Advancements in Modern Nucleic Acid-Based Multiplex Testing Methodologies for the Diagnosis of Swine Infectious Diseases
Simple Summary
Abstract
1. Introduction
2. Multiplex Quantitative Real-Time PCR
2.1. Multiplex qPCR Assays for Swine Vesicular Diseases
2.2. Multiplex qPCR Assays for Swine Reproductive Diseases
2.3. Multiplex qPCR Assays for Swine Respiratory Diseases
2.4. Multiplex qPCR Assays for Swine Haemorrhagic Diseases
2.5. Multiplex qPCR Assays for Swine Diarrheal Diseases
Multiplex Type | Method | Pathogen | LOD | Infection Rate (%) | Reference |
---|---|---|---|---|---|
Duplex | SYBR Green I | PEDV, PCV3 | 34.6 copies/μL for PEDV, 61.2 copies/μL for PCV3 | PEDV (43.94), PCV3 (16.67), PEDV/PCV3 (27.27) | [126] |
Duplex | SYBR Green I | PDCoV, PSV | 10 copies/μL for PDCoV, 100 copies/μL for PSV | PDCoV (20.2), PSV (23.2), PDCoV/PSV (13.8) | [127] |
Duplex | TaqMan probe | PEDV, PDCoV | 7 copies/reaction for PEDV, 14 copies/reaction for PDCoV | PEDV (52.9), PDCoV (46.4), PEDV/PDCoV (9.4) | [128] |
Duplex | SYBR Green I | PEDV, PBoV3/4/5 | 10 copies/μL for each virus | PEDV (85.7), PBoV (46), PEDV/PBoV (28.6) | [129] |
Triplex | TaqMan probe | PEDV, TGEV, PDCoV | 10 copies/μL for each virus | PEDV (19.70), TGEV (0.87), PDCoV (10.17), PEDV/TGEV (3.25), PEDV/PDCoV (23.16), TGEV/PDCoV (0.22), PEDV/TGEV/PDCoV (11.90) | [130] |
Triplex | TaqMan probe | PEDV, PoRV, PDCoV | 60 copies/μL for each virus | PEDV (51.79), PoRV (59.82), PDCoV (2.68), PEDV/PoRV (23.21), PDCoV/PoRV (1.79%) | [131] |
Triplex | TaqMan probe | TGEV, PDCoV, PEDV | 5 copies/μL for TGEV, 200 copies/μL for PDCoV, 5 copies/μL for PEDV | TGEV (16.36), PDCoV (0), PEDV (78.18) | [132] |
Triplex | TaqMan probe | PEDV, TGEV, PDCoV | 2.95 copies/μL for each virus | PEDV (38.13), TGEV (1.88), PDCoV (5.00), PEDV/TGEV (1.25), PEDV/PDCoV (1.25), TGEV/PDCoV (0), PEDV/TGEV/PDCoV (0.63) | [133] |
Quadruplex | TaqMan probe | TGEV, PEDV, PDCoV, PEAV | 110 copies/reaction for each virus | TGEV (20.34), PEDV (9.60), PDCoV (34.18), PEAV (1.41), PDCoV/TGEV (3.67), PDCoV/PEDV (1.41), PEDV/TGEV (1.13), PEDV/PDCoV/TGEV (2.54), TGEV/PEDV/PDCoV/PEAV (0.56) | [134] |
Quadruplex | SYBR Green I | PEDV, TGEV, PoRV, PDCoV | 863 copies/μL for PEDV, 192 copies/μL for TGEV, 174 copies/μL for PoRV, 176 copies/μL for PDCoV | PEDV (19.05), TGEV (5.21), PoRV (4.32), PDCoV (3.87) | [135] |
Quadruplex | TaqMan probe | PEDV, PDCoV, PToV a, PEAV b | 100 copies/μL for each pathogen | PEDV (55.36), PDCoV (28.57), PToV (5.36), PEAV (1.79), PEDV/PToV (7.14), PEDV/PToV/PDCoV (1.79) | [136] |
Quadruplex | TaqMan probe | PEDV-G1, PEDV-G2, PoRV-A, PoRV-C | 20 copies/μL for PEDV-G1, 100 copies/μL for PEDV-G2, 50 copies/μL for PoRV-A and PoRV-C | PEDV-G1 (3.41), PEDV-G2 (9.09), PoRV-A (12.50), PoRV-C (11.36), PEDV-G1/PoRV-C (1.14), PEDV-G2/PoRV-A (5.68), PoRV-A/PoRV-C (3.41), PEDV-G2/PoRV-A/PoRV-C (1.14) | [137] |
Quadruplex | TaqMan probe | PEDV, TGEV, PDCoV, PEAV | 121 copies/μL for each virus | PEDV (18.26), TGEV (0.46), PDCoV (13.16), PEAV (0.15) | [138] |
Quadruplex | TaqMan probe | PEDV, PDCoV, TGEV, PEAV | 8 copies/reaction for PEDV, 4 copies/reaction for PDCoV, 16 copies/reaction for TGEV, 6.8 copies/reaction for PEAV | PEDV (72.88), PDCoV (17.58), PEDV/PDCoV (8.89), PEDV/TGEV (0.13), PEDV/PDCoV/TGEV (0.53) | [139] |
Pentaplex | EvaGreen | TGEV, PEDV, PCV2, PoRV-A, PoRV-C | 5 copies/μL for TGEV, 5 copies/μL for PoRV-A, 50 copies/μL for PoRV-C, 5 copies/μL for PEDV, 50 copies/μL for PCV2 | TGEV (1.11), PoRV-A (1.11), PEDV (8.89), PCV2 (22.22), TGEV/PCV2 (1.11), PoRV-A/PCV2 (1.11), PoRV-C/PCV2 (1.11), PEDV /PCV2 (16.67), PoRV-C/PEDV/PCV2 (3.33) | [140] |
3. Multiplex Digital Polymerase Chain Reaction
Multiplex Type | Target | dPCR Assay | qPCR Assay | Reference | ||||
---|---|---|---|---|---|---|---|---|
Instrument | LOD | Positive Rate | Instrument | LOD | Positive Rate | |||
Duplex | glycoprotein B and E genes of PRV | QX 100 (Bio-Rad, CA, USA) | 4.75 copies/μL | 82.61% for tissue samples, 80.95% for serum samples | CFX96 (Bio-Rad, CA, USA) | 76 copies/μL | 78.26% for tissue samples, 47.62% for serum samples | [148] |
Duplex | ORF2 genes of PCV2 and PCV3 a | QX 200 (Bio-Rad, CA, USA) | 2 copies/μL for PCV2, 1 copy/μL for PCV3 | 81.00% for PCV2, 8.33% for PCV3 | QuantStudio 6 Flex (Applied Biosystems, CA, USA) | 6 copies/μL for PCV2, 10 copies/μL for PCV3 | 81.00% for PCV2, 7.33% for PCV3 | [147] |
Duplex | ORF1ab genes of SARS-CoV-2 and PEAV b | QX 200 (Bio-Rad, CA, USA) | 1.48 copies/reaction for SARS-CoV-2, 1.38 copies/reaction for PEAV | 100.00% for SARS-CoV-2, 18.90% for PEAV | ABI 7500 (Applied Biosystems, CA, USA) | 6.18 copies/reaction for SARS-CoV-2, 14.10 copies/reaction | 100.00% for SARS-CoV-2, 18.90% for PEAV | [149] |
Duplex | B646L and EP402R genes of ASFV | QX 200 (Bio-Rad, CA, USA) | 1 copies/μL | 100.00% for B646L and EP402R | LightCycler 96 (Roche, BS, Switzerland) | 10 copies/μL | 95.45% for B646L, 93.18% for EP402R | [20] |
Triplex | ASFV-p72, CSFV-5′ UTR and PRRSV-ORF7 c | Naica (Stilla Technologies, IDF, France) | 0.469 copies/μL for each virus | 30.10%, 13.49%, and 22.49% for ASFV, CSFV, and PRRSV, respectively | QuantStudio 5 (Applied Biosystems, CA, USA) | 4.69 copies/μL for each virus | 24.57%, 8.65%, and 18.34% for ASFV, CSFV, and PRRSV, respectively | [150] |
Triplex | ORF1agenes (Nsp2 region) of C-PRRSV, HP-PRRSV and NL-PRRSV | Naica (Stilla Technologies, IDF, France) | 0.32 copies/μL | 2.19% for C-PRRSV, 25.31% for HP-PRRSV, 11.56% for NL-PRRSV, 7.50% for co-infection | QuantStudio 5 (Applied Biosystems, CA, USA) | 3.20 copies/μL | 1.88% for C-PRRSV, 21.56% for HP-PRRSV, 9.69% for NL-PRRSV, 5.94% for co-infection | [19] |
Triplex | B646L, MGF505-2R and I177L genes of ASFV | Naica (Stilla Technologies, IDF, France) | 12 copies/reaction | 14.17% | QuantStudio 6 Flex (Applied Biosystems, CA, USA) | 500 copies/reaction | 12.98% | [18] |
4. Capillary Electrophoresis-Based Multiplex Detection Methods
5. Microarrays for Swine Diseases Detection and Discrimination
5.1. Two-Dimensional Solid Arrays
5.2. Three-Dimensional Suspension Bead Arrays
6. Microfluidics-Based Multiplex Detection Methods
Readout Method | Microfluidic Chip Type | PCR Type | Dye for Detection | Volume of the Reaction Chamber | Force of the Solution Flow | Degree of Automation | Target | Analytical Sensitivity | Reference |
---|---|---|---|---|---|---|---|---|---|
Encompass Optimum workstation | Microfluidic CARD | Reverse transcription PCR | Biotin | Unknown | Pressure provided bypneumatic pump | Fully automatic | ASFV, CSFV, FMDV, SVDV, and VSV | 20.0–7.06 × 104 TCID50/mL | [27] |
BioMark system | BioMark dynamic array 48.48 | RT-qPCR | TaqMan probe | About 3 nanoliter | Pressure provided bypneumatic pump | Unintegrated nucleic acid extraction, and required pre-amplification | Subtyping of the H1, H3, N1, and N2 lineages of SIV | 2–5 log10 a | [193] |
BioMark system | BioMark dynamic array 48.48 | RT-qPCR | TaqMan probe | About 3 nanoliter | Pressure provided bypneumatic pump | Unintegrated nucleic acid extraction, and required pre-amplification | Porcine cytomegalovirus, PCV2, PCV3, PRRSV-EU, PRRSV-NA, Rotavirus A, SIV, B. pilosicoli, L. intracellularis, E. coli type F4, E. coli type F18, M. hyopneumoniae, A. pleuropneumoniae, P. multocida, S. suis 2, B. bronchiseptica and, M. hyorhinis | 10−3–10−8 b | [194] |
RTisochip-B | CD-like chip | LAMP | Calcein | 1.4 μL | Centrifugal force | Unintegrated nucleic acid extraction | FMDV, CSFV, PRRSV-NA, PCV2, PRV, and PPV | 3.2 × 102 copies/reaction | [195] |
AJYGeneTec TM MA2000 | CD-like chip | LAMP | SYBR Green | 5 μL | Centrifugal force | Unintegrated nucleic acid extraction | PDCoV, PEDV, AND PEAV | 10 copies/μL for PEDV, 100 copies/μL for PEAV and PDCoV | [196] |
In-house developed CCD camera | 3D-printed chip with four reaction chambers | LAMP | EvaGreen | 20 ± 1 μL | Capillary force | Unintegrated nucleic acid extraction | PEDV, PDCoV, and TGEV | 10 copies/reaction for PEDV and PDCoV, 100 copies/reaction for TGEV | [198] |
SWA-01 | In-house developed chip with eight reaction chambers | RT-qPCR | SYBR Green | 2 μL | Unknown | Unintegrated nucleic acid extraction | PCV2, PRRSV, PEDV, and PRV | 1 copy/μL for PCV2, 10 copies/μL for PRRSV and PEDV, 100 copies/μL for PRV | [197] |
Naked eye (Colorimetry) | In-house developed fan-shaped microfluidic chip | LAMP | WarmStart® Colorimetric Master Mix | About 10 μL | Centrifugal force | Unintegrated nucleic acid extraction | PEDV, TGEV, PoRV, and PCV2 | 100 copies/μL | [199] |
AJYGeneTec TM MA2000 | CD-like chip | LAMP | SYBR Green | 5 μL | Centrifugal force | Unintegrated nucleic acid extraction | ASFV, PRV, PPV, PRRSV and, PCV2 | 10–100 copies/μL | [26] |
UV-light device (365 nm) | Hive-Chip | LAMP | Calcein | 25 μL | Capillary force | Unintegrated nucleic acid extraction | B646L, B962L, C717R, D1133L, and G1340L genes of ASFV | 30–50 copies/μL | [200] |
7. Isothermal Amplification-Based Multiplex Detection Methods
8. Next-Generation Sequencing as a Multiplex Diagnostic Method for Swine Diseases
9. Strengths and Weaknesses of Different Multiplex Diagnostic Methods
Diagnostic Tests | Sensitivities | Specificities | Maximum Number of Targets | Maximum Number of Samples | Total Turnaround Times a | Main Strengths | Main Weaknesses |
---|---|---|---|---|---|---|---|
Multiplex qPCR b | High (most of the mqPCR-based assays have LOD at 10–100 copies/μL) | High | Up to 6 for probe-based method Up to 10+ for melting curve analysis-based method | 384 | 2–3 h | Real-time detection, no post-PCR manipulation required High sensitivity, specificity and accuracy Wide dynamic range Low contamination risk | Limited multiplex capability Prone to non-target nucleic acids and inhibitors |
Multiplex dPCR | Approximately 10-fold higher than mqPCR | High | Usually less than 7 for optical channels-based only Up to 10 for amplitude-based method Dozens of for fluorescence encoding technology c | 96 | 2–9 h | Higher sensitivity and precise Higher tolerance for inhibitors Less affected by poor amplification efficiency | Limited multiplex capability High contamination risk Narrow dynamic range Lower sample throughput per run More complicated testing procedure Large initial capital investment for instrument More expensive reagents and consumables |
CE-based multiplex diagnosis | High d | Higher than mqPCR | Hundreds | 384 | 2–3 h | High sensitivity and accuracy Higher specificity More conducive to design mPCR amplification system Separation and detection of targets with high resolution and efficiency from two dimensions by using fluorescent markers and amplicon size | More complicated testing procedure Large initial capital investment for instrument Higher contamination risk |
Microarrays | Generally lower than mqPCR | High | Thousands | 384 | From a few hours to a few days depending on different microarray platforms | Ability to simultaneously identify large numbers of analytes Smaller quantity of sample requirements High-throughput sample screening | Required more manipulations (e.g., hybridization, washing, and even additional PCR amplification) Required more skilled laboratorians Huge initial capital investment for instrument Higher contamination risk Difficult to compare quantitative data Difficult to interpret and manage test results |
Microfluidics | High | It depends on the nucleic acid amplification technology combined with microfluidics | Thousands | Thousands | 2–6 h | Rapid to perform and portability Low consumption of reagents Less inherent human error Safe and quick disposal of bio-hazardous wastes | Lack of affordable, simple to process materials for large-scale production of microfluidic chips Lack of programmable microfluidic chips Difficulty of sample preparation Difficulty of integrating separate microfluidic chips |
IA-based multiplex diagnosis | High | Lower than mqPCR | It depends on the detection technique combined with IA | It depends on the detection technique combined with IA | Usually less than 2 h | Increased tolerance to PCR inhibitors Required less amplification times and sample preparation steps Higher amplification efficiency | More complex primer design Prone to non-specific amplification and false positives Required more enzymes and reaction components |
NGS | Generally lower than mqPCR | High | Hundreds | 96 | From a few hours to more than 10 days depending on different sequencing platforms | Unbiased identification of known and unknown pathogens Ability to obtain complete pathogen genetic information Ability to simultaneously identify large numbers of pathogens | Huge initial capital investment for instrument Required highly skilled laboratorians and bioinformaticians Long turnaround times Difficulty of interpreting test results High Data storage costs |
10. Conclusions and Future Perspectives
10.1. Implications from Human Disease Multiplexed Diagnostic Methods
10.2. Advantages and Challenges of Nucleic Acid-Based Multiplex Testing Methods
10.3. Trends in the Development and Application of Nucleic Acid Diagnostic Methods for Swine Diseases
10.4. Critical Role of NAMT in Xenotransplantation Biosecurity
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, S.W.; Gormley, A.; Jang, K.B.; Duarte, M.E. Invited Review—Current status of global pig production: An overview and research trends. Anim. Biosci. 2024, 37, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Adesehinwa, A.O.K.; Boladuro, B.A.; Dunmade, A.S.; Idowu, A.B.; Moreki, J.C.; Wachira, A.M. Invited Review—Pig production in Africa: Current status, challenges, prospects and opportunities. Anim. Biosci. 2024, 37, 730–741. [Google Scholar] [CrossRef] [PubMed]
- VanderWaal, K.; Deen, J. Global trends in infectious diseases of swine. Proc. Natl. Acad. Sci. USA 2018, 115, 11495–11500. [Google Scholar] [CrossRef] [PubMed]
- Meléndez, A.; Tejedor, M.T.; Mitjana, O.; Falceto, M.V.; Garza-Moreno, L. Perception about the Major Health Challenges in Different Swine Production Stages in Spain. Vet. Sci. 2024, 11, 84. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Lai, Y.; Yang, Z.; Song, W.; Zhou, J.; Li, Z.; Su, W.; Xiao, S.; Fang, L. Coinfection and nonrandom recombination drive the evolution of swine enteric coronaviruses. Emerg. Microbes Infect. 2024, 13, 2332653. [Google Scholar] [CrossRef] [PubMed]
- Obradovic, M.R.; Segura, M.; Segalés, J.; Gottschalk, M. Review of the speculative role of co-infections in Streptococcus suis-associated diseases in pigs. Vet. Res. 2021, 52, 49. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, T.; Zhang, X.; Liu, X.; Ren, L. Co-Infection of Swine with Porcine Circovirus Type 2 and Other Swine Viruses. Viruses 2019, 11, 185. [Google Scholar] [CrossRef] [PubMed]
- Saade, G.; Deblanc, C.; Bougon, J.; Marois-Créhan, C.; Fablet, C.; Auray, G.; Belloc, C.; Leblanc-Maridor, M.; Gagnon, C.A.; Zhu, J.; et al. Coinfections and their molecular consequences in the porcine respiratory tract. Vet. Res. 2020, 51, 80. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Yang, B.; Yuan, X.; Shen, C.; Zhang, D.; Shi, X.; Zhang, T.; Cui, H.; Yang, J.; Chen, X.; et al. Advanced Research in Porcine Reproductive and Respiratory Syndrome Virus Co-infection With Other Pathogens in Swine. Front. Vet. Sci. 2021, 8, 699561. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J. Porcine deltacoronavirus: Overview of infection dynamics, diagnostic methods, prevalence and genetic evolution. Virus Res. 2016, 226, 71–84. [Google Scholar] [CrossRef] [PubMed]
- NIH. Multiplex Polymerase Chain Reaction. 2023. Available online: https://www.ncbi.nlm.nih.gov/mesh/?term=Multiplex+Polymerase+Chain+Reaction (accessed on 22 April 2025).
- Elder, R.O.; Duhamel, G.E.; Mathiesen, M.R.; Erickson, E.D.; Gebhart, C.J.; Oberst, R.D. Multiplex polymerase chain reaction for simultaneous detection of Lawsonia intracellularis, Serpulina hyodysenteriae, and salmonellae in porcine intestinal specimens. J. Vet. Diagn. Investig. 1997, 9, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Ouardani, M.; Wilson, L.; Jetté, R.; Montpetit, C.; Dea, S. Multiplex PCR for detection and typing of porcine circoviruses. J. Clin. Microbiol. 1999, 37, 3917–3924. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, Q.; Opriessnig, T.; Wen, D.; Gu, K.; Jiang, Y. Multiplex gel-based PCR assay for the simultaneous detection of 5 genotypes of porcine astroviruses. J. Vet. Diagn. Investig. 2023, 35, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wen, X.H.; Jia, C.L.; Zhou, X.R.; Luo, S.J.; Lv, D.H.; Zhai, Q. Development of a multiplex qRT-PCR assay for detection of classical swine fever virus, African swine fever virus, and Erysipelothrix rhusiopathiae. Front. Vet. Sci. 2023, 10, 1183360. [Google Scholar] [CrossRef] [PubMed]
- Pegu, S.R.; Deb, R.; Das, P.J.; Sengar, G.S.; Yadav, A.K.; Rajkhowa, S.; Paul, S.; Gupta, V.K. Development of multiplex PCR assay for simultaneous detection of African swine fever, porcine circo and porcine parvo viral infection from clinical samples. Anim. Biotechnol. 2023, 34, 1883–1890. [Google Scholar] [CrossRef] [PubMed]
- Rajkhowa, S.; Choudhury, M.; Pegu, S.R.; Sarma, D.K.; Gupta, V.K. Development of a novel one-step triplex PCR assay for the simultaneous detection of porcine circovirus type 2, porcine parvovirus and classical swine fever virus in a single tube. Lett. Appl. Microbiol. 2022, 75, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Zhao, K.; Wei, H.; Zhou, Q.; Shi, Y.; Mo, S.; Long, F.; Hu, L.; Feng, S.; Mo, M. Triplex Crystal Digital PCR for the Detection and Differentiation of the Wild-Type Strain and the MGF505-2R and I177L Gene-Deleted Strain of African Swine Fever Virus. Pathogens 2023, 12, 1092. [Google Scholar] [CrossRef] [PubMed]
- Long, F.; Chen, Y.; Shi, K.; Yin, Y.; Feng, S.; Si, H. Development of a Multiplex Crystal Digital RT-PCR for Differential Detection of Classical, Highly Pathogenic, and NADC30-like Porcine Reproductive and Respiratory Syndrome Virus. Animals 2023, 13, 594. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Jian, W.; Huang, Y.; Gao, Q.; Gao, F.; Chen, H.; Zhang, G.; Liao, M.; Qi, W. Development and Application of a Duplex Droplet Digital Polymerase Chain Reaction Assay for Detection and Differentiation of EP402R-Deleted and Wild-Type African Swine Fever Virus. Front. Vet. Sci. 2022, 9, 905706. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-L.; Xiao, L.; Lin, H.; Yang, M.; Chen, S.-J.; An, W.; Wang, Y.; Yao, X.-P.; Yang, Z.-X.; Tang, Z.-Z. A Novel Capillary Electrophoresis-Based High-Throughput Multiplex Polymerase Chain Reaction System for the Simultaneous Detection of Nine Pathogens in Swine. BioMed Res. Int. 2017, 2017, 7243909. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Lin, X.; Nie, F.; Yang, Z.; Yao, X.; Li, G.; Wu, X.; Ren, M.; Wang, Y. Simultaneous typing of seven porcine pathogens by multiplex PCR with a GeXP analyser. J. Virol. Methods 2016, 232, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Ma, B.; Li, J.; Shuai, J.; Zhang, X.; Xu, H.; Zhang, M. Triplex-Loop-Mediated Isothermal Amplification Combined with a Lateral Flow Immunoassay for the Simultaneous Detection of Three Pathogens of Porcine Viral Diarrhea Syndrome in Swine. Animals 2023, 13, 1910. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.-J.; Xu, L.; Zhao, J.-J.; Li, Y.-X.; Wu, R.-Z.; Song, X.-P.; Zhao, Q.-Z.; Liu, Y.-B.; Wang, Q.; Zhang, Q.-Y. Development of a quadruple PCR-based gene microarray for detection of vaccine and wild-type classical swine fever virus, African swine fever virus and atypical porcine pestivirus. Virol. J. 2022, 19, 201. [Google Scholar] [CrossRef] [PubMed]
- Erickson, A.; Fisher, M.; Furukawa-Stoffer, T.; Ambagala, A.; Hodko, D.; Pasick, J.; King, D.P.; Nfon, C.; Ortega Polo, R.; Lung, O. A multiplex reverse transcription PCR and automated electronic microarray assay for detection and differentiation of seven viruses affecting swine. Transbound. Emerg. Dis. 2018, 65, e272–e283. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Zhou, L.; Chen, Y.; Fang, X.; Liu, Y.; Du, M.; Lu, X.; Li, Q.; Wang, H.; Sun, Y.; et al. Microfluidic-LAMP chip for the point-of-care detection of gene-deleted and wild-type African swine fever viruses and other four swine pathogens. Front. Vet. Sci. 2023, 10, 1116352. [Google Scholar] [CrossRef] [PubMed]
- Lung, O.; Fisher, M.; Erickson, A.; Nfon, C.; Ambagala, A. Fully automated and integrated multiplex detection of high consequence livestock viral genomes on a microfluidic platform. Transbound. Emerg. Dis. 2018, 66, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Heid, C.A.; Stevens, J.; Livak, K.J.; Williams, P.M. Real time quantitative PCR. Genome Res. 1996, 6, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Filchakova, O.; Dossym, D.; Ilyas, A.; Kuanysheva, T.; Abdizhamil, A.; Bukasov, R. Review of COVID-19 testing and diagnostic methods. Talanta 2022, 244, 123409. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Feng, S.; Shi, K.; Shi, Y.; Yin, Y.; Long, F.; Wei, X.; Li, Z. Development of a quadruplex real-time quantitative RT-PCR for detection and differentiation of PHEV, PRV, CSFV, and JEV. Front. Vet. Sci. 2023, 10, 1276505. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, R.; Dollinger, G.; Walsh, P.S.; Griffith, R. Simultaneous amplification and detection of specific DNA sequences. Bio/technology 1992, 10, 413–417. [Google Scholar] [CrossRef] [PubMed]
- McGoldrick, A.; Lowings, J.P.; Ibata, G.; Sands, J.J.; Belak, S.; Paton, D.J. A novel approach to the detection of classical swine fever virus by RT-PCR with a fluorogenic probe (TaqMan). J. Virol. Methods 1998, 72, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, R.A.; Nguyen, P.N.; Edwards, A.; Civitello, A.B.; Caskey, C.T. Multiplex DNA deletion detection and exon sequencing of the hypoxanthine phosphoribosyltransferase gene in Lesch-Nyhan families. Genomics 1990, 7, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, T.B.; Uttenthal, A.; de Stricker, K.; Belák, S.; Storgaard, T. Development of a novel quantitative real-time RT-PCR assay for the simultaneous detection of all serotypes of foot-and-mouth disease virus. Arch. Virol. 2003, 148, 2005–2021. [Google Scholar] [CrossRef] [PubMed]
- Le, V.P.; Lee, K.N.; Nguyen, T.; Kim, S.M.; Cho, I.S.; Van Quyen, D.; Khang, D.D.; Park, J.H. Development of one-step multiplex RT-PCR method for simultaneous detection and differentiation of foot-and-mouth disease virus serotypes O, A, and Asia 1 circulating in Vietnam. J. Virol. Methods 2011, 175, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Biswal, J.K.; Jena, B.R.; Ali, S.Z.; Ranjan, R.; Mohapatra, J.K.; Singh, R.P. One-step SYBR green-based real-time RT-PCR assay for detection of foot-and-mouth disease virus circulating in India. Virus Genes 2022, 58, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Reid, S.M.; Mioulet, V.; Knowles, N.J.; Shirazi, N.; Belsham, G.J.; King, D.P. Development of tailored real-time RT-PCR assays for the detection and differentiation of serotype O, A and Asia-1 foot-and-mouth disease virus lineages circulating in the Middle East. J. Virol. Methods 2014, 207, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Bachanek-Bankowska, K.; Mero, H.R.; Wadsworth, J.; Mioulet, V.; Sallu, R.; Belsham, G.J.; Kasanga, C.J.; Knowles, N.J.; King, D.P. Development and evaluation of tailored specific real-time RT-PCR assays for detection of foot-and-mouth disease virus serotypes circulating in East Africa. J. Virol. Methods 2016, 237, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Jamal, S.M.; Belsham, G.J. Development and Characterization of Probe-Based Real Time Quantitative RT-PCR Assays for Detection and Serotyping of Foot-And-Mouth Disease Viruses Circulating in West Eurasia. PLoS ONE 2015, 10, e0135559. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.R.; Ryoo, S.; Kang, H.; Oh, S.H.; Jang, S.H.; Kang, B.; Park, H.J.; Hwang, H.; Kim, J.M.; Park, C.K.; et al. Enhanced detection and serotyping of foot-and-mouth disease virus serotype O, A, and Asia1 using a novel multiplex real-time RT-PCR. Transbound. Emerg. Dis. 2022, 69, e2578–e2589. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, T.B.; Uttenthal, A.; Fernández, J.; Storgaard, T. Quantitative multiplex assay for simultaneous detection and identification of Indiana and New Jersey serotypes of vesicular stomatitis virus. J. Clin. Microbiol. 2005, 43, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Hole, K.; Clavijo, A.; Pineda, L.A. Detection and serotype-specific differentiation of vesicular stomatitis virus using a multiplex, real-time, reverse transcription-polymerase chain reaction assay. J. Vet. Diagn. Investig. 2006, 18, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Hole, K.; Velazquez-Salinas, L.; Clavijo, A. Improvement and optimization of a multiplex real-time reverse transcription polymerase chain reaction assay for the detection and typing of Vesicular stomatitis virus. J. Vet. Diagn. Investig. 2010, 22, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Hole, K.; Nfon, C.; Rodriguez, L.L.; Velazquez-Salinas, L. A Multiplex Real-Time Reverse Transcription Polymerase Chain Reaction Assay With Enhanced Capacity to Detect Vesicular Stomatitis Viral Lineages of Central American Origin. Front. Vet. Sci. 2021, 8, 783198. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wang, W.; Wang, X.; Li, Z.; Wu, K.; Li, X.; Li, Y.; Yi, L.; Zhao, M.; Ding, H.; et al. Advances in the differential molecular diagnosis of vesicular disease pathogens in swine. Front. Microbiol. 2022, 13, 1019876. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Das, A.; Zheng, W.; Porter, E.; Xu, L.; Noll, L.; Liu, X.; Dodd, K.; Jia, W.; Bai, J. Development and evaluation of multiplex real-time RT-PCR assays for the detection and differentiation of foot-and-mouth disease virus and Seneca Valley virus 1. Transbound. Emerg. Dis. 2020, 67, 604–616. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.; Agüero, M.; Romero, L.; Sánchez, C.; Belák, S.; Arias, M.; Sánchez-Vizcaíno, J.M. Rapid and differential diagnosis of foot-and-mouth disease, swine vesicular disease, and vesicular stomatitis by a new multiplex RT-PCR assay. J. Virol. Methods 2008, 147, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, T.B.; Uttenthal, A.; Agüero, M. Detection of three porcine vesicular viruses using multiplex real-time primer-probe energy transfer. J. Virol. Methods 2006, 134, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Grau, F.R.; Schroeder, M.E.; Mulhern, E.L.; McIntosh, M.T.; Bounpheng, M.A. Detection of African swine fever, classical swine fever, and foot-and-mouth disease viruses in swine oral fluids by multiplex reverse transcription real-time polymerase chain reaction. J. Vet. Diagn. Investig. 2015, 27, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Kleiboeker, S.B.; Schommer, S.K.; Lee, S.M.; Watkins, S.; Chittick, W.; Polson, D. Simultaneous detection of North American and European porcine reproductive and respiratory syndrome virus using real-time quantitative reverse transcriptase-PCR. J. Vet. Diagn. Investig. 2005, 17, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Wernike, K.; Hoffmann, B.; Dauber, M.; Lange, E.; Schirrmeier, H.; Beer, M. Detection and typing of highly pathogenic porcine reproductive and respiratory syndrome virus by multiplex real-time rt-PCR. PLoS ONE 2012, 7, e38251. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.H.; Chen, X.Z.; Hu, D.M.; Yu, X.L.; Wang, L.L.; Han, W.; Wu, J.J.; Cao, Z.; Wang, C.B.; Zhang, Q.; et al. Rapid differential detection of classical and highly pathogenic North American Porcine Reproductive and Respiratory Syndrome virus in China by a duplex real-time RT-PCR. J. Virol. Methods 2009, 161, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wang, Z.; Ding, Y.; Ge, X.; Guo, X.; Yang, H. NADC30-like Strain of Porcine Reproductive and Respiratory Syndrome Virus, China. Emerg. Infect. Dis. 2015, 21, 2256–2257. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Ye, C.; Chang, X.B.; Jiang, C.G.; Wang, S.J.; Cai, X.H.; Tong, G.Z.; Tian, Z.J.; Shi, M.; An, T.Q. Importation and Recombination Are Responsible for the Latest Emergence of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus in China. J. Virol. 2015, 89, 10712–10716. [Google Scholar] [CrossRef] [PubMed]
- Ruan, S.; Ren, W.; Yu, B.; Yu, X.; Wu, H.; Li, W.; Jiang, Y.; He, Q. Development and Implementation of a Quadruple RT-qPCR Method for the Identification of Porcine Reproductive and Respiratory Syndrome Virus Strains. Viruses 2023, 15, 1946. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; Meng, K.; Liu, Y.; Zhang, Y.; Wang, Z.; Chen, Z.; Yang, J.; Sun, W.; Guo, L.; Ren, S.; et al. Simultaneous detection of classical PRRSV, highly pathogenic PRRSV and NADC30-like PRRSV by TaqMan probe real-time PCR. J. Virol. Methods 2019, 282, 113774. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Ye, M.; Xiao, Y.; Li, S.; Huang, Y.; Li, X.; Tian, K.; Zhu, J. Development of universal and quadruplex real-time RT-PCR assays for simultaneous detection and differentiation of porcine reproductive and respiratory syndrome viruses. Transbound. Emerg. Dis. 2019, 66, 2271–2278. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ji, G.; Xu, X.; Wang, J.; Li, Y.; Tan, F.; Li, X. Development and Application of an RT-PCR to Differentiate the Prevalent NA-PRRSV Strains in China. Open Virol. J. 2017, 11, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Mengeling, W.L.; Lager, K.M.; Vorwald, A.C. Clinical consequences of exposing pregnant gilts to strains of porcine reproductive and respiratory syndrome (PRRS) virus isolated from field cases of “atypical” PRRS. Am. J. Vet. Res. 1998, 59, 1540–1544. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Zhao, J.J.; Li, N.; Sun, Y.; Zhou, Y.J.; Zhu, Y.; Tian, Z.J.; Tu, C.; Tong, G.Z.; Qiu, H.J. Simultaneous detection of Classical swine fever virus and North American genotype Porcine reproductive and respiratory syndrome virus using a duplex real-time RT-PCR. J. Virol. Methods 2008, 151, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.L.; Chai, L.Y.; Tian, R.B.; Zhao, Y.; Chen, H.Y.; Wang, Z.Y. Simultaneous detection of porcine reproductive and respiratory syndrome virus and porcine circovirus 3 by SYBR Green I-based duplex real-time PCR. Mol. Cell. Probes 2020, 49, 101474. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Guo, S.; Hameed, M.; Zhang, J.; Pang, L.; Li, B.; Qiu, Y.; Liu, K.; Shao, D.; Ma, Z.; et al. Rapid differential detection of genotype I and III Japanese encephalitis virus from clinical samples by a novel duplex TaqMan probe-based RT-qPCR assay. J. Virol. Methods 2020, 279, 113841. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Y.; Guan, Z.; Yang, Y.; Zhang, J.; Sun, Q.; Li, B.; Qiu, Y.; Liu, K.; Shao, D.; et al. Rapid Differential Detection of Japanese Encephalitis Virus and Getah Virus in Pigs or Mosquitos by a Duplex TaqMan Real-Time RT-PCR Assay. Front. Vet. Sci. 2022, 9, 839443. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhao, Y.; Hu, Q.; Lv, C.; Zhang, C.; Zhao, R.; Hu, F.; Lin, W.; Cui, S. A multiplex RT-PCR for rapid and simultaneous detection of porcine teschovirus, classical swine fever virus, and porcine reproductive and respiratory syndrome virus in clinical specimens. J. Virol. Methods 2011, 172, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.K.; Wei, C.H.; Yang, X.Y.; Dai, A.L.; Li, X.H. Multiplex PCR for the simultaneous detection of porcine reproductive and respiratory syndrome virus, classical swine fever virus, and porcine circovirus in pigs. Mol. Cell. Probes 2013, 27, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Shi, K.; Liu, H.; Yin, Y.; Zhao, J.; Long, F.; Lu, W.; Si, H. Development of a multiplex qRT-PCR assay for detection of African swine fever virus, classical swine fever virus and porcine reproductive and respiratory syndrome virus. J. Vet. Sci. 2021, 22, e87. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.Y.; Luo, Y.; Liu, Y.; Shao, L.; Sun, Y.; Li, Y.; Li, S.; Ji, S.; Qiu, H.J. A triplex real-time PCR for differential detection of classical, variant and Bartha-K61 vaccine strains of pseudorabies virus. Arch. Virol. 2016, 161, 2425–2430. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Shang, H.; Xu, H.; Zhu, L.; Chen, W.; Zhao, L.; Fang, L. Simultaneous detection of porcine circovirus type 2, classical swine fever virus, porcine parvovirus and porcine reproductive and respiratory syndrome virus in pigs by multiplex polymerase chain reaction. Vet. J. 2010, 183, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Luo, S.; Tan, J.; Zhang, L.; Qiu, S.; Hao, Z.; Wang, N.; Deng, Z.; Wang, A.; Yang, Q.; et al. Establishment and application of multiplex real-time PCR for simultaneous detection of four viruses associated with porcine reproductive failure. Front. Microbiol. 2023, 14, 1092273. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.; Wu, H.; Jiang, Y.; Opriessnig, T.; Zheng, X.; Mo, Y.; Yang, Z. Development of an EvaGreen-based multiplex real-time PCR assay with melting curve analysis for simultaneous detection and differentiation of six viral pathogens of porcine reproductive and respiratory disorder. J. Virol. Methods 2014, 208, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Rao, P.; Jiang, Y.; Opriessnig, T.; Yang, Z. A sensitive multiplex real-time PCR panel for rapid diagnosis of viruses associated with porcine respiratory and reproductive disorders. Mol. Cell. Probes 2014, 28, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yang, F.; Gao, J.; Zhang, W.; Xu, X. Development of multiplex TaqMan qPCR for simultaneous detection and differentiation of eight common swine viral and bacterial pathogens. Braz. J. Microbiol. 2022, 53, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Liu, X.; Wang, Q.; Das, A.; Ma, G.; Xu, L.; Sun, Q.; Peddireddi, L.; Jia, W.; Liu, Y.; et al. A multiplex real-time PCR panel assay for simultaneous detection and differentiation of 12 common swine viruses. J. Virol. Methods 2016, 236, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Petri, F.A.M.; Ferreira, G.C.; Arruda, L.P.; Malcher, C.S.; Storino, G.Y.; Almeida, H.M.S.; Sonalio, K.; Silva, D.G.D.; Oliveira, L.G. Associations between Pleurisy and the Main Bacterial Pathogens of the Porcine Respiratory Diseases Complex (PRDC). Animals 2023, 13, 1493. [Google Scholar] [CrossRef] [PubMed]
- Opriessnig, T.; Giménez-Lirola, L.G.; Halbur, P.G. Polymicrobial respiratory disease in pigs. Anim. Health Res. Rev. 2011, 12, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Zeng, M.; Zhao, M.; Huang, L. Research Progress on the detection methods of porcine reproductive and respiratory syndrome virus. Front. Microbiol. 2023, 14, 1097905. [Google Scholar] [CrossRef] [PubMed]
- Link, E.K.; Eddicks, M.; Nan, L.; Ritzmann, M.; Sutter, G.; Fux, R. Discriminating the eight genotypes of the porcine circovirus type 2 with TaqMan-based real-time PCR. Virol. J. 2021, 18, 70. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, C.A.; del Castillo, J.R.; Music, N.; Fontaine, G.; Harel, J.; Tremblay, D. Development and use of a multiplex real-time quantitative polymerase chain reaction assay for detection and differentiation of Porcine circovirus-2 genotypes 2a and 2b in an epidemiological survey. J. Vet. Diagn. Investig. 2008, 20, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Noll, L.; Porter, E.; Stoy, C.; Dong, J.; Anderson, J.; Fu, J.; Pogranichniy, R.; Woodworth, J.; Peddireddi, L.; et al. Development of a differential multiplex real-time PCR assay for porcine circovirus type 2 (PCV2) genotypes PCV2a, PCV2b and PCV2d. J. Virol. Methods 2020, 286, 113971. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.G.; Giannitti, F.; Rossow, S.; Marthaler, D.; Knutson, T.P.; Li, L.; Deng, X.; Resende, T.; Vannucci, F.; Delwart, E. Detection of a novel circovirus PCV3 in pigs with cardiac and multi-systemic inflammation. Virol. J. 2016, 13, 184. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.H.; Hu, W.Q.; Li, J.Y.; Liu, T.N.; Zhou, J.Y.; Opriessnig, T.; Xiao, C.T. Novel circovirus species identified in farmed pigs designated as Porcine circovirus 4, Hunan province, China. Transbound. Emerg. Dis. 2020, 67, 1057–1061. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.Y.; Xu, T.; Zhang, L.H.; Cui, J.T.; Zhang, Y.H.; Li, X.S.; Zheng, L.L.; Chen, H.Y. Simultaneous detection and differentiation of porcine circovirus 3 and 4 using a SYBR Green I-based duplex quantitative PCR assay. J. Virol. Methods 2021, 293, 114152. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.R.; Park, Y.R.; Lim, D.R.; Park, M.J.; Park, J.Y.; Kim, S.H.; Lee, K.K.; Lyoo, Y.S.; Park, C.K. Multiplex real-time polymerase chain reaction for the differential detection of porcine circovirus 2 and 3. J. Virol. Methods 2017, 250, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Qiao, M.; Sun, M.; Tian, K. A Duplex Real-Time PCR Assay for the Simultaneous Detection of Porcine Circovirus 2 and Circovirus 3. Virol. Sin. 2018, 33, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Feng, Y.; Zheng, W.; Noll, L.; Porter, E.; Potter, M.; Cino, G.; Peddireddi, L.; Liu, X.; Anderson, G.; et al. A multiplex real-time PCR assay for the detection and differentiation of the newly emerged porcine circovirus type 3 and continuously evolving type 2 strains in the United States. J. Virol. Methods 2019, 269, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Han, H.Y.; Fan, L.; Tian, R.B.; Cui, J.T.; Li, J.Y.; Chen, H.Y.; Yang, M.F.; Zheng, L.L. Development of a TB green II-based duplex real-time fluorescence quantitative PCR assay for the simultaneous detection of porcine circovirus 2 and 3. Mol. Cell. Probes 2019, 45, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Xiao, Y.; Li, X.; Li, S.; Xie, N.; Yan, X.; Li, X.; Zhu, J. Development and application of a quadruplex real-time PCR assay for differential detection of porcine circoviruses (PCV1 to PCV4) in Jiangsu province of China from 2016 to 2020. Transbound. Emerg. Dis. 2021, 68, 1615–1624. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zou, J.; Liu, R.; Chen, J.; Li, X.; Zheng, H.; Li, L.; Zhou, B. Development of a TaqMan-Probe-Based Multiplex Real-Time PCR for the Simultaneous Detection of African Swine Fever Virus, Porcine Circovirus 2, and Pseudorabies Virus in East China from 2020 to 2022. Vet. Sci. 2023, 10, 106. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.B.; Jin, Y.; Xu, T.; Zhao, Y.; Wang, Z.Y.; Chen, H.Y. Development of a SYBR green I-based duplex real-time PCR assay for detection of pseudorabies virus and porcine circovirus 3. Mol. Cell. Probes 2020, 53, 101593. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.H.; Zhang, S.J.; Cui, J.T.; Zhang, J.; Wang, L.; Liu, F.; Chen, H.Y. Simultaneous detection of classical swine fever virus and porcine circovirus 3 by SYBR green I-based duplex real-time fluorescence quantitative PCR. Mol. Cell. Probes 2020, 50, 101524. [Google Scholar] [CrossRef] [PubMed]
- Mancera Gracia, J.C.; Pearce, D.S.; Masic, A.; Balasch, M. Influenza A Virus in Swine: Epidemiology, Challenges and Vaccination Strategies. Front. Vet. Sci. 2020, 7, 647. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Kong, M.; Liu, J.; Jiao, J.; Zeng, Z.; Shi, L.; Bu, X.; Yan, Y.; Chen, Y.; Gao, R.; et al. Rapid differential detection of subtype H1 and H3 swine influenza viruses using a TaqMan-MGB-based duplex one-step real-time RT-PCR assay. Arch. Virol. 2021, 166, 2217–2224. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, M.M.; Simard, G.; Longtin, D.; Simard, C. Single-step multiplex conventional and real-time reverse transcription polymerase chain reaction assays for simultaneous detection and subtype differentiation of Influenza A virus in swine. J. Vet. Diagn. Investig. 2010, 22, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Henritzi, D.; Zhao, N.; Starick, E.; Simon, G.; Krog, J.S.; Larsen, L.E.; Reid, S.M.; Brown, I.H.; Chiapponi, C.; Foni, E.; et al. Rapid detection and subtyping of European swine influenza viruses in porcine clinical samples by haemagglutinin- and neuraminidase-specific tetra- and triplex real-time RT-PCRs. Influenza Other Respir. Viruses 2016, 10, 504–517. [Google Scholar] [CrossRef] [PubMed]
- Haach, V.; Gava, D.; Mauricio, E.C.; Franco, A.C.; Schaefer, R. One-step multiplex RT-qPCR for the detection and subtyping of influenza A virus in swine in Brazil. J. Virol. Methods 2019, 269, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Haach, V.; Gava, D.; Cantão, M.E.; Schaefer, R. Evaluation of two multiplex RT-PCR assays for detection and subtype differentiation of Brazilian swine influenza viruses. Braz. J. Microbiol. 2020, 51, 1447–1451. [Google Scholar] [CrossRef] [PubMed]
- Mora-Díaz, J.C.; Piñeyro, P.E.; Houston, E.; Zimmerman, J.; Giménez-Lirola, L.G. Porcine Hemagglutinating Encephalomyelitis Virus: A Review. Front. Vet. Sci. 2019, 6, 53. [Google Scholar] [CrossRef] [PubMed]
- Lorbach, J.N.; Wang, L.; Nolting, J.M.; Benjamin, M.G.; Killian, M.L.; Zhang, Y.; Bowman, A.S. Porcine Hemagglutinating Encephalomyelitis Virus and Respiratory Disease in Exhibition Swine, Michigan, USA, 2015. Emerg. Infect. Dis. 2017, 23, 1168–1171. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Eggett, T.E.; Lanka, S.; Fredrickson, R.L.; Li, G.; Zhang, Y.; Yoo, D.; Bowman, A.S. Development of a triplex real-time RT-PCR assay for detection and differentiation of three US genotypes of porcine hemagglutinating encephalomyelitis virus. J. Virol. Methods 2019, 269, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Goto, Y.; Fukunari, K.; Tada, S.; Ichimura, S.; Chiba, Y.; Suzuki, T. A multiplex real-time RT-PCR system to simultaneously diagnose 16 pathogens associated with swine respiratory disease. J. Appl. Microbiol. 2023, 134, lxad263. [Google Scholar] [CrossRef] [PubMed]
- Fourour, S.; Fablet, C.; Tocqueville, V.; Dorenlor, V.; Eono, F.; Eveno, E.; Kempf, I.; Marois-Créhan, C. A new multiplex real-time TaqMan(®) PCR for quantification of Mycoplasma hyopneumoniae, M. hyorhinis and M. flocculare: Exploratory epidemiological investigations to research mycoplasmal association in enzootic pneumonia-like lesions in slaughtered pigs. J. Appl. Microbiol. 2018, 125, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Njau, E.P.; Machuka, E.M.; Cleaveland, S.; Shirima, G.M.; Kusiluka, L.J.; Okoth, E.A.; Pelle, R. African Swine Fever Virus (ASFV): Biology, Genomics and Genotypes Circulating in Sub-Saharan Africa. Viruses 2021, 13, 2285. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hu, Y.; Liu, P.; Zhu, Z.; Liu, P.; Chen, C.; Wu, X. Development and application of a duplex real-time PCR assay for differentiation of genotypes I and II African swine fever viruses. Transbound. Emerg. Dis. 2022, 69, 2971–2979. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Hu, L.; Shi, K.; Wei, H.; Shi, Y.; Hu, X.; Zhou, Q.; Feng, S.; Long, F.; Mo, S.; et al. Development of a triplex real-time quantitative PCR for detection and differentiation of genotypes I and II African swine fever virus. Front. Vet. Sci. 2023, 10, 1278714. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Li, K.; Qiao, S.; Chen, X.X.; Deng, R.; Zhang, G. Development and evaluation of duplex TaqMan real-time PCR assay for detection and differentiation of wide-type and MGF505-2R gene-deleted African swine fever viruses. BMC Vet. Res. 2020, 16, 428. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Cao, C.; Shi, W.; Huang, C.; Zeng, S.; Sun, J.; Wu, J.; Hua, Q. Development of a triplex real-time PCR assay for detection and differentiation of gene-deleted and wild-type African swine fever virus. J. Virol. Methods 2020, 280, 113875. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Shi, K.; Zhou, Q.; Xiong, C.; Mo, S.; Zhou, H.; Long, F.; Wei, H.; Hu, L.; Mo, M. The Development of a Multiplex Real-Time Quantitative PCR Assay for the Differential Detection of the Wild-Type Strain and the MGF505-2R, EP402R and I177L Gene-Deleted Strain of the African Swine Fever Virus. Animals 2022, 12, 1754. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Madera, R.; Li, Y.; McVey, D.S.; Drolet, B.S.; Shi, J. Recent Advances in the Diagnosis of Classical Swine Fever and Future Perspectives. Pathogen 2020, 9, 658. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.L.; Pang, V.F.; Pan, C.H.; Chen, T.H.; Jong, M.H.; Huang, T.S.; Jeng, C.R. Development of a reverse transcription multiplex real-time PCR for the detection and genotyping of classical swine fever virus. J. Virol. Methods 2009, 160, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.J.; Cheng, D.; Li, N.; Sun, Y.; Shi, Z.; Zhu, Q.H.; Tu, C.; Tong, G.Z.; Qiu, H.J. Evaluation of a multiplex real-time RT-PCR for quantitative and differential detection of wild-type viruses and C-strain vaccine of Classical swine fever virus. Vet. Microbiol. 2008, 126, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Haines, F.J.; Hofmann, M.A.; King, D.P.; Drew, T.W.; Crooke, H.R. Development and validation of a multiplex, real-time RT PCR assay for the simultaneous detection of classical and African swine fever viruses. PLoS ONE 2013, 8, e71019. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Shi, K.; Sun, W.; Zhao, J.; Yin, Y.; Si, H.; Qu, S.; Lu, W. Development a multiplex RT-PCR assay for simultaneous detection of African swine fever virus, classical swine fever virus and atypical porcine pestivirus. J. Virol. Methods 2021, 287, 114006. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Shi, K.; Zhao, J.; Yin, Y.; Chen, Y.; Si, H.; Qu, S.; Long, F.; Lu, W. Development of a one-step multiplex qRT-PCR assay for the detection of African swine fever virus, classical swine fever virus and atypical porcine pestivirus. BMC Vet. Res. 2022, 18, 43. [Google Scholar] [CrossRef] [PubMed]
- Nishi, T.; Okadera, K.; Fukai, K.; Yoshizaki, M.; Nakasuji, A.; Yoneyama, S.; Kokuho, T. Establishment of a Direct PCR Assay for Simultaneous Differential Diagnosis of African Swine Fever and Classical Swine Fever Using Crude Tissue Samples. Viruses 2022, 14, 498. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Lu, H.; Geng, C.; Yang, K.; Liu, W.; Liu, Z.; Yuan, F.; Gao, T.; Wang, S.; Wen, P.; et al. Epidemic and Evolutionary Characteristics of Swine Enteric Viruses in South-Central China from 2018 to 2021. Viruses 2022, 14, 1420. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.D.; Bai, J.; Jiang, P.; Tang, T.S.; Li, Y.; Tan, C.; Shi, X. Development of a multiplex TaqMan probe-based real-time PCR for discrimination of variant and classical porcine epidemic diarrhea virus. J. Virol. Methods 2014, 206, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, Y.; Byrum, B. Development and evaluation of a duplex real-time RT-PCR for detection and differentiation of virulent and variant strains of porcine epidemic diarrhea viruses from the United States. J. Virol. Methods 2014, 207, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Liu, Y.; Chen, Y.; Xing, G.; Hao, H.; Wei, Q.; Liang, Y.; Xie, W.; Li, D.; Huang, H.; et al. A novel duplex TaqMan probe-based real-time RT-qPCR for detecting and differentiating classical and variant porcine epidemic diarrhea viruses. Mol. Cell. Probes 2018, 37, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Wang, Q. Emerging Highly Virulent Porcine Epidemic Diarrhea Virus: Molecular Mechanisms of Attenuation and Rational Design of Live Attenuated Vaccines. Int. J. Mol. Sci. 2019, 20, 5478. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, X.; Shang, Y.; Wu, J.; Dong, Z.; Cao, X.; Liu, Y.; Lan, X. Rapid differentiation of PEDV wild-type strains and classical attenuated vaccine strains by fluorescent probe-based reverse transcription recombinase polymerase amplification assay. BMC Vet. Res. 2020, 16, 208. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, L.M.; Han, J.Q.; Sun, T.R.; Zhao, X.; Xu, R.T.; Song, Q.Y. A TaqMan probe-based real-time PCR to differentiate porcine epidemic diarrhea virus virulent strains from attenuated vaccine strains. Mol. Cell. Probes 2019, 45, 37–42. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Chen, F.; Ku, X.; Yu, X.; Li, B.; Li, Z.; Sun, Q.; Fan, S.; He, Q. Establishment and application of a multiplex RT-PCR to differentiate wild-type and vaccine strains of porcine epidemic diarrhea virus. J. Virol. Methods 2019, 272, 113684. [Google Scholar] [CrossRef] [PubMed]
- Marthaler, D.; Homwong, N.; Rossow, K.; Culhane, M.; Goyal, S.; Collins, J.; Matthijnssens, J.; Ciarlet, M. Rapid detection and high occurrence of porcine rotavirus A, B, and C by RT-qPCR in diagnostic samples. J. Virol. Methods 2014, 209, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Zhou, H.; Feng, S.; He, J.; Li, B.; Long, F.; Shi, Y.; Yin, Y.; Li, Z. Development of a Quadruplex RT-qPCR for the Detection of Porcine Rotaviruses and the Phylogenetic Analysis of Porcine RVH in China. Pathogen 2023, 12, 1091. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Liu, G.; Opriessnig, T.; Wang, Z.; Yang, Z.; Jiang, Y. Rapid detection and grouping of porcine bocaviruses by an EvaGreen(®) based multiplex real-time PCR assay using melting curve analysis. Mol. Cell. Probes 2016, 30, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Han, H.Y.; Zheng, H.H.; Zhao, Y.; Tian, R.B.; Xu, P.L.; Hou, H.L.; Chen, H.Y.; Yang, M.F. Development of a SYBR green I-based duplex real-time fluorescence quantitative PCR assay for the simultaneous detection of porcine epidemic diarrhea virus and porcine circovirus 3. Mol. Cell. Probes 2019, 44, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.J.; Ma, M.Y.; Yan, X.G.; Zhao, F.J.; Hu, W.Y.; Ding, Q.W.; Ren, H.J.; Xiang, Y.Q.; Zheng, L.L. Development and application of a low-priced duplex quantitative PCR assay based on SYBR Green I for the simultaneous detection of porcine deltacoronavirus and porcine sapelovirus. Vet. Med. 2023, 68, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tsai, Y.L.; Lee, P.Y.; Chen, Q.; Zhang, Y.; Chiang, C.J.; Shen, Y.H.; Li, F.C.; Chang, H.F.; Gauger, P.C.; et al. Evaluation of two singleplex reverse transcription-Insulated isothermal PCR tests and a duplex real-time RT-PCR test for the detection of porcine epidemic diarrhea virus and porcine deltacoronavirus. J. Virol. Methods 2016, 234, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.L.; Cui, J.T.; Han, H.Y.; Hou, H.L.; Wang, L.; Liu, F.; Chen, H.Y. Development of a duplex SYBR GreenI based real-time PCR assay for detection of porcine epidemic diarrhea virus and porcine bocavirus3/4/5. Mol. Cell. Probes 2020, 51, 101544. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, R.; Liu, H.; Chen, J.; Li, X.; Zhang, J.; Zhou, B. Development of a Multiplex Quantitative PCR for Detecting Porcine Epidemic Diarrhea Virus, Transmissible Gastroenteritis Virus, and Porcine Deltacoronavirus Simultaneously in China. Vet. Sci. 2023, 10, 402. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Fan, M.; Zhu, Z.; Li, X. Establishment and Application of a Triplex Real-Time RT-PCR Assay for Differentiation of PEDV, PoRV, and PDCoV. Viruses 2023, 15, 1238. [Google Scholar] [CrossRef] [PubMed]
- Lazov, C.M.; Papetti, A.; Belsham, G.J.; Bøtner, A.; Rasmussen, T.B.; Boniotti, M.B. Multiplex Real-Time RT-PCR Assays for Detection and Differentiation of Porcine Enteric Coronaviruses. Pathogen 2023, 12, 1040. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Niu, J.W.; Zhou, X.; Chu, P.P.; Zhang, K.L.; Gou, H.C.; Yang, D.X.; Zhang, J.F.; Li, C.L.; Liao, M.; et al. Development of a multiplex qRT-PCR assay for the detection of porcine epidemic diarrhea virus, porcine transmissible gastroenteritis virus and porcine Deltacoronavirus. Front. Vet. Sci. 2023, 10, 1158585. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Chen, J.; Yao, G.; Guo, Q.; Wang, J.; Liu, G. A TaqMan-probe-based multiplex real-time RT-qPCR for simultaneous detection of porcine enteric coronaviruses. Appl. Microbiol. Biotechnol. 2019, 103, 4943–4952. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.; Feng, B.; Wang, Z.; Ma, Y.; Gao, X.; Jiang, Y.; Cui, W.; Qiao, X.; Tang, L.; Li, Y.; et al. Dual priming oligonucleotide (DPO)-based real-time RT-PCR assay for accurate differentiation of four major viruses causing porcine viral diarrhea. Mol. Cell. Probes 2019, 47, 101435. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Lu, J.; Wang, N.; He, W.T.; Zhang, L.; Zhao, W.; Su, S. Development of a TaqMan-probe-based multiplex real-time PCR for the simultaneous detection of emerging and reemerging swine coronaviruses. Virulence 2020, 11, 707–718. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jiang, Z.; Zhou, Z.; Sun, J.; Yan, S.; Gao, W.; Shao, Y.; Bai, Y.; Wu, Y.; Yan, Z.; et al. A TaqMan Probe-Based Multiplex Real-Time PCR for Simultaneous Detection of Porcine Epidemic Diarrhea Virus Subtypes G1 and G2, and Porcine Rotavirus Groups A and C. Viruses 2022, 14, 1819. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Shi, K.; Long, F.; Zhao, K.; Feng, S.; Yin, Y.; Xiong, C.; Qu, S.; Lu, W.; Li, Z. A Quadruplex qRT-PCR for Differential Detection of Four Porcine Enteric Coronaviruses. Vet. Sci. 2022, 9, 634. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.H.; Rawal, G.; Aljets, E.; Yim-Im, W.; Yang, Y.L.; Huang, Y.W.; Krueger, K.; Gauger, P.; Main, R.; Zhang, J. Development and Clinical Applications of a 5-Plex Real-Time RT-PCR for Swine Enteric Coronaviruses. Viruses 2022, 14, 1536. [Google Scholar] [CrossRef] [PubMed]
- Wen, D.; Liu, G.; Opriessnig, T.; Yang, Z.; Jiang, Y. Simultaneous detection of five pig viruses associated with enteric disease in pigs using EvaGreen real-time PCR combined with melting curve analysis. J. Virol. Methods 2019, 268, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.L.; Yu, J.Q.; Huang, Y.W. Swine enteric alphacoronavirus (swine acute diarrhea syndrome coronavirus): An update three years after its discovery. Virus Res. 2020, 285, 198024. [Google Scholar] [CrossRef] [PubMed]
- Vogelstein, B.; Kinzler, K.W. Digital PCR. Proc. Natl. Acad. Sci. USA 1999, 96, 9236–9241. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.L.; Loganathan, N.; Agarwalla, S.; Yang, C.; Yuan, W.; Zeng, J.; Wu, R.; Wang, W.; Duraiswamy, S. Current commercial dPCR platforms: Technology and market review. Crit. Rev. Biotechnol. 2023, 43, 433–464. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.; Zhang, G.; Liu, H.; Chen, Y.; Zhou, J.; Liu, Y.; Ding, P.; Wang, Y.; Zang, W.; Wang, A. Novel Application of Nanofluidic Chip Digital PCR for Detection of African Swine Fever Virus. Front. Vet. Sci. 2020, 7, 621840. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.W.; He, D.S.; Chen, Z.J.; Zuo, Y.Z.; Chen, X.; Chang, Y.L.; Zhang, Z.G.; Ye, L.; Shi, L. Development of a droplet digital PCR for detection and quantification of porcine epidemic diarrhea virus. J. Vet. Diagn. Investig. 2020, 32, 572–576. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Meng, H.; Shi, L.; Li, L. Sensitive detection of porcine circovirus 3 by droplet digital PCR. J. Vet. Diagn. Investig. 2019, 31, 604–607. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Meng, H.; Shi, L.; Li, L. Development of a droplet digital polymerase chain reaction for sensitive and simultaneous identification of porcine circovirus type 2 and 3. J. Virol. Methods 2019, 270, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Lin, H.; Chen, S.; Yang, M.; An, W.; Wang, Y.; Xue, C.; Sun, Y.; Yan, Y.; Hu, J. Detection of pseudorabies virus by duplex droplet digital PCR assay. J. Vet. Diagn. Investig. 2018, 30, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, N.; Liu, X.; Lv, J.; Jing, H.; Yuan, X.; Chen, D.; Lin, X.; Wu, S. A Novel, Reverse Transcription, Droplet Digital PCR Assay for the Combined, Sensitive Detection of Severe Acute Respiratory Syndrome Coronavirus 2 with Swine Acute Diarrhea Syndrome Coronavirus. J. AOAC Int. 2022, 105, 1437–1446. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Chen, Y.; Yin, Y.; Long, F.; Feng, S.; Liu, H.; Qu, S.; Si, H. A Multiplex Crystal Digital PCR for Detection of African Swine Fever Virus, Classical Swine Fever Virus, and Porcine Reproductive and Respiratory Syndrome Virus. Front. Vet. Sci. 2022, 9, 926881. [Google Scholar] [CrossRef] [PubMed]
- Jorgenson, J.W.; Lukacs, K.D. Free-zone electrophoresis in glass capillaries. Clin. Chem. 1981, 27, 1551–1553. [Google Scholar] [CrossRef] [PubMed]
- Sastre Toraño, J.; Ramautar, R.; de Jong, G. Advances in capillary electrophoresis for the life sciences. J. Chromatogr. B 2019, 1118–1119, 116–136. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Xie, Z.; Xie, L.; Deng, X.; Xie, Z.; Luo, S.; Liu, J.; Pang, Y.; Khan, M.I. Simultaneous detection of eight swine reproductive and respiratory pathogens using a novel GeXP analyser-based multiplex PCR assay. J. Virol. Methods 2015, 224, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Park, F.D.; Sasik, R.; Reya, T. Chapter 4—Microarrays: An Introduction and Guide to Their Use. In Basic Science Methods for Clinical Researchers; Jalali, M., Saldanha, F.Y.L., Jalali, M., Eds.; Academic Press: Boston, MA, USA, 2017; pp. 57–76. [Google Scholar]
- Ekins, R.; Chu, F.W. Microarrays: Their origins and applications. Trends Biotechnol. 1999, 17, 217–218. [Google Scholar] [CrossRef] [PubMed]
- Schena, M.; Shalon, D.; Davis, R.W.; Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995, 270, 467–470. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, J.A.; Boles, T.C.; Adams, C.P.; Walt, D.R. A fiber-optic DNA biosensor microarray for the analysis of gene expression. Nat. Biotechnol. 1996, 14, 1681–1684. [Google Scholar] [CrossRef] [PubMed]
- Shalon, D.; Smith, S.J.; Brown, P.O. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res. 1996, 6, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Aparna, G.M.; Tetala, K.K.R. Recent Progress in Development and Application of DNA, Protein, Peptide, Glycan, Antibody, and Aptamer Microarrays. Biomolecules 2023, 13, 602. [Google Scholar] [CrossRef] [PubMed]
- Baxi, M.K.; Baxi, S.; Clavijo, A.; Burton, K.M.; Deregt, D. Microarray-based detection and typing of foot-and-mouth disease virus. Vet. J. 2006, 172, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.C.; Huang, G.S.; Wu, M.C.; Hong, M.Y.; Hsiung, K.P. Detection of Foot and Mouth Disease and Porcine Reproductive and Respiratory Syndrome Viral Genes Using Microarray Chip. Vet. Res. Commun. 2006, 30, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Banér, J.; Gyarmati, P.; Yacoub, A.; Hakhverdyan, M.; Stenberg, J.; Ericsson, O.; Nilsson, M.; Landegren, U.; Belák, S. Microarray-based molecular detection of foot-and-mouth disease, vesicular stomatitis and swine vesicular disease viruses, using padlock probes. J. Virol. Methods 2007, 143, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Jack, P.J.M.; Amos-Ritchie, R.N.; Reverter, A.; Palacios, G.; Quan, P.-L.; Jabado, O.; Briese, T.; Ian Lipkin, W.; Boyle, D.B. Microarray-based detection of viruses causing vesicular or vesicular-like lesions in livestock animals. Vet. Microbiol. 2009, 133, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Lung, O.; Fisher, M.; Beeston, A.; Hughes, K.B.; Clavijo, A.; Goolia, M.; Pasick, J.; Mauro, W.; Deregt, D. Multiplex RT-PCR detection and microarray typing of vesicular disease viruses. J. Virol. Methods 2011, 175, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Liu, B.; Cao, B.; Beutin, L.; Krüger, U.; Liu, H.; Li, Y.; Liu, Y.; Feng, L.; Wang, L. DNA Microarray-Based Identification of Serogroups and Virulence Gene Patterns of Escherichia coli Isolates Associated with Porcine Postweaning Diarrhea and Edema Disease. Appl. Environ. Microbiol. 2007, 73, 4082–4088. [Google Scholar] [CrossRef] [PubMed]
- An, D.J.; Song, D.S.; Park, J.Y.; Park, B.K. A DNA miniarray system for simultaneous visual detection of porcine circovirus type 1 (PCV1) and 2 (PCV2) in pigs. Vet. Res. Commun. 2008, 33, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Shang, H.; Xu, H.; Ding, X.; Zhao, L.; Fang, L.; Chen, W. Detection and genotyping of porcine circovirus in naturally infected pigs by oligo-microarray. Res. Vet. Sci. 2010, 89, 133–139. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, N.; Gantelius, J.; Schwenk, J.M.; Ståhl, K.; Blomberg, J.; Andersson-Svahn, H.; Belák, S. Development of a magnetic bead microarray for simultaneous and simple detection of four pestiviruses. J. Virol. Methods 2009, 155, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Guo, Y.; Wang, P.; Dong, Q.; Opriessnig, T.; Cheng, J.; Xu, H.; Ding, X.; Guo, J. A novel diagnostic platform based on multiplex ligase detection–PCR and microarray for simultaneous detection of swine viruses. J. Virol. Methods 2011, 178, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Dang, E.; Gao, J.; Guo, S.; Li, Z. Development of a gold nanoparticle-based oligonucleotide microarray for simultaneous detection of seven swine viruses. J. Virol. Methods 2013, 191, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Lung, O.; Ohene-Adjei, S.; Buchanan, C.; Joseph, T.; King, R.; Erickson, A.; Detmer, S.; Ambagala, A. Multiplex PCR and Microarray for Detection of Swine Respiratory Pathogens. Transbound. Emerg. Dis. 2017, 64, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Nie, F.; Jiang, S.; Li, Y.; Wu, Y.; Yang, J.; Bao, Y.; Wang, Y.; Wang, G.; Li, X.; et al. Development of multiplex oligonucleotide microarray for simultaneous detection of six swine pathogens. J. Virol. Methods 2020, 285, 113921. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, T.L.; Kukielka, D.; Vincent, A.L.; Brockmeier, S.L.; Miller, L.C.; Faaberg, K.S. Utility of a Panviral Microarray for Detection of Swine Respiratory Viruses in Clinical Samples. J. Clin. Microbiol. 2011, 49, 1542–1548. [Google Scholar] [CrossRef] [PubMed]
- Jaing, C.J.; Thissen, J.B.; Gardner, S.N.; McLoughlin, K.S.; Hullinger, P.J.; Monday, N.A.; Niederwerder, M.C.; Rowland, R.R.R. Application of a pathogen microarray for the analysis of viruses and bacteria in clinical diagnostic samples from pigs. J. Vet. Diagn. Investig. 2015, 27, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.B.; Tang, Y.-W. Basic Concepts of Microarrays and Potential Applications in Clinical Microbiology. Clin. Microbiol. Rev. 2009, 22, 611–633. [Google Scholar] [CrossRef] [PubMed]
- Leng, Y.; Sun, K.; Chen, X.; Li, W. Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection. Chem. Soc. Rev. 2015, 44, 5552–5595. [Google Scholar] [CrossRef] [PubMed]
- Deregt, D.; Gilbert, S.A.; Dudas, S.; Pasick, J.; Baxi, S.; Burton, K.M.; Baxi, M.K. A multiplex DNA suspension microarray for simultaneous detection and differentiation of classical swine fever virus and other pestiviruses. J. Virol. Methods 2006, 136, 17–23. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, N.; Leijon, M.; Jobs, M.; Blomberg, J.; Belák, S. A novel combination of TaqMan RT-PCR and a suspension microarray assay for the detection and species identification of pestiviruses. Vet. Microbiol. 2010, 142, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Hindson, B.J.; Reid, S.M.; Baker, B.R.; Ebert, K.; Ferris, N.P.; Tammero, L.F.B.; Lenhoff, R.J.; Naraghi-Arani, P.; Vitalis, E.A.; Slezak, T.R.; et al. Diagnostic Evaluation of Multiplexed Reverse Transcription-PCR Microsphere Array Assay for Detection of Foot-and-Mouth and Look-Alike Disease Viruses. J. Clin. Microbiol. 2008, 46, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Lenhoff, R.J.; Naraghi-Arani, P.; Thissen, J.B.; Olivas, J.; Carillo, A.C.; Chinn, C.; Rasmussen, M.; Messenger, S.M.; Suer, L.D.; Smith, S.M.; et al. Multiplexed molecular assay for rapid exclusion of foot-and-mouth disease. J. Virol. Methods 2008, 153, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, M.; Lacouture, S.; Bonifait, L.; Roy, D.; Fittipaldi, N.; Grenier, D. Characterization of Streptococcus suis isolates recovered between 2008 and 2011 from diseased pigs in Québec, Canada. Vet. Microbiol. 2013, 162, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Liu, Z.; Ji, S.; Gottschalk, M.; Zheng, H.; Xu, J. Simultaneous detection of 33 Streptococcus suis serotypes using the luminex xTAG® assay™. J. Microbiol. Methods 2015, 117, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Bai, X.; Lan, R.; Zheng, H.; Xu, J.; Elliot, M.A. Novel Capsular Polysaccharide Loci and New Diagnostic Tools for High-Throughput Capsular Gene Typing in Streptococcus suis. Appl. Environ. Microbiol. 2016, 82, 7102–7112. [Google Scholar] [CrossRef] [PubMed]
- van der Wal, F.J.; Achterberg, R.P.; van Solt-Smits, C.; Bergervoet, J.H.W.; de Weerdt, M.; Wisselink, H.J. Exploring target-specific primer extension in combination with a bead-based suspension array for multiplexed detection and typing using Streptococcus suis as a model pathogen. J. Vet. Diagn. Investig. 2017, 30, 71–77. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, N.; Cortey, M.; Fernandez Pinero, J.; Gallardo, C.; Masembe, C.; Okurut, A.R.; Heath, L.; van Heerden, J.; Sánchez-Vizcaino, J.M.; Ståhl, K.; et al. Development of a Suspension Microarray for the Genotyping of African Swine Fever Virus Targeting the SNPs in the C-Terminal End of the p72 Gene Region of the Genome. Transbound. Emerg. Dis. 2013, 60, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yim-Im, W.; Porter, E.; Lu, N.; Anderson, J.; Noll, L.; Fang, Y.; Zhang, J.; Bai, J. Development of a bead-based assay for detection and differentiation of field strains and four vaccine strains of type 2 porcine reproductive and respiratory syndrome virus (PRRSV-2) in the USA. Transbound. Emerg. Dis. 2020, 68, 1414–1423. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Yu, X.-L.; Gao, X.-B.; Xue, C.-Y.; Song, C.-X.; Li, Y.; Cao, Y.-C. Bead-based suspension array for simultaneous differential detection of five major swine viruses. Appl. Microbiol. Biotechnol. 2015, 99, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Wang, Y.; Kang, R.; Wu, X.; Lin, H.; Ye, Y.; Yu, J.; Ye, J.; Xie, J.; Cao, Y.; et al. Development and application of a novel Bio–Plex suspension array system for high–throughput multiplexed nucleic acid detection of seven respiratory and reproductive pathogens in swine. J. Virol. Methods 2018, 261, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Li, B.; Tao, J.; Cheng, J.; Liu, H. The Complex Co-infections of Multiple Porcine Diarrhea Viruses in Local Area Based on the Luminex xTAG Multiplex Detection Method. Front. Vet. Sci. 2021, 8, 602866. [Google Scholar] [CrossRef] [PubMed]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Manz, A.; Graber, N.; Widmer, H.M. Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sens. Actuators B Chem. 1990, 1, 244–248. [Google Scholar] [CrossRef]
- Battat, S.; Weitz, D.A.; Whitesides, G.M. An outlook on microfluidics: The promise and the challenge. Lab A Chip 2022, 22, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Goecke, N.B.; Krog, J.S.; Hjulsager, C.K.; Skovgaard, K.; Harder, T.C.; Breum, S.Ø.; Larsen, L.E. Subtyping of Swine Influenza Viruses Using a High-Throughput Real-Time PCR Platform. Front. Cell. Infect. Microbiol. 2018, 8, 165. [Google Scholar] [CrossRef] [PubMed]
- Goecke, N.B.; Hjulsager, C.K.; Krog, J.S.; Skovgaard, K.; Larsen, L.E. Development of a high-throughput real-time PCR system for detection of enzootic pathogens in pigs. J. Vet. Diagn. Investig. 2019, 32, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Lv, J.; Lin, X.; Zhang, C.; Deng, J.; Wang, C.; Fan, X.; Wang, Y.; Xu, H.; Wu, S. Multiplex detection of six swine viruses on an integrated centrifugal disk using loop-mediated isothermal amplification. J. Vet. Diagn. Investig. 2019, 31, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Chen, Y.; Fang, X.; Liu, Y.; Du, M.; Lu, X.; Li, Q.; Sun, Y.; Ma, J.; Lan, T. Microfluidic-RT-LAMP chip for the point-of-care detection of emerging and re-emerging enteric coronaviruses in swine. Anal. Chim. Acta 2020, 1125, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Jiang, S.; Wu, Y.; Zhou, B.; Wang, K.; Jiang, L.; Long, Y.; Chen, G.; Zeng, D. Multiplex and on-site PCR detection of swine diseases based on the microfluidic chip system. BMC Vet. Res. 2021, 17, 117. [Google Scholar] [CrossRef] [PubMed]
- El-Tholoth, M.; Bai, H.; Mauk, M.G.; Saif, L.; Bau, H.H. A portable, 3D printed, microfluidic device for multiplexed, real time, molecular detection of the porcine epidemic diarrhea virus, transmissible gastroenteritis virus, and porcine deltacoronavirus at the point of need. Lab A Chip 2021, 21, 1118–1130. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Zhang, J.; Zhao, R.; Gao, J.; Wang, N.; Lu, T.; Xie, R.; Sun, X.; Xiao, B.; Duan, Z.; et al. Development of a Handheld Microfluidic Chip for On-Site Multiplex Detection of Four Porcine Diarrhea-Related Virus. ACS Agric. Sci. Technol. 2022, 2, 805–812. [Google Scholar] [CrossRef]
- Zhu, Y.S.; Shao, N.; Chen, J.W.; Qi, W.B.; Li, Y.; Liu, P.; Chen, Y.J.; Bian, S.Y.; Zhang, Y.; Tao, S.C. Multiplex and visual detection of African Swine Fever Virus (ASFV) based on Hive-Chip and direct loop-mediated isothermal amplification. Anal. Chim. Acta 2020, 1140, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Spiegelman, S.; Haruna, I.; Holland, I.B.; Beaudreau, G.; Mills, D. The synthesis of a self-propagating and infectious nucleic acid with a purified enzyme. Proc. Natl. Acad. Sci. USA 1965, 54, 919–927. [Google Scholar] [CrossRef] [PubMed]
- Glökler, J.; Lim, T.S.; Ida, J.; Frohme, M. Isothermal amplifications—A comprehensive review on current methods. Crit. Rev. Biochem. Mol. Biol. 2021, 56, 543–586. [Google Scholar] [CrossRef] [PubMed]
- Ngoc, L.T.N.; Lee, Y.C. Current Trends in RNA Virus Detection via Nucleic Acid Isothermal Amplification-Based Platforms. Biosensors 2024, 14, 97. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, L.; Wang, J.; Pang, X.; Yuan, W. Real-time RPA assay for rapid detection and differentiation of wild-type pseudorabies and gE-deleted vaccine viruses. Anal. Biochem. 2018, 543, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Song, R.; Liu, P.; Yang, Y.; Lee, H.S.; Chen, C.; Wu, X.; Li, X. Development of a Duplex Insulated Isothermal PCR Assay for Rapid On-Site Detection and Differentiation of Genotypes 1 and 2 of African Swine Fever Virus. Front. Cell. Infect. Microbiol. 2022, 12, 948771. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Liu, X.; Wang, J.; Xu, S.; Zeng, F.; Chen, L.; Zhang, G.; Wang, H. An isothermal nucleic acid amplification-based enzymatic recombinase amplification method for dual detection of porcine epidemic diarrhea virus and porcine rotavirus A. Virology 2024, 594, 110062. [Google Scholar] [CrossRef] [PubMed]
- Areekit, S.; Tangjitrungrot, P.; Khuchareontaworn, S.; Rattanathanawan, K.; Jaratsing, P.; Yasawong, M.; Chansiri, G.; Viseshakul, N.; Chansiri, K. Development of Duplex LAMP Technique for Detection of Porcine Epidemic Diarrhea Virus (PEDV) and Porcine Circovirus Type 2 (PCV 2). Curr. Issues Mol. Biol. 2022, 44, 5427–5439. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wu, M.; Li, J.; Cai, W.; Xie, Y.; Si, G.; Xiao, L.; Cong, F.; He, D. Rapid detection of porcine deltacoronavirus and porcine epidemic diarrhea virus using the duplex recombinase polymerase amplification method. J. Virol. Methods 2021, 292, 114096. [Google Scholar] [CrossRef] [PubMed]
- Pardee, K.; Green, A.A.; Takahashi, M.K.; Braff, D.; Lambert, G.; Lee, J.W.; Ferrante, T.; Ma, D.; Donghia, N.; Fan, M.; et al. Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell 2016, 165, 1255–1266. [Google Scholar] [CrossRef] [PubMed]
- Kostyusheva, A.; Brezgin, S.; Babin, Y.; Vasilyeva, I.; Glebe, D.; Kostyushev, D.; Chulanov, V. CRISPR-Cas systems for diagnosing infectious diseases. Methods 2022, 203, 431–446. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X. Development of CRISPR-Mediated Nucleic Acid Detection Technologies and Their Applications in the Livestock Industry. Genes 2022, 13, 2007. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tao, D.; Chen, X.; Shen, L.; Zhu, L.; Xu, B.; Liu, H.; Zhao, S.; Li, X.; Liu, X.; et al. Detection of Four Porcine Enteric Coronaviruses Using CRISPR-Cas12a Combined with Multiplex Reverse Transcriptase Loop-Mediated Isothermal Amplification Assay. Viruses 2022, 14, 833. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Y.; Zhang, Y.; Qin, G.; Sun, W.; Wang, A.; Wang, Y.; Zhang, G.; Zhao, J. On-site detection and differentiation of African swine fever virus variants using an orthogonal CRISPR-Cas12b/Cas13a-based assay. iScience 2024, 27, 109050. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Miller, S.; Chiu, C.Y. Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection. Annu. Rev. Pathol. Mech. Dis. 2019, 14, 319–338. [Google Scholar] [CrossRef] [PubMed]
- Rothberg, J.M.; Leamon, J.H. The development and impact of 454 sequencing. Nat. Biotechnol. 2008, 26, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- Mirza, M.; Goerke, L.; Anderson, A.; Wilsdon, T. Assessing the Cost-Effectiveness of Next-Generation Sequencing as a Biomarker Testing Approach in Oncology and Policy Implications: A Literature Review. Value Health 2024, 27, 1300–1309. [Google Scholar] [CrossRef] [PubMed]
- Kubacki, J.; Fraefel, C.; Bachofen, C. Implementation of next-generation sequencing for virus identification in veterinary diagnostic laboratories. J. Vet. Diagn. Investig. 2020, 33, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Blomström, A.-L.; Belák, S.; Fossum, C.; McKillen, J.; Allan, G.; Wallgren, P.; Berg, M. Detection of a novel porcine boca-like virus in the background of porcine circovirus type 2 induced postweaning multisystemic wasting syndrome. Virus Res. 2009, 146, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Kaderali, L.; Blomström, A.-L.; Fossum, C.; Wallgren, P.; Berg, M. Viral Metagenomic Analysis Displays the Co-Infection Situation in Healthy and PMWS Affected Pigs. PLoS ONE 2016, 11, e0166863. [Google Scholar] [CrossRef]
- Chen, X.; Guo, Q.; Li, Y.-Y.; Song, T.-Y.; Ge, J.-Q. Metagenomic analysis fecal microbiota of dysentery-like diarrhoea in a pig farm using next-generation sequencing. Front. Vet. Sci. 2023, 10, 1257573. [Google Scholar] [CrossRef] [PubMed]
- García-Hernández, M.-E.; Trujillo-Ortega, M.-E.; Alcaraz-Estrada, S.-L.; Lozano-Aguirre-Beltrán, L.; Sandoval-Jaime, C.; Taboada-Ramírez, B.I.; Sarmiento-Silva, R.-E. Molecular Detection and Characterization of Porcine Epidemic Diarrhea Virus and Porcine Aichivirus C Coinfection in México. Viruses 2021, 13, 738. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Zhuang, Z.; Lu, J.; Wang, H.; Wang, X.; Yang, S.; Ji, L.; Shen, Q.; Zhang, W.; Shan, T. Metagenomic survey of viral diversity obtained from feces of piglets with diarrhea. Heliyon 2024, 10, e25616. [Google Scholar] [CrossRef] [PubMed]
- Attoui, H.; Sachsenröder, J.; Twardziok, S.; Hammerl, J.A.; Janczyk, P.; Wrede, P.; Hertwig, S.; Johne, R. Simultaneous Identification of DNA and RNA Viruses Present in Pig Faeces Using Process-Controlled Deep Sequencing. PLoS ONE 2012, 7, e34631. [Google Scholar] [CrossRef]
- Shan, T.; Li, L.; Simmonds, P.; Wang, C.; Moeser, A.; Delwart, E. The Fecal Virome of Pigs on a High-Density Farm. J. Virol. 2011, 85, 11697–11708. [Google Scholar] [CrossRef] [PubMed]
- Theuns, S.; Vanmechelen, B.; Bernaert, Q.; Deboutte, W.; Vandenhole, M.; Beller, L.; Matthijnssens, J.; Maes, P.; Nauwynck, H.J. Nanopore sequencing as a revolutionary diagnostic tool for porcine viral enteric disease complexes identifies porcine kobuvirus as an important enteric virus. Sci. Rep. 2018, 8, 9830. [Google Scholar] [CrossRef] [PubMed]
- Quick, J.; Grubaugh, N.D.; Pullan, S.T.; Claro, I.M.; Smith, A.D.; Gangavarapu, K.; Oliveira, G.; Robles-Sikisaka, R.; Rogers, T.F.; Beutler, N.A.; et al. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat. Protoc. 2017, 12, 1261–1276. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Gao, X.; Xue, W.; Yuan, S.; Liu, M.; Sun, Z. Rapid metagenomic identification of two major swine pathogens with real-time nanopore sequencing. J. Virol. Methods 2022, 306, 114545. [Google Scholar] [CrossRef] [PubMed]
- Schuele, L.; Lizarazo-Forero, E.; Strutzberg-Minder, K.; Schütze, S.; Löbert, S.; Lambrecht, C.; Harlizius, J.; Friedrich, A.W.; Peter, S.; Rossen, J.W.A.; et al. Application of shotgun metagenomics sequencing and targeted sequence capture to detect circulating porcine viruses in the Dutch–German border region. Transbound. Emerg. Dis. 2021, 69, 2306–2319. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Xia, Z. Application of Host-Depleted Nanopore Metagenomic Sequencing in the Clinical Detection of Pathogens in Pigs and Cats. Animals 2023, 13, 3838. [Google Scholar] [CrossRef] [PubMed]
- Bold, D.; Souza-Neto, J.A.; Gombo-Ochir, D.; Gaudreault, N.N.; Meekins, D.A.; McDowell, C.D.; Zayat, B.; Richt, J.A. Rapid Identification of ASFV, CSFV and FMDV from Mongolian Outbreaks with MinION Short Amplicon Sequencing. Pathogen 2023, 12, 533. [Google Scholar] [CrossRef] [PubMed]
- Gardner, I.A.; Colling, A.; Caraguel, C.; Crowther, J.R.; Jones, G.; Firestone, S.M.; Heuer, C. Introduction—Validation of tests for OIE-listed diseases as fit-for-purpose in a world of evolving diagnostic technologies. Rev. Sci. Tech. 2021, 40, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Flores-Contreras, E.A.; Carrasco-González, J.A.; Linhares, D.C.L.; Corzo, C.A.; Campos-Villalobos, J.I.; Henao-Díaz, A.; Melchor-Martínez, E.M.; Iqbal, H.M.N.; González-González, R.B.; Parra-Saldívar, R.; et al. Emergent Molecular Techniques Applied to the Detection of Porcine Viruses. Vet. Sci. 2023, 10, 609. [Google Scholar] [CrossRef] [PubMed]
- Gaňová, M.; Zhang, H.; Zhu, H.; Korabečná, M.; Neužil, P. Multiplexed digital polymerase chain reaction as a powerful diagnostic tool. Biosens. Bioelectron. 2021, 181, 113155. [Google Scholar] [CrossRef] [PubMed]
- Busin, V.; Wells, B.; Kersaudy-Kerhoas, M.; Shu, W.; Burgess, S.T. Opportunities and challenges for the application of microfluidic technologies in point-of-care veterinary diagnostics. Mol. Cell. Probes 2016, 30, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Edwards, M.C.; Gibbs, R.A. Multiplex PCR: Advantages, development, and applications. PCR Methods Appl. 1994, 3, S65–S75. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Jin, X.; Wu, B.; Zhu, B. Development and Performance Evaluation of a Novel Ancestry Informative DIP Panel for Continental Origin Inference. Front. Genet. 2021, 12, 801275. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.S.; Tsai, C.L.; Chang, J.; Hsu, T.C.; Lin, S.; Lee, C.C. Multiplex PCR system for the rapid diagnosis of respiratory virus infection: Systematic review and meta-analysis. Clin. Microbiol. Infect. 2018, 24, 1055–1063. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, E.C.; Colling, A.; Gurung, R.B.; Allen, J. The potential of diagnostic point-of-care tests (POCTs) for infectious and zoonotic animal diseases in developing countries: Technical, regulatory and sociocultural considerations. Transbound. Emerg. Dis. 2021, 68, 1835–1849. [Google Scholar] [CrossRef] [PubMed]
- Roppa, L.; Duarte, M.E.; Kim, S.W. Invited Review—Pig production in Latin America. Anim. Biosci. 2024, 37, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Garcia, K.; Weakley, M.; Do, T.; Mir, S. Current and Future Molecular Diagnostics of Tick-Borne Diseases in Cattle. Vet. Sci. 2022, 9, 241. [Google Scholar] [CrossRef] [PubMed]
- Appleby, R.B.; Basran, P.S. Artificial intelligence in veterinary medicine. J. Am. Vet. Med. Assoc. 2022, 260, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Basran, P.S.; Appleby, R.B. The unmet potential of artificial intelligence in veterinary medicine. Am. J. Vet. Res. 2022, 83, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Lagua, E.B.; Mun, H.S.; Ampode, K.M.B.; Chem, V.; Kim, Y.H.; Yang, C.J. Artificial Intelligence for Automatic Monitoring of Respiratory Health Conditions in Smart Swine Farming. Animals 2023, 13, 1860. [Google Scholar] [CrossRef] [PubMed]
- Al Meslamani, A.Z.; Sobrino, I.; de la Fuente, J. Machine learning in infectious diseases: Potential applications and limitations. Ann. Med. 2024, 56, 2362869. [Google Scholar] [CrossRef] [PubMed]
- Griffith, B.P.; Goerlich, C.E.; Singh, A.K.; Rothblatt, M.; Lau, C.L.; Shah, A.; Lorber, M.; Grazioli, A.; Saharia, K.K.; Hong, S.N.; et al. Genetically Modified Porcine-to-Human Cardiac Xenotransplantation. N. Engl. J. Med. 2022, 387, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Tector, A.J.; Adams, A.B.; Tector, M. Current Status of Renal Xenotransplantation and Next Steps. Kidney360 2023, 4, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Kuscu, C.; Kuscu, C.; Bajwa, A.; Eason, J.D.; Maluf, D.; Mas, V.R. Applications of CRISPR technologies in transplantation. Am. J. Transplant. 2020, 20, 3285–3293. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhou, L.; Yang, H. Advancements in Modern Nucleic Acid-Based Multiplex Testing Methodologies for the Diagnosis of Swine Infectious Diseases. Vet. Sci. 2025, 12, 693. https://doi.org/10.3390/vetsci12080693
Wang J, Zhou L, Yang H. Advancements in Modern Nucleic Acid-Based Multiplex Testing Methodologies for the Diagnosis of Swine Infectious Diseases. Veterinary Sciences. 2025; 12(8):693. https://doi.org/10.3390/vetsci12080693
Chicago/Turabian StyleWang, Jingneng, Lei Zhou, and Hanchun Yang. 2025. "Advancements in Modern Nucleic Acid-Based Multiplex Testing Methodologies for the Diagnosis of Swine Infectious Diseases" Veterinary Sciences 12, no. 8: 693. https://doi.org/10.3390/vetsci12080693
APA StyleWang, J., Zhou, L., & Yang, H. (2025). Advancements in Modern Nucleic Acid-Based Multiplex Testing Methodologies for the Diagnosis of Swine Infectious Diseases. Veterinary Sciences, 12(8), 693. https://doi.org/10.3390/vetsci12080693