In Vitro Antibacterial Activity of Ethanolic Extracts Obtained from Plants Grown in Tolima, Colombia, Against Bacteria Associated with Bovine Mastitis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of Plant Material
2.2. Preparation of Ethanolic Extracts
2.3. Detection of Flavonoids Using Thin Layer Chromatography (TLC)
2.4. In Vitro Antimicrobial Activity
2.4.1. Biological Samples
2.4.2. Evaluation of Antimicrobial Activity by Disc Diffusion
2.4.3. Statistical Analysis
Ethical Aspects
2.5. Brine Shrimp Lethality Bioassay
3. Results
3.1. Phytochemical Evaluation
3.2. In Vitro Antibacterial Activity of the Ethanolic Extracts Against Coagulase-Positive Staphylococcus and Streptococcus spp.
3.3. Brine Shrimp Lethality Test
4. Discussion
4.1. Phytochemical Characterization
4.2. Antibacterial Activity In Vitro of Ethanolic Extracts
4.3. Brine Shrimp Lethality
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rasmussen, P.; Barkema, H.W.; Osei, P.P.; Taylor, J.; Shaw, A.P.; Conrady, B.; Chaters, G.; Muñoz, V.; Hall, D.C.; Apenteng, O.O.; et al. Global losses due to dairy cattle diseases: A comorbidity-adjusted economic analysis. J. Dairy Sci. 2024, 107, 6945–6970. [Google Scholar] [CrossRef]
- Arikan, M.S.; Mat, B.; Alkan, H.; Çevrimli, M.B.; Akin, A.C.; Başar, E.K.; Tekindal, M.A. Determination of Subclinical Mastitis Prevalence in Dairy Cows in Türkiye through Meta-Analysis and Production Loss Calculation. Pak. Vet. J. 2024, 44, 391–399. [Google Scholar] [CrossRef]
- Cheng, W.N.; Han, S.G. Bovine mastitis: Risk factors, therapeutic strategies, and alternative treatments—A review. Asian-Australas. J. Anim. Sci. 2020, 33, 1699–1713. [Google Scholar] [CrossRef] [PubMed]
- Belay, N.; Mohammed, N.; Seyoum, W. Bovine Mastitis: Prevalence, Risk Factors, and Bacterial Pathogens Isolated in Lactating Cows in Gamo Zone, Southern Ethiopia. Vet. Med. Res. Rep. 2022, 13, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Kabelitz, T.; Aubry, E.; van Vorst, K.; Amon, T.; Fulde, M. The role of Streptococcus spp. in bovine mastitis. Microorganisms 2021, 9, 1497. [Google Scholar] [CrossRef]
- Campos, B.; Pickering, A.C.; Rocha, L.S.; Aguilar, A.P.; Fabres-Klein, M.H.; de Oliveira Mendes, T.A.; Fitzgerald, J.R.; de Oliveira Barros Ribon, A. Diversity and pathogenesis of Staphylococcus aureus from bovine mastitis: Current understanding and future perspectives. BMC Vet. Res. 2022, 18, 115. [Google Scholar] [CrossRef]
- Shehata, A.A.; Abd-Elfatah, E.B.; Elsheik, H.E.M.; Eldin, A.l.A.Z.; Salman, M.B.; Shehta, A.; Khater, S.I.; El-Emam, M.M.A. Epidemiological Features, Biochemical Indices, Antibiogram Susceptibility Profile and Biofilm Factor Genes of Klebsiella pneumoniae Isolated from Bovine Clinical Mastitis Cases. Pak. Vet. J. 2024, 44, 141–147. [Google Scholar] [CrossRef]
- Ghazvineh, N.; Mokhtari, A.; Ghorbanpoor Najaf Abadi, M.; Kadivar, A.; Shahrokh Shahraki, S. Molecular Detection of Selective Virulence Factors of Mycoplasma bovis Local Isolates Involved in Bovine Mastitis. Kafkas Univ. Vet. Fak. Derg. 2024, 30, 631–639. [Google Scholar] [CrossRef]
- Naranjo-Lucena, A.; Slowey, R. Invited review: Antimicrobial resistance in bovine mastitis pathogens: A review of genetic determinants and prevalence of resistance in European countries. J. Dairy Sci. 2023, 106, 1–23. [Google Scholar] [CrossRef]
- Medrano, C.; Ahumada Beltrán, D.G.; Romero Zúñiga, J.J.; Donado Godoy, P. Agronomía Mesoamericana Prevalencia, incidencia y factores de riesgo de mastitis subclínica en lecherías especializadas en Colombia. Agron. Mesoam. 2021, 32, 487–507. [Google Scholar] [CrossRef]
- Janus, A.; Deepa, P.M.; Vergis, J.; Rajasekhar, R.; Habeeb, B.P.; Bipin, K.C.; David, P.V.; Anand, L.; Ratish, R.L.; Shyma, V.H.; et al. Microbial Pathogenesis Unravelling the complex mechanisms of multidrug resistance in bovine mastitis pathogens: Insights into antimicrobial resistance genes, biofilm dynamics, and efflux systems. Microb. Pathog. 2024, 195, 106902. [Google Scholar] [CrossRef]
- Maksimović, Z.; Čengić, B.; Ćutuk, A.; Maksimović, A. Antimicrobial Resistance of Cattle Mastitis-Causing Bacteria: How to Treat? Research Gate; 2023; pp. 1–27. Available online: https://www.intechopen.com/chapters/88144 (accessed on 28 May 2025).
- Askari, S.; Rafati, A.; Aflakian, F. Microbial Pathogenesis Alternative treatment candidates to antibiotic therapy for bovine mastitis in the post-antibiotic era: A comprehensive review. Microb. Pathog. 2025, 205, 107684. [Google Scholar] [CrossRef]
- Ucella-Filho, J.G.M.; Ferreira, N.S.; Alves, M.R.; Ignacchiti, M.D.C.; Dias Júnior, A.F.; Resende, J.A. Evaluation of natural products as therapeutic alternatives for bovine mastitis and implications for future research. South Afr. J. Bot. 2024, 167, 310–321. [Google Scholar] [CrossRef]
- Akinboye, A.O.; Famuyide, I.M.; Petzer, I.M.; McGaw, L.J. In Vitro Antibacterial Activity of Selected South African Plants against Drug-Resistant Staphylococci Isolated from Clinical Cases of Bovine Mastitis. Appl. Sci. 2023, 13, 5560. [Google Scholar] [CrossRef]
- Šukele, R.; Bārzdiņa, A.; Koka, R.; Skadins, I.; Lauberte, L.; Brangule, A.; Kovalcuka, L.; Bandere, D. Antibacterial Activity of Tanacetum vulgare L. Extracts against Clinical Isolates of Bovine Mastitis. Appl. Sci. 2023, 13, 3369. [Google Scholar] [CrossRef]
- Roy, A.; Khan, A.; Ahmad, I.; Alghamdi, S.; Rajab, B.S.; Babalghith, A.O.; Alshahrani, M.Y.; Islam, S.; Islam, M.R. Flavonoids a Bioactive Compound from Medicinal Plants and Its Therapeutic Applications. Biomed Res. Int. 2022, 2022, 5445291. [Google Scholar] [CrossRef]
- Tavallali, V.; Rahmati, S.; Bahmanzadegan, A.; Lasibi, M.J.M. Phenolic profile and evaluation of antimicrobial and anticancer activities of Calendula officinalis L. using exogenous polyamines application. Ind. Crops Prod. 2024, 214, 118571. [Google Scholar] [CrossRef]
- Efstratiou, E.; Hussain, A.I.; Nigam, P.S.; Moore, J.E.; Ayub, M.A.; Rao, J.R. Antimicrobial activity of Calendula officinalis petal extracts against fungi, as well as Gram-negative and Gram-positive clinical pathogens. Complement. Ther. Clin. Pract. 2012, 18, 173–176. [Google Scholar] [CrossRef]
- Amadike, E.; Emmanuel, O.; Ebubechi, M.; Dike, E.; Chukwuebuka, B.; Ibe, C.; Chibueze, V.; Nwabu, C.; Chinyere, O. The ethnobotanical, phytochemistry and pharmacological activities of Psidium guajava L. Arab. J. Chem. 2022, 15, 103759. [Google Scholar] [CrossRef]
- Pesewu, G.A.; Cutler, R.R.; Humber, D.P. Antibacterial activity of plants used in traditional medicines of Ghana with particular reference to MRSA. J. Ethnopharmacol. 2008, 116, 102–111. [Google Scholar] [CrossRef]
- Rauha, J.P.; Remes, S.; Heinonen, M.; Hopia, A.; Kähkönen, M.; Kujala, T.; Pihlaja, K.; Vuorela, H.; Vuorela, P. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food Microbiol. 2000, 56, 3–12. [Google Scholar] [CrossRef]
- Bendif, H.; Boudjeniba, M.; Djamel Miara, M.; Biqiku, L.; Bramucci, M.; Caprioli, G.; Lupidi, G.; Quassinti, L.; Sagratini, G.; Vitali, L.A.; et al. Rosmarinus eriocalyx: An alternative to Rosmarinus officinalis as a source of antioxidant compounds. Food Chem. 2017, 218, 78–88. [Google Scholar] [CrossRef]
- Nugroho, A.; Heryani, H.; Choi, J.S.; Park, H.J. Identification and quantification of flavonoids in Carica papaya leaf and peroxynitrite-scavenging activity. Asian Pac. J. Trop. Biomed. 2017, 7, 208–213. [Google Scholar] [CrossRef]
- Farjana, A.; Zerin, N.; Kabir, M.S. Antimicrobial activity of medicinal plant leaf extracts against pathogenic bacteria. Asian Pac. J. Trop. Dis. 2014, 4, S920–S923. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J.; Chen, Y.; Zheng, H.; Xie, B.; Sun, Z. Flavonoid compounds and antibacterial mechanisms of different parts of white guava (Psidium guajava L. cv. Pearl). Nat. Prod. Res. 2020, 34, 1–5. [Google Scholar] [CrossRef]
- Hussein, M.; Atef, M.; Hamed, K. Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.) and chamomile (Matricaria chamomilla L.) Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.). Ind. Crop. Prod. 2013, 44, 437–445. [Google Scholar] [CrossRef]
- Eid, A.M.; Jaradat, N.; Issa, L.; Abu-Hasan, A.; Salah, N.; Dalal, M.; Mousa, A.; Zarour, A. Evaluation of anticancer, antimicrobial, and antioxidant activities of rosemary (Rosmarinus officinalis) essential oil and its Nanoemulgel. Eur. J. Integr. Med. 2022, 55, 102175. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Stucken, K.; Cantuarias, C.; Lamas, F.; García, V.; Pastén, A. Antimicrobial properties of papaya (Vasconcellea pubescens) subjected to low-temperature vacuum dehydration. Innov. Food Sci. Emerg. Technol. 2021, 67, 102563. [Google Scholar] [CrossRef]
- Sharapin, N. Fundamentos de Tecnología de Productos Fitoterapéuticos; Pinson, S.R., Ed.; ScienceOpen: Bogotá, Colombia, 2000; pp. 1–242. Available online: https://books.google.com.ni/books?id=XH2HzSlJPywC&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false (accessed on 4 May 2025).
- Hernández, J.E.; Arias-marciales, M.H.; García, J.O.; Adriana, Y. Phytochemical and Antiplasmodial Evaluation of Five Colombian Plants with Ethnopharmacological Background of Antimalarial Use. Pharm. Sci. 2023, 29, 123–132. [Google Scholar] [CrossRef]
- Hernández, J.E.; Luengas Caicedo, P.E.; Otero Jiménez, V.; Garavito Cárdenas, G. Actividad antiplasmódica y hemolítica de extractos etanólicos y fracciones obtenidas de Cecropia membranacea Trécul. y Cecropia metensis Cuatrec. (sin. Cecropia peltata var. candida Velásquez). Rev. Cubana Med. Trop. 2014, 58–70. Available online: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0375-07602014000100006 (accessed on 25 April 2025).
- Wagner, H.; Bladt, S. Plant Drug Analysis: A Thin Layer Chromatography Atlas; Springer: Berlin/Heidelberg, Germany, 1996; p. 384. Available online: https://books.google.com.co/books?id=8y2B_61iOhIC&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q=añño&f=false (accessed on 11 April 2025).
- Sánchez, M.d.P.; Murillo, N.P.G.; Almanza, I.J.P. Prevalence of bovine mastitis in the anaime canyon, a colombian dairy region, including etiology and antimicrobial resistance. Rev. Investig. Vet. Del Peru 2018, 29, 226–239. [Google Scholar] [CrossRef]
- Mansilla, A.; Pedraza, C.; Fajardo, P.; Aguero, H. Estimation Methods for Mastitis Level in Dairy Cows Using the California Mastitis Test (CMT) in Each Quarter. Scielo. Agric. Téc. 2001, 162–170. Available online: https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0365-28072001000200006 (accessed on 28 May 2025).
- Gómez, O.E.; Santivañez-Ballón, C.S.; Arauco-Villar, F.; Espezua-Flores, O.H.; Manrique-Mez, J. Interpretation criteria for California mastitis test in the diagnosis of subclinical mastitis in cattle. Rev. Investig. Vet. Peru 2015, 26, 86–95. [Google Scholar] [CrossRef]
- Markey, B.; Leonard, F.; Archambault, M.; Cullinane, A.; Maguire, D. Clinical Veterinary Microbiology; Robert Edwards Development, Ed.; MOSBY ELSERVIER: St. Louis, MI, USA, 2013; pp. 13–17. Available online: https://books.google.com.co/books?hl=es&lr&id=FUJYAQAAQBAJ&oi=fnd&pg=PP1&dq=markey+2013+morphological+description+of+bacterial&ots=2gk7Zsp8V0&sig=X95rmpHlhdkJ2VViA7lugzbGHXA#v=onepage&q=markey2013morphologicaldescriptionofbacterial&f=false (accessed on 29 May 2025).
- CLSI M02-A12 M02-A12; Performance Standards for Antimicrobial Disk Susceptibility Tests. Approved Standard—Twelfth Edition. ANSI: New York, NY, USA, 2015. Available online: https://cdn.bfldr.com/YLD4EVFU/at/589zwjp6kbg7cgx3ggft8pmw/m02ed14e_sample.pdf (accessed on 16 May 2025).
- Bernal, M.; Guzmán, M. El antibiograma de discos. tecnica de kirby-bauer. Biomedica 1984, 4, 112–121. [Google Scholar] [CrossRef][Green Version]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- InfoStat. IS InfoStat SOFTWARE STADÍSTICO. Córdoba: Universidad Nacional de Córdoba. 2020. Available online: https://www.infostat.com.ar/index.php?mod=page&id=46 (accessed on 16 April 2025).
- Nickerson, S.C.; Saxon, A.; Fox, L.K.; Hemling, T.; Hogan, J.S.; Morelli, J.; Oliver, S.P.; Owens, W.E.; Pawlak, M.; Petersson, L. National Mastitis Council—Recommended Protocol for Evaluation Efficacy of Postmilking Teat Germicides; 2004; pp. 379–398. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4a53b68661b141a1390ff88b9e8366e31ad2333a (accessed on 15 August 2025).
- Mclaughlin, J.L.; Rogers, L.L.; Anderson, E.; Lauder, E.; York, N. The Use Of Assays to Evaluate Botanicals. Drug Inf. J. 1998, 32, 513–524. [Google Scholar] [CrossRef]
- Ökmen, G.; Giannetto, D.; Fazio, F. Investigation of Pomegranate (Punica granatum L.) Flowers’ Antioxidant Properties and Antibacterial Activities against Different Staphylococcus Species Associated with Bovine Mastitis. Vet. Sci. 2023, 10, 394. [Google Scholar] [CrossRef]
- Bernal, H.; Mesa Sánchez, C. Plantas Medicinales Endémicas de Colombia. Pontificia Universidad Javeriana. 2022. Available online: https://www.gbif.org/dataset/21595325-799d-4aa5-b47b-48ad0f105a3f#description (accessed on 10 April 2025).
- Liu, Y.; Wang, M. Botanical drugs: Challenges and opportunities Contribution to Linnaeus Memorial Symposium 2007. Life Sci. 2008, 82, 445–449. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Last 25 Years. J. Nat. Prod. 2007, 70, 461–477. [Google Scholar] [CrossRef]
- Hamad, M.N. Detection and isolation of flavonoids from Calendula officinalis (F. Asteraceae) cultivated in Iraq. Iraqi J. Pharm. Sci. 2016, 25, 1–6. [Google Scholar]
- Nazir, F.; Jabeen, Z.; Aslam, F.; Mohammed, O.A.; Ahmad, N.; Iqbal, S.; Nazir, A.; Iqbal, M. Unveiling multifaceted bioactivity assessment of Psidium guajava and Azadirachta indica leaves extract as a potential natural tyrosinase inhibitors. Biocatal. Agric. Biotechnol. 2025, 64, 103486. [Google Scholar] [CrossRef]
- Snezana, A.; David, O.; Ahmad, W.M. Rapid evaluation and comparison of natural products and antioxidant activity in calendula, feverfew, and German chamomile extracts. J. Chromatogr. A 2015, 1385, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Li, J.; Cui, J.; Li, H.; Hasan, B.; Xin, X. Chemical component and in vitro protective effects of Matricaria chamomilla (L.) against lipopolysaccharide insult. J. Ethnopharmacol. 2022, 296, 115471. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Krishnakumar, K.; John, M. Antihemolytic activity of flavonoids from butanolic extract of Carica papaya L. cultivar ‘Red Lady’ leaf. Food Humanit. 2023, 1, 159–164. [Google Scholar] [CrossRef]
- Okamura, N.; Haraguchi, H.; Hashimoto, K.; Yagi, A. Flavonoids in rosmarinus. Phytochemistry 1994, 9422, 1463–1466. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, J. Fitoterapia Rosemary (Rosmarinus officinalis L.) polyphenols and inflammatory bowel diseases: Major phytochemicals, functional properties, and health effects. Fitoterapia 2024, 177, 106074. [Google Scholar] [CrossRef]
- De Araújo, A.A.; Soares, L.A.L.; Assunção Ferreira, M.R.; De Souza Neto, M.A.; Da Silva, G.R.; De Araújo, R.F.; Guerra, G.C.B.; De Melo, M.C.N. Quantification of polyphenols and evaluation of antimicrobial, analgesic and anti-inflammatory activities of aqueous and acetone-water extracts of Libidibia ferrea, Parapiptadenia rigida and Psidium guajava. J. Ethnopharmacol. 2014, 156, 88–96. [Google Scholar] [CrossRef]
- Yahaya, A.; Ali, M.; EL-Hassan, F.I.; Jido, B.A. Antibacterial Activity of Guava (Psidium Guajava L.) Extracts on Staphylococcus Aureus Isolated From Patients With Urinary Tract Infections Attending a Tertiary-Care Hospital. Sci. World J. 2019, 14, 2019. Available online: https://www.scienceworldjournal.org (accessed on 15 April 2025).
- Eze, C.; Iroha, I.R.; Eluu, S.C.; Ejikeugwu, P.C.; Iroha, C.S.; Ajah, M.I.; Nwakaeze, E.A.; Ugwu, E.N. Comparative studies on the antibacterial activities of leaf extracts of Azadirachta indica and Psidium guajava and antibiotics on methicillin and vancomycin resistant Staphylococcus aureus. Pharm. Biol. Eval. 2017, 4, 155. [Google Scholar] [CrossRef]
- Manilal, A.; Sabu, K.R.; Shewangizaw, M.; Aklilu, A.; Seid, M.; Merdikios, B.; Tsegaye, B. In vitro antibacterial activity of medicinal plants against biofilm-forming methicillin-resistant Staphylococcus aureus: Efficacy of Moringa stenopetala and Rosmarinus officinalis extracts. Heliyon 2020, 6, e03303. [Google Scholar] [CrossRef]
- Walid, Y.; Majdi, H.; Saber, K.; Taycir, G.A.; Wissem, A.W. Antibacterial activities of rosemary (Rosmarinus officinalis L.) essential oil and ethanol extract Antibacterial activities of rosemary (Rosmarinus officinalis L.) essential oil and ethanol extract. Open Access Res. J. Multidiscip. Stud. 2022, 3, 1–8. [Google Scholar] [CrossRef]
- Yang, X.; Lan, W.; Xie, J. Antimicrobial and anti-biofilm activities of chlorogenic acid grafted chitosan against Staphylococcus aureus. Microb. Pathog. 2022, 173, 105748. [Google Scholar] [CrossRef]
- Park, J.; Rho, S.; Kim, Y. Enhancing antioxidant and antimicrobial activity of carnosic acid in rosemary (Rosmarinus officinalis L.) extract by complexation with cyclic glucans. Food Chem. 2019, 299, 125119. [Google Scholar] [CrossRef]
- Sheikhy, M.; Karbasizade, V.; Ghanadian, M.; Fazeli, H.; Sheikhy, M.; Karbasizade, V.; Ghanadian, M.; Fazeli, H.; Sheikhy, M.; Karbasizade, V.; et al. Evaluation of chlorogenic acid and carnosol for anti-efflux pump and anti-biofilm activities against extensively drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa. Microbiol. Spectr. 2024, 12, e03934-23. [Google Scholar] [CrossRef]
- Borges, A.; Ferreira, C.; Saavedra, M.; Simoes, M. Antibacterial Activity and Mode of Action of Ferulic. Microb. Drug Resist. 2013, 199, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Helfenstein, A.A.; Dias, Ê.R.; Reis, I.M.A.; Freitas, E.E.S.; Biondi, I.B.; Branco, C.R.C.; Almeida, J.R.G.d.S.; Cruz, R.S.; Branco, A.; Camilloto, G.P. Mucoadhesive oral film based on high methoxyl pectin and phosphated cassava starch incorporated with Calendula officinalis extract. J. Drug Deliv. Sci. Technol. 2024, 102, 106428. [Google Scholar] [CrossRef]
- Romero, C.D.; Chopin, S.F.; Buck, G.; Martinez, E.; Garcia, M.; Bixby, L. Antibacterial properties of common herbal remedies of the southwest. J. Ethnopharmacol. 2005, 99, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Kousar, F.; Khanem, A.; Ullah, I.; Younas, F. Phytochemical analysis and synergistic antimicrobial potential of extracts from Carica papaya and Beta vulgaris. Kuwait J. Sci. 2023, 50, 307–312. [Google Scholar] [CrossRef]
- Al-saleem, M.S.; Awaad, A.S.; Alothman, M.R.; Alqasoumi, S.I. Phytochemical standardization and biological activities of certain desert plants growing in Saudi Arabia. Saudi Pharm. J. 2018, 26, 198–204. [Google Scholar] [CrossRef]
- Lehbili, M.; Alabdul, A.; Kabouche, A.; Voutquenne-nazabadioko, L.; Abedini, A.; Morjani, H.; Sarazin, T.; Gangloff, S.C.; Kabouche, Z. Phytochemistry Oleanane-type triterpene saponins from Calendula stellata. Phytochemistry 2017, 144, 33–42. [Google Scholar] [CrossRef]
- Bajalan, I.; Rouzbahani, R.; Ghasemi, A.; Maggi, F. Industrial Crops & Products Antioxidant and antibacterial activities of the essential oils obtained from seven Iranian populations of Rosmarinus officinalis. Ind. Crop. Prod. 2017, 107, 305–311. [Google Scholar] [CrossRef]
- Almulaiky, Y.; Zeyadi, M.; Saleh, R.; Baothman, O.; Al-shawafi, W.; Al-Talhi, H. Assessment of antioxidant and antibacterial properties in two types of Yemeni guava cultivars. Biocatal. Agric. Biotechnol. 2018, 16, 90–97. [Google Scholar] [CrossRef]
- Meignanalakshmi, S.; Kumar, S. Antibacterial activity of papain hydrolysates of buffalo milk whey protein against mastitis pathogens. Int. J. Pharma Bio Sci. 2013, 4. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20133392203 (accessed on 11 April 2025).
- Silva, A.; Lobo, L.; Simas, D.M.; Gonçalves, J.; Martines, B.; Pereira, F.; Rosa, D.S.; Melo, D.; Leonardo, L.; Ligia, A.; et al. Antibiofilm and anti-caries effects of an experimental mouth rinse containing Matricaria chamomilla L. extract under microcosmbio film on enamel. J. Dent. 2020, 99, 103415. [Google Scholar] [CrossRef]
- Bussmann, R.W.; Malca, G.; Glenn, A.; Sharon, D.; Nilsen, B.; Parris, B.; Dubose, D.; Ruiz, D.; Saleda, J.; Martinez, M.; et al. Toxicity of medicinal plants used in traditional medicine in Northern Peru. J. Ethnopharmacol. 2011, 137, 121–140. [Google Scholar] [CrossRef]
- Adico, M.D.W.; Bayala, B.; Bunay, J.; Simpore, J. Contribution of Sub-Saharan African medicinal plants to cancer research: Scientific basis 2013–2023. Pharmacol. Res. 2024, 202, 107138. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.G.; Pontes, M.M.; Rocha de Melo, A.; Larocca de Geus, J.; Kozlowski Júnior, V.A.; Rezende, M. Avaliação da toxicidade de diferentes concentrações de tinturas de malva e calêndula através do bioensaio com Artemia salina. Res. Soc. Dev. 2022, 11, e20511326255. [Google Scholar] [CrossRef]
- Del Carpio, C.; Jiménez, C.; Serrano, C.; He, J.; Tian, Q.; Schwartz, S.J.; Giusti, M.M. Characterisation and preliminary bioactivity determination of Berberis boliviana Lechler fruit anthocyanins. Food Chem. 2011, 128, 717–724. [Google Scholar] [CrossRef]
- Ashraf, A.; Sarfraz, R.A.; Rashid, M.A.; Mahmood, A.; Shahid, M.; Noor, N. Chemical composition, antioxidant, antitumor, anticancer and cytotoxic effects of Psidium guajava leaf extracts. Pharm. Biol. 2016, 54, 1971–1981. [Google Scholar] [CrossRef]
- Feltes, G.; Fischer, B.; Junges, A.; Cansian, L.; Paroul, N.; Steffens, C. Food Bioscience Extraction of benzyl isothiocyanate from formosa papaya seeds (Carica papaya Linn) and evaluation of biological properties. Food Biosci. 2024, 62, 105413. [Google Scholar] [CrossRef]
Plant Species Name | Vaucher Number | Location (Coordinates) | Collection Place | Órgano Colectado |
---|---|---|---|---|
Calendula officinalis L. | TOL:008702 | N 4°31′9.6″–W 75°17′43.1″ | Ibagué-Pastales-Vereda el “Retiro” | Flowers |
Psidium guajava L. | TOL:009196 | N 4°25′49.1″–W 75°13′2.3″ | Ibagué-Universidad del Tolima | Leaves |
Matricaria chamomilla L. | TOL:008721 | N 4°31′9.6″–W 75°17′43.1″ | Ibagué-Pastales-Vereda el “Retiro” | Aerial parts |
Rosmarinus officinalis L. | TOL:005229 | N 4°25′49.1″–W 75°13′2.3″ | Ibagué-Pastales-Vereda el “Retiro” | Leaves |
Carica papaya L. | TOL:005982 | N 4°25′49.1″–W 75°13′2.3″ | Ibagué-Universidad del Tolima | Leaves |
Ethanolic Plant Extract | Rf a Values | b Flavonoids (Green or Orange) |
---|---|---|
C. officinalis L. | 0.6, 0.8 | Orange |
P. guajava L. | 0.8, 0.9 | |
M. chamomilla L. | 0.4, 0.5, 0.6 | |
R. officinalis L. | 0.4, 0.6 | |
C. papaya L. | 0.7, 0.8 |
Bacterial Strain | Antibacterial Activity of Ethanolic Extracts of Selected Plants by Evaluating the Zone of Inhibition (ZI) in mm * ± Standard Deviation | ||||||
---|---|---|---|---|---|---|---|
C. officinalis L. | P. guajava L. | M. chamomilla L. | R. officinalis L. | C. papaya L. | Positive control erythromycin | Negative control DMSO 10% | |
Coagulase-positive Staphylococcus | 13 ± 2.2 B | 21 ± 3.2 C | 0 ± 0.0 A | 19 ± 2.1 C | 0 ± 0.0 A | 32 ± 4.5 D | 0 ± 0.0 |
Streptococcus spp. | 21 ± 1.9 C | 15 ± 2.3 B | 0 ± 0.0 A | 17 ± 2.9 B | 14 ± 3.2 B | 31 ± 4.5 D | 0 ± 0.0 |
Concentration (µg/mL) | P. guajava L. | R. officinalis L. | C. papaya L. | C. officinalis L. | M. chamomilla L. |
---|---|---|---|---|---|
1000 | 0.73 | 1.0 | 1.0 | 0.96 | 0.96 |
100 | 0.80 | 1.0 | 1.0 | 0.96 | 0.96 |
10 | 0.90 | 0.60 | 1.0 | 1.0 | 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robledo-Díaz, Y.L.; Sánchez-Varón, A.A.; Van-arcken Aguilar, Y.C.; Sánchez-Bonilla, M.d.P.; Hernández-Carvajal, J.E. In Vitro Antibacterial Activity of Ethanolic Extracts Obtained from Plants Grown in Tolima, Colombia, Against Bacteria Associated with Bovine Mastitis. Vet. Sci. 2025, 12, 903. https://doi.org/10.3390/vetsci12090903
Robledo-Díaz YL, Sánchez-Varón AA, Van-arcken Aguilar YC, Sánchez-Bonilla MdP, Hernández-Carvajal JE. In Vitro Antibacterial Activity of Ethanolic Extracts Obtained from Plants Grown in Tolima, Colombia, Against Bacteria Associated with Bovine Mastitis. Veterinary Sciences. 2025; 12(9):903. https://doi.org/10.3390/vetsci12090903
Chicago/Turabian StyleRobledo-Díaz, Yeimy Lorena, Aurora Alejandra Sánchez-Varón, Yeli Camila Van-arcken Aguilar, María del Pilar Sánchez-Bonilla, and Jorge Enrique Hernández-Carvajal. 2025. "In Vitro Antibacterial Activity of Ethanolic Extracts Obtained from Plants Grown in Tolima, Colombia, Against Bacteria Associated with Bovine Mastitis" Veterinary Sciences 12, no. 9: 903. https://doi.org/10.3390/vetsci12090903
APA StyleRobledo-Díaz, Y. L., Sánchez-Varón, A. A., Van-arcken Aguilar, Y. C., Sánchez-Bonilla, M. d. P., & Hernández-Carvajal, J. E. (2025). In Vitro Antibacterial Activity of Ethanolic Extracts Obtained from Plants Grown in Tolima, Colombia, Against Bacteria Associated with Bovine Mastitis. Veterinary Sciences, 12(9), 903. https://doi.org/10.3390/vetsci12090903