome. Proc. Natl. Acad. Sci. USA 2016, 113, 10376–10381. [Google Scholar] [CrossRef]
- Nishida, A.H.; Ochman, H. Captivity and the co-diversification of great ape microbiomes. Nat. Commun. 2021, 12, 5632. [Google Scholar] [CrossRef]





| Group | Sample | Read Pairs | Yield (bp) | % ≥Q30 Bases | Mean Quality Score |
|---|---|---|---|---|---|
| Agapornis roseicollis | B1 | 710,842 | 426,505,200 | 85.7 | Q33.4 |
| Agapornis roseicollis | B2 | 339,566 | 203,739,600 | 87.2 | Q33.7 |
| Amazona aestiva | B3 | 570,814 | 342,488,400 | 85.3 | Q33.3 |
| Amazona aestiva | B4 | 165,809 | 99,485,400 | 85.4 | Q33.3 |
| Amazona aestiva | B5 | 527,891 | 316,734,600 | 85.2 | Q33.2 |
| Amazona aestiva | B6 | 579,258 | 347,554,800 | 85.1 | Q33.2 |
| Amazona ochrocephala | B7 | 577,411 | 346,446,600 | 85.8 | Q33.4 |
| Amazona ochrocephala | B8 | 528,603 | 317,161,800 | 84.2 | Q33.0 |
| Amazona ochrocephala | B9 | 627,090 | 376,254,000 | 84.3 | Q33.0 |
| Ara ararauna | B10 | 696,473 | 417,883,800 | 84.9 | Q33.1 |
| Ara ararauna | B11 | 674,762 | 404,857,200 | 85.7 | Q33.4 |
| Ara ararauna | B12 | 557,047 | 334,228,200 | 85.3 | Q33.3 |
| Cacatua alba | B13 | 781,650 | 468,990,000 | 84.9 | Q33.2 |
| Cacatua alba | B14 | 820,886 | 492,531,600 | 85.6 | Q33.3 |
| Cacatua alba | B15 | 381,556 | 228,933,600 | 87 | Q33.6 |
| Cacatua leadbeateri | B16 | 647,626 | 388,575,600 | 85.2 | Q33.2 |
| Cacatua sulphurea | B17 | 638,143 | 382,885,800 | 85.5 | Q33.3 |
| Cacatua sulphurea | B18 | 309,699 | 185,819,400 | 86.8 | Q33.5 |
| Eclectus roratus | B19 | 574,662 | 344,797,200 | 84.2 | Q33.0 |
| Lorius chlorocercus | B20 | 876,649 | 525,989,400 | 85.2 | Q33.3 |
| Myiopsitta monachus | B21 | 850,967 | 510,580,200 | 85.3 | Q33.3 |
| Myiopsitta monachus | B22 | 147,880 | 88,728,000 | 83.1 | Q32.6 |
| Pionites leucogaster | B23 | 856,452 | 513,871,200 | 85.4 | Q33.3 |
| Poicephalus senegalus | B24 | 818,577 | 491,146,200 | 85.2 | Q33.3 |
| Poicephalus senegalus | B25 | 579,247 | 347,548,200 | 85 | Q33.2 |
| Psittacus erithacus | B26 | 716,427 | 429,856,200 | 85.8 | Q33.4 |
| Pyrrhura molinae | B27 | 772,022 | 463,213,200 | 85.7 | Q33.3 |
| Pyrrhura molinae | B28 | 396,145 | 237,687,000 | 87.5 | Q33.8 |
| Pyrrhura molinae | B29 | 388,770 | 233,262,000 | 87.7 | Q33.8 |
| Pyrrhura molinae | B30 | 380,060 | 228,036,000 | 86.7 | Q33.5 |
| Pyrrhura molinae | B31 | 325,068 | 195,040,800 | 87.2 | Q33.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Park, C.; Kim, H.; Yoon, J.; Nam, A. Characterization and Comparative Analysis of Gut Microbiomes in Fourteen Parrot Species. Vet. Sci. 2026, 13, 185. https://doi.org/10.3390/vetsci13020185
Park C, Kim H, Yoon J, Nam A. Characterization and Comparative Analysis of Gut Microbiomes in Fourteen Parrot Species. Veterinary Sciences. 2026; 13(2):185. https://doi.org/10.3390/vetsci13020185
Chicago/Turabian StylePark, Chanhyeok, Hyukjung Kim, Junhyeok Yoon, and Aryung Nam. 2026. "Characterization and Comparative Analysis of Gut Microbiomes in Fourteen Parrot Species" Veterinary Sciences 13, no. 2: 185. https://doi.org/10.3390/vetsci13020185
APA StylePark, C., Kim, H., Yoon, J., & Nam, A. (2026). Characterization and Comparative Analysis of Gut Microbiomes in Fourteen Parrot Species. Veterinary Sciences, 13(2), 185. https://doi.org/10.3390/vetsci13020185

