Honeybee Sentience: Scientific Evidence and Implications for EU Animal Welfare Policy
Simple Summary
Abstract
1. Introduction
2. Reframing Sentience: Animal Welfare and the Regulatory Oversight of Invertebrates in the EU
3. Reevaluation of Invertebrate Sentience: Neurobiological Evidence and Ethical Implications
4. Consolidated Neural Evidence and Global Workspace Theory
5. Cognition, Communication, and Emotional States in Honeybees (Apis mellifera): Insights into Invertebrate Intelligence
6. Pain Perception in Bees: Anatomical and Behavioral Evidence
7. Objections to Honey Bee Consciousness: A Comprehensive Critical Analysis
8. Limitations and Future Research Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Broom, D.M. Animal Welfare: Concepts and Measurement. J. Anim. Sci. 1991, 69, 4167–4175. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Animal Health and Welfare (AHAW). Guidance on Risk Assessment for Animal Welfare. EFSA J. 2012, 10, 2513. [Google Scholar] [CrossRef]
- Kudryashova, O.A.; Kudryashov, L.S. Influence of Preslaughter Stress on Poultry Meat. Теoрия И Практика Перерабoтки Мяса 2022, 7, 30–34. [Google Scholar] [CrossRef]
- Harper, G.; Henson, S. Consumer Concerns about Animal Welfare and the Impact on Food Choice. EU Fair CT98-3678 Final Rep. 2001, 38. [Google Scholar]
- Schmidt, H. Regulation (EU) 2018/848: The New EU Organic Food Law: War in the Villages or a New Kind of Coexistence. Eur. Food Feed Rev. 2019, 14, 15. [Google Scholar]
- Elwood, R.W. Pros and Cons of a Framework for Evaluating Potential Pain in Decapods. Anim. Sentience 2022, 7, 451. [Google Scholar] [CrossRef]
- Chittka, L.; Rossi, N. Social Cognition in Insects. Trends Cogn. Sci. 2022, 26, 578–592. [Google Scholar] [CrossRef]
- Andrews, K.; Birch, J.; Sebo, J.; Sims, T. “Background to the New York Declaration on Animal Con-Sciousness,” in New York Declaration of Animal Consciousness. 2024. Available online: https://sites.google.com/nyu.edu/nydeclaration/background?authuser=0 (accessed on 25 April 2025).
- Perry, C.J.; Baciadonna, L. Studying Emotion in Invertebrates: What Has Been Done, What Can Be Measured and What They Can Provide. J. Exp. Biol. 2017, 220, 3856–3868. [Google Scholar] [CrossRef]
- Barron, A.B.; Klein, C. What Insects Can Tell Us about the Origins of Consciousness. Proc. Natl. Acad. Sci. USA 2016, 113, 4900–4908. [Google Scholar] [CrossRef]
- Birch, J.; Burn, C.; Schnell, A.; Browning, H.; Crump, A. Review of the Evidence of Sentience in Cephalopod Molluscs and Decapod Crustaceans. 2021. LSE Consulting. LSE Enterprise Ltd. The London School of Economics and Political Science. Available online: https://www.lse.ac.uk/News/News-Assets/PDFs/2021/Sentience-in-Cephalopod-Molluscs-and-Decapod-Crustaceans-Final-Report-November-2021.pdf (accessed on 25 April 2025).
- Crook, R.J.; Walters, E.T. Nociceptive Behavior and Physiology of Molluscs: Animal Welfare Implications. ILAR J. 2011, 52, 185–195. [Google Scholar] [CrossRef]
- Sneddon, L.U. Evolution of Nociception and Pain: Evidence from Fish Models. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20190290. [Google Scholar] [CrossRef]
- Fraser, D. Understanding Animal Welfare: The Science in Its Cultural Context; John Wiley & Sons: Hoboken, NJ, USA, 2023. [Google Scholar]
- Harrison, R. Animal Machines; Cabi: Wallingford, UK, 2013. [Google Scholar]
- Brambell, F.W.R. Report of the Technical Committee to Enquire into the Welfare of Animals Kept under Intensive Livestock Husbandry Systems; (Cmnd. 2836); Her Majesty’s Stationery Office (HMSO): Surrey, UK, 1965. [Google Scholar]
- Dawkins, M.S. Behavioural Deprivation: A Central Problem in Animal Welfare. Appl. Anim. Behav. Sci. 1988, 20, 209–225. [Google Scholar] [CrossRef]
- Tannenbaum, J. Ethics and Animal Welfare: The Inextricable Connection. J. Am. Vet. Med. Assoc. 1991, 198, 1360–1376. [Google Scholar] [CrossRef]
- Shaw, J. The Treaty of Amsterdam: Challenges of Flexibility and Legitimacy. Eur. Law J. 1998, 4, 63–86. [Google Scholar] [CrossRef]
- Blanke, H.-J.; Mangiameli, S. (Eds.) Treaty on the Functioning of the European Union—A Commentary: Volume I: Preamble, Articles 1–89; Springer Commentaries on International and European Law; Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-43509-7. [Google Scholar]
- Di Cristina, G.; Andrews, P.; Ponte, G.; Galligioni, V.; Fiorito, G. The Impact of Directive 2010/63/EU on Cephalopod Research; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Formato, G.; Giannottu, E.; Roncoroni, C.; Lorenzi, V.; Brajon, G. Apis Mellifera Welfare: Definition and Future Directions. Front. Anim. Sci. 2024, 5, 1486587. [Google Scholar] [CrossRef]
- Menzel, R. The Honeybee as a Model for Understanding the Basis of Cognition. Nat. Rev. Neurosci. 2012, 13, 758–768. [Google Scholar] [CrossRef] [PubMed]
- Menzel, R.; Giurfa, M. Cognitive Architecture of a Mini-Brain: The Honeybee. Trends Cogn. Sci. 2001, 5, 62–71. [Google Scholar] [CrossRef]
- Zayed, A.; Robinson, G.E. Understanding the Relationship Between Brain Gene Expression and Social Behavior: Lessons from the Honey Bee. Annu. Rev. Genet. 2012, 46, 591–615. [Google Scholar] [CrossRef]
- Meinertzhagen, I.A. The Organisation of Invertebrate Brains: Cells, Synapses and Circuits. Acta Zool. 2010, 91, 64–71. [Google Scholar] [CrossRef]
- Strausfeld, N.J. Arthropod Brains: Evolution, Functional Elegance, and Historical Significance; Belknap Press: Totnes Devon, UK, 2012. [Google Scholar]
- Hochner, B.; Shomrat, T.; Fiorito, G. The Octopus: A Model for a Comparative Analysis of the Evolution of Learning and Memory Mechanisms. Biol. Bull. 2006, 210, 308–317. [Google Scholar] [CrossRef]
- Shigeno, S.; Andrews, P.L.; Ponte, G.; Fiorito, G. Cephalopod Brains: An Overview of Current Knowledge to Facilitate Comparison with Vertebrates. Front. Physiol. 2018, 9, 952. [Google Scholar] [CrossRef] [PubMed]
- Prosser, C.L. The physiology of nervous systems of invertebrate animals. Physiol. Rev. 1946, 26, 337–382. [Google Scholar] [CrossRef] [PubMed]
- Kenyon, F.C. The Brain of the Bee. J. Comp. Neurol. 1896, 6, 133–210. [Google Scholar] [CrossRef]
- Evolves, S. The Spirit of the Hive and How a Superorganism Evolves Robert E. Page, Jr. In Honeybee Neurobiology and Behavior: A Tribute to Randolf Menzel; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Popov, T.; Szyszka, P. Alpha Oscillations Govern Interhemispheric Spike Timing Coordination in the Honey Bee Brain. Proc. R. Soc. B Biol. Sci. 2020, 287, 20200115. [Google Scholar] [CrossRef]
- Hochner, B.; Shomrat, T. The Neurophysiological Basis of Learning and Memory in an Advanced Invertebrate: The Octopus. In Cephalopod Cognition; Cambridge University Press: Cambridge, UK, 2014; pp. 72–93. [Google Scholar]
- Hochner, B. How Nervous Systems Evolve in Relation to Their Embodiment: What We Can Learn from Octopuses and Other Molluscs. Brain. Behav. Evol. 2013, 82, 19–30. [Google Scholar] [CrossRef]
- VanRullen, R.; Kanai, R. Deep Learning and the Global Workspace Theory. Trends Neurosci. 2021, 44, 692–704. [Google Scholar] [CrossRef]
- Baars, B.J. Global Workspace Theory of Consciousness: Toward a Cognitive Neuroscience of Human Experience. Prog. Brain Res. 2005, 150, 45–53. [Google Scholar]
- Zullo, L.; Hochner, B. A New Perspective on the Organization of an Invertebrate Brain. Commun. Integr. Biol. 2011, 4, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Mather, J.A.; Kuba, M.J. The Cephalopod Specialties: Complex Nervous System, Learning, and Cognition. Can. J. Zool. 2013, 91, 431–449. [Google Scholar] [CrossRef]
- Peng, F.; Chittka, L. A Simple Computational Model of the Bee Mushroom Body Can Explain Seemingly Complex Forms of Olfactory Learning and Memory. Curr. Biol. 2017, 27, 224–230. [Google Scholar] [CrossRef]
- Klein, C.; Barron, A.B. Insects Have the Capacity for Subjective Experience. Anim. Sentience 2016, 1, 1. [Google Scholar] [CrossRef]
- Solvi, C.; Baciadonna, L.; Chittka, L. Unexpected Rewards Induce Dopamine-Dependent Positive Emotion–like State Changes in Bumblebees. Science 2016, 353, 1529–1531. [Google Scholar] [CrossRef]
- Menzel, R.; Greggers, U.; Smith, A.; Berger, S.; Brandt, R.; Brunke, S.; Bundrock, G.; Hülse, S.; Plümpe, T.; Schaupp, F.; et al. Honey Bees Navigate According to a Map-like Spatial Memory. Proc. Natl. Acad. Sci. USA 2005, 102, 3040–3045. [Google Scholar] [CrossRef] [PubMed]
- Groh, C.; Rössler, W. Comparison of Microglomerular Structures in the Mushroom Body Calyx of Neopteran Insects. Arthropod Struct. Dev. 2011, 40, 358–367. [Google Scholar] [CrossRef]
- Huber, F. Nouvelles Observations Sur Les Abeilles, Adressées à M. Charles Bonnet; Chez Barde, Manget & Compagnie, Imprimeurs-Libraires: Genève, Switzerland, 1792. [Google Scholar]
- Frisch, K.V.; Seeley, T.D.; Chadwick, L.E. The Dance Language and Orientation of Bees; Harvard University Press: Cambridge, MA, USA, 2013; ISBN 978-0-674-41877-6. [Google Scholar]
- Esch, H.E.; Zhang, S.; Srinivasan, M.V.; Tautz, J. Honeybee Dances Communicate Distances Measured by Optic Flow. Nature 2001, 411, 581–583. [Google Scholar] [CrossRef]
- Avarguès-Weber, A.; Deisig, N.; Giurfa, M. Visual Cognition in Social Insects. Annu. Rev. Entomol. 2011, 56, 423–443. [Google Scholar] [CrossRef] [PubMed]
- Riley, J.R.; Smith, A.D.; Reynolds, D.R.; Edwards, A.S.; Osborne, J.L.; Williams, I.H.; Carreck, N.L.; Poppy, G.M. Tracking Bees with Harmonic Radar. Nature 1996, 379, 29–30. [Google Scholar] [CrossRef]
- Lindauer, M. Communication in Swarm-Bees Searching for a New Home. Nature 1957, 179, 63–66. [Google Scholar] [CrossRef]
- Loukola, O.J.; Solvi, C.; Coscos, L.; Chittka, L. Bumblebees Show Cognitive Flexibility by Improving on an Observed Complex Behavior. Science 2017, 355, 833–836. [Google Scholar] [CrossRef]
- Avarguès-Weber, A.; Giurfa, M. Conceptual Learning by Miniature Brains. Proc. R. Soc. B Biol. Sci. 2013, 280, 20131907. [Google Scholar] [CrossRef]
- Hussaini, S.A.; Bogusch, L.; Landgraf, T.; Menzel, R. Sleep Deprivation Affects Extinction but Not Acquisition Memory in Honeybees. Learn. Mem. 2009, 16, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Eban-Rothschild, A.D.; Bloch, G. Differences in the Sleep Architecture of Forager and Young Honeybees (Apis Mellifera). J. Exp. Biol. 2008, 211, 2408–2416. [Google Scholar] [CrossRef] [PubMed]
- Sauer, S.; Kinkelin, M.; Herrmann, E.; Kaiser, W. The Dynamics of Sleep-like Behaviour in Honey Bees. J. Comp. Physiol. A 2003, 189, 599–607. [Google Scholar] [CrossRef]
- Bateson, M.; Desire, S.; Gartside, S.E.; Wright, G.A. Agitated Honeybees Exhibit Pessimistic Cognitive Biases. Curr. Biol. 2011, 21, 1070–1073. [Google Scholar] [CrossRef]
- Farooqui, T. Octopamine-Mediated Neuromodulation of Insect Senses. Neurochem. Res. 2007, 32, 1511–1529. [Google Scholar] [CrossRef]
- Vleugels, R.; Verlinden, H.; Vanden Broeck, J. Serotonin, Serotonin Receptors and Their Actions in Insects. Neurotransmitter 2015, 2, e314. [Google Scholar]
- Perry, C.J.; Barron, A.B. Neural Mechanisms of Reward in Insects. Annu. Rev. Entomol. 2013, 58, 543–562. [Google Scholar] [CrossRef]
- Wright, G.A.; Baker, D.D.; Palmer, M.J.; Stabler, D.; Mustard, J.A.; Power, E.F.; Borland, A.M.; Stevenson, P.C. Caffeine in Floral Nectar Enhances a Pollinator’s Memory of Reward. Science 2013, 339, 1202–1204. [Google Scholar] [CrossRef] [PubMed]
- Adamo, S.A.; Baker, J.L. Conserved Features of Chronic Stress across Phyla: The Effects of Long-Term Stress on Behavior and the Concentration of the Neurohormone Octopamine in the Cricket, Gryllus Texensis. Horm. Behav. 2011, 60, 478–483. [Google Scholar] [CrossRef]
- Soreq, H.; Friedman, A.; Kaufer, D. (Eds.) Stress—From Molecules to Behavior: A Comprehensive Analysis of the Neurobiology of Stress Responses, 1st ed.; Wiley: Hoboken, NJ, USA, 2009; ISBN 978-3-527-32374-6. [Google Scholar]
- Adamo, S.A. Stress Responses Sculpt the Insect Immune System, Optimizing Defense in an Ever-Changing World. Dev. Comp. Immunol. 2017, 66, 24–32. [Google Scholar] [CrossRef]
- Liang, Z.S.; Nguyen, T.; Mattila, H.R.; Rodriguez-Zas, S.L.; Seeley, T.D.; Robinson, G.E. Molecular Determinants of Scouting Behavior in Honey Bees. Science 2012, 335, 1225–1228. [Google Scholar] [CrossRef]
- Seeley, T.D. The Five Habits of Highly Effective Honeybees (and What We Can Learn from Them): From Honeybee Democracy; Princeton University Press: Princeton, NJ, USA, 2010; Volume 5. [Google Scholar]
- Kocher, S.D.; Mallarino, R.; Rubin, B.E.; Yu, D.W.; Hoekstra, H.E.; Pierce, N.E. The Genetic Basis of a Social Polymorphism in Halictid Bees. Nat. Commun. 2018, 9, 4338. [Google Scholar] [CrossRef] [PubMed]
- Dyer, A.G.; Neumeyer, C.; Chittka, L. Honeybee (Apis Mellifera) Vision Can Discriminate between and Recognise Images of Human Faces. J. Exp. Biol. 2005, 208, 4709–4714. [Google Scholar] [CrossRef]
- Howard, S.R.; Avarguès-Weber, A.; Garcia, J.E.; Greentree, A.D.; Dyer, A.G. Numerical Cognition in Honeybees Enables Addition and Subtraction. Sci. Adv. 2019, 5, eaav0961. [Google Scholar] [CrossRef]
- Agarwal, M.; Giannoni Guzmán, M.; Morales-Matos, C.; Del Valle Díaz, R.A.; Abramson, C.I.; Giray, T. Dopamine and Octopamine Influence Avoidance Learning of Honey Bees in a Place Preference Assay. PLoS ONE 2011, 6, e25371. [Google Scholar] [CrossRef] [PubMed]
- Groening, J.; Venini, D.; Srinivasan, M.V. In Search of Evidence for the Experience of Pain in Honeybees: A Self-Administration Study. Sci. Rep. 2017, 7, 45825. [Google Scholar] [CrossRef]
- Núñez, J.; Maldonado, H.; Miralto, A.; Balderrama, N. The Stinging Response of the Honeybee: Effects of Morphine, Naloxone and Some Opioid Peptides. Pharmacol. Biochem. Behav. 1983, 19, 921–924. [Google Scholar] [CrossRef] [PubMed]
- Galizia, C.G.; Kreissl, S. Neuropeptides in Honey Bees. In Honeybee Neurobiology and Behavior; Galizia, C.G., Eisenhardt, D., Giurfa, M., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 211–226. ISBN 978-94-007-2098-5. [Google Scholar]
- Junca, P.; Sandoz, J.-C. Heat Perception and Aversive Learning in Honey Bees: Putative Involvement of the Thermal/Chemical Sensor AmHsTRPA. Front. Physiol. 2015, 6, 316. [Google Scholar] [CrossRef]
- Fiorito, G.; Affuso, A.; Anderson, D.B.; Basil, J.; Bonnaud, L.; Botta, G.; Cole, A.; D’Angelo, L.; De Girolamo, P.; Dennison, N.; et al. Cephalopods in Neuroscience: Regulations, Research and the 3Rs. Invert. Neurosci. 2014, 14, 13–36. [Google Scholar] [CrossRef]
- DeGrazia, D. Sentience and Consciousness as Bases for Attributing Interests and Moral Status: Considering the Evidence and Speculating Slightly Beyond. In Neuroethics and Nonhuman Animals; Johnson, L.S.M., Fenton, A., Shriver, A., Eds.; Advances in Neuroethics; Springer International Publishing: Cham, Switzerland, 2020; pp. 17–31. ISBN 978-3-030-31010-3. [Google Scholar]
- Key, B. Why Fish Do Not Feel Pain. Anim. Sentience 2016, 1, 1. [Google Scholar] [CrossRef]
- Feinberg, T.E.; Mallatt, J.M. The Ancient Origins of Consciousness: How the Brain Created Experience; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Adamo, S. Subjective Experience in Insects: Definitions and Other Difficulties. Anim. Sentience 2016, 1, 15. [Google Scholar] [CrossRef]
- Cruse, H.; Schilling, M. No Proof for Subjective Experience in Insects. Anim. Sentience 2016, 1, 13. [Google Scholar] [CrossRef]
- Abbate, C.E. What It’s like, or Not like, to Bee. Species 2022, 26, 1. [Google Scholar]
- Elwood, R.W. Might Insects Experience Pain? Anim. Sentience 2016, 1, 18. [Google Scholar] [CrossRef]
- Adamo, S.A. Is It Pain If It Does Not Hurt? On the Unlikelihood of Insect Pain. Can. Entomol. 2019, 151, 685–695. [Google Scholar] [CrossRef]
- Perry, C.J.; Barron, A.B. Honey Bees Selectively Avoid Difficult Choices. Proc. Natl. Acad. Sci. USA 2013, 110, 19155–19159. [Google Scholar] [CrossRef]
- Dona, H.S.G.; Solvi, C.; Kowalewska, A.; Mäkelä, K.; MaBouDi, H.; Chittka, L. Do Bumble Bees Play? Anim. Behav. 2022, 194, 239–251. [Google Scholar] [CrossRef]
- Morgan, C.L. An Introduction to Comparative Psychology; Walter Scott: London, UK, 1903; Volume 27. [Google Scholar]
- Key, B. Burden of Proof Lies with Proposer of Celestial Teapot Hypothesis. Anim. Sentience 2016, 1, 44. [Google Scholar] [CrossRef]
- Nagel, T. The Philosophical Review. Philos. Rev. 1974, 83, 435–450. [Google Scholar] [CrossRef]
- Allen-Hermanson, S. Insects and the Problem of Simple Minds: Are Bees Natural Zombies? J. Philos. 2008, 105, 389–415. [Google Scholar] [CrossRef]
Term | Operational Definition |
---|---|
Sentience | Capacity to experience subjectively valenced states (e.g., pain, pleasure), distinct from nociception (unconscious physiological response). |
Emotion | Neurophysiological response to salient stimuli, measurable through behavioral shifts (e.g., cognitive biases). Not equivalent to complex human emotions. |
Consciousness | Here restricted to “access consciousness”: information integration for flexible decision-making (e.g., spatial navigation). |
Nociception and behavioral responses | Aversive response to harmful stimuli, with potential affective components (e.g., prolonged wound-grooming). Not identical to vertebrate pain. |
Intelligence | Complex behavioral adaptation (e.g., associative learning, symbolic communication). Does not imply human-like planning or abstraction. |
Sentience Markers | Honeybees (Apis mellifera) | Cephalopods (e.g., Octopus vulgaris) | Legal Status in EU Legislation |
---|---|---|---|
Neural Architecture | 1 million neurons with high synaptic density; mushroom bodies for multisensory integration | Distributed nervous system (60% neurons in arms); vertical, superior, and optic lobes | Cephalopods protected under Directive 2010/63/EU; honeybees excluded |
Neural Synchronization | Alpha oscillations similar to those in vertebrates | “Low amplitude fast” neural activity functionally equivalent to mammalian thalamocortical complex | Inconsistent recognition despite similar functional properties |
Associative Learning | Complex associative learning and rule-based flexibility | Tool use and problem-solving abilities | Both demonstrate advanced learning beyond simple stimulus-response |
Memory Functions | Long-term memory; memory consolidation during sleep | Episodic-like memory systems | Both exhibit memory systems supporting complex behaviors |
Emotional-like States | Stress-induced pessimistic bias; dopamine-mediated positive states | Stress responses and preference behaviors | Both show evidence of affective states beyond mere reactivity |
Communication | Waggle dance with symbolic coding of distance and direction | Complex signaling systems including body postures and color changes | Both utilize sophisticated communication systems |
Spatial Cognition | Cognitive map-like representations; novel shortcut capabilities | Navigation using landmarks and memory | Both employ advanced spatial representation systems |
Abstraction | Concept formation (“same” vs. “different”) | Abstract problem solving | Both capable of abstraction beyond immediate stimuli |
Individual Differences | Scout bees showing consistent risk-taking behaviors; genetic basis for personality traits | Individual behavioral differences documented | Both exhibit individual variations in behavioral traits |
Pain Perception | Mechanosensory and chemosensory structures; opioid-like system; behavioral responses to injury | Nociceptive systems with behavioral indicators of pain | Inconsistent regulatory recognition despite similar evidence |
Sleep Patterns | Three distinct sleep stages with rebound effects after deprivation | Rest states with homeostatic regulation | Both demonstrate complex rest behaviors beyond simple inactivity |
Aspect | Current Status | Scientific Evidence | Recommended Policy Changes | Implementation Challenges | Expected Benefits |
---|---|---|---|---|---|
Legal Recognition | Excluded from EU Directive 2010/63/EU | Substantial evidence of sentience markers comparable to those of protected species | Formal inclusion of Apis mellifera in Annex I of Directive 2010/63/EU | Defining appropriate welfare criteria for superorganisms | Ethical consistency in EU animal welfare legislation |
Precautionary Principle | Not applied to honeybees despite Article 191 TFEU | Growing scientific consensus on bee cognition and emotion | Apply precautionary principle in the same way as previously to cephalopods | Balancing precaution with practical apiculture needs | Protection during scientific uncertainty |
Anesthetic Protocols | No standardized requirements | Evidence of pain perception and stress responses | Introduce appropriate anesthesia for invasive procedures | Developing bee- specific anesthetic methods | Reduced suffering during experimentation |
Transport Standards | Limited regulation | Stress from transport impairs spatial memory and cognitive function | Develop specific transport protocols minimizing stress | Implementation costs for small-scale beekeepers | Improved colony health and reduced mortality |
Handling Practices | Minimal guidelines | Chronic stress affects immune function and survival | Establish handling standards based on behavioral indicators | Training requirements for bee- keepers | Enhanced productivity and sustainability |
Regulatory Oversight | Fragmented monitoring | Multiple neurobiological and behavioral markers available | Establish permanent scientific observatory for continuous updates | Coordination between research and regulatory bodies | Evidence-based policy evolution |
One Health Framework | Limited integration | Links between bee welfare, ecosystem health, and food safety | Incorporate bee welfare into broader One Health policies | Cross-disciplinary coordination | Improved public health and ecosystem resilience |
Economic Impact | Cost-based approach | Growing market for welfare-certified products | Phased implementation with support mechanisms | Initial adaptation costs | Access to high-value markets and consumer trust |
Research Ethics | Variable standards | Comparable cognitive complexity to protected species | Standardized ethical review for bee research | Methodological adaptations in research | Increased reliability and reproducibility of research |
Colony Assessment | Limited systematic monitoring | Behavioral indicators of colony well-being | Develop standardized welfare assessment tools | Practical implementation in field conditions | Early detection of welfare issues |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bava, R.; Formato, G.; Liguori, G.; Castagna, F. Honeybee Sentience: Scientific Evidence and Implications for EU Animal Welfare Policy. Vet. Sci. 2025, 12, 661. https://doi.org/10.3390/vetsci12070661
Bava R, Formato G, Liguori G, Castagna F. Honeybee Sentience: Scientific Evidence and Implications for EU Animal Welfare Policy. Veterinary Sciences. 2025; 12(7):661. https://doi.org/10.3390/vetsci12070661
Chicago/Turabian StyleBava, Roberto, Giovanni Formato, Giovanna Liguori, and Fabio Castagna. 2025. "Honeybee Sentience: Scientific Evidence and Implications for EU Animal Welfare Policy" Veterinary Sciences 12, no. 7: 661. https://doi.org/10.3390/vetsci12070661
APA StyleBava, R., Formato, G., Liguori, G., & Castagna, F. (2025). Honeybee Sentience: Scientific Evidence and Implications for EU Animal Welfare Policy. Veterinary Sciences, 12(7), 661. https://doi.org/10.3390/vetsci12070661