A Pilot Study on Blood Concentration of β-Amyloid (40 and 42) and Phospho-Tau 181 in Horses
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Guo, T.; Zhang, Y.; Jiao, M.; Ji, L.; Dong, Z.; Li, H.; Chen, S.; Zheng, W.; Jing, Q. Global Burden of Alzheimer’s Disease and Other Dementias Attributed to Metabolic Risks from 1990 to 2021: Results from the Global Burden of Disease Study 2021. BMC Psychiatry 2024, 24, 910. [Google Scholar] [CrossRef]
- Mohamed, S.; Rosenheck, R.; Lyketsos, C.G.; Schneider, L.S. Caregiver Burden in Alzheimer Disease: Cross-Sectional and Longitudinal Patient Correlates. Am. J. Geriatr. Psychiatry 2010, 18, 917–927. [Google Scholar] [CrossRef]
- Ciurli, L.; Casini, L.; Cecchi, F.; Baragli, P.; Macchioni, F.; Curadi, C.; Gazzano, V.; Capsoni, S.; Gazzano, A. The Canine Cognitive Dysfunction Syndrome: Epidemiology, Pathophysiology and Diagnosis. Dog Behav. 2023, 9, 1–8. [Google Scholar] [CrossRef]
- Bosch, M.N.; Pugliese, M.; Gimeno-Bayón, J.; Rodríguez, M.J.; Mahy, N. Dogs with Cognitive Dysfunction Syndrome: A Natural Model of Alzheimer’s Disease. Curr. Alzheimer Res. 2012, 9, 298–314. [Google Scholar] [CrossRef] [PubMed]
- Osella, M.C.; Re, G.; Odore, R.; Girardi, C.; Badino, P.; Barbero, R.; Bergamasco, L. Canine Cognitive Dysfunction Syndrome: Prevalence, Clinical Signs and Treatment with a Neuroprotective Nutraceutical. Appl. Anim. Behav. Sci. 2007, 105, 297–310. [Google Scholar] [CrossRef]
- Seisdedos Benzal, A.; Galán Rodríguez, A. Recent Developments in Canine Cognitive Dysfunction Syndrome. Pet. Behav. Sci. 2016, 1, 47–56. [Google Scholar] [CrossRef]
- American Veterinary Medical Association. Pet Ownership & Demographics Sourcebook; American Veterinary Medical Association: Schaumburg, IL, USA, 2007. [Google Scholar]
- Cellai, S.; Gazzano, A.; Casini, L.; Gazzano, V.; Cecchi, F.; Macchioni, F.; Cozzi, A.; Pageat, L.; Arroub, S.; Fratini, S.; et al. The Memory Abilities of the Elderly Horse. Animals 2024, 14, 3073. [Google Scholar] [CrossRef]
- Roda, A.; Serra-Mir, G.; Montoliu-Gaya, L.; Tiessler, L.; Villegas, S. Amyloid-Beta Peptide and Tau Protein Crosstalk in Alzheimer’s Disease. Neural Regen. Res. 2022, 17, 1666–1674. [Google Scholar] [CrossRef] [PubMed]
- Karran, E.; De Strooper, B. The Amyloid Cascade Hypothesis: Are We Poised for Success or Failure? J. Neurochem. 2016, 139, 237–252. [Google Scholar] [CrossRef]
- Selkoe, D.J.; Hardy, J. The Amyloid Hypothesis of Alzheimer’s Disease at 25 Years. EMBO Mol. Med. 2016, 8, 595–608. [Google Scholar] [CrossRef]
- Small, S.A.; Duff, K. Linking Aβ and Tau in Late-Onset Alzheimer’s Disease: A Dual Pathway Hypothesis. Neuron 2008, 60, 534–542. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Guo, J.L.; McBride, J.D.; Narasimhan, S.; Kim, H.; Changolkar, L.; Zhang, B.; Gathagan, R.J.; Yue, C.; Dengler, C.; et al. Amyloid-β Plaques Enhance Alzheimer’s Brain Tau-Seeded Pathologies by Facilitating Neuritic Plaque Tau Aggregation. Nat. Med. 2018, 24, 29–38. [Google Scholar] [CrossRef]
- Elhage, A.; Cohen, S.; Cummings, J.; van der Flier, W.M.; Aisen, P.; Cho, M.; Bell, J.; Hampel, H. Defining Benefit: Clinically and Biologically Meaningful Outcomes in the next-Generation Alzheimer’s Disease Clinical Care Pathway. Alzheimer’s Dement. 2024, 21, e14425. [Google Scholar] [CrossRef] [PubMed]
- Therriault, J.; Schindler, S.E.; Salvadó, G.; Pascoal, T.A.; Benedet, A.L.; Ashton, N.J.; Karikari, T.K.; Apostolova, L.; Murray, M.E.; Verberk, I.; et al. Biomarker-Based Staging of Alzheimer Disease: Rationale and Clinical Applications. Nat. Rev. Neurol. 2024, 20, 232–244. [Google Scholar] [CrossRef]
- Karikari, T.K.; Ashton, N.J.; Brinkmalm, G.; Brum, W.S.; Benedet, A.L.; Montoliu-Gaya, L.; Lantero-Rodriguez, J.; Pascoal, T.A.; Suárez-Calvet, M.; Rosa-Neto, P.; et al. Blood Phospho-Tau in Alzheimer Disease: Analysis, Interpretation, and Clinical Utility. Nat. Rev. Neurol. 2022, 18, 400–418. [Google Scholar] [CrossRef]
- Hampel, H.; O’Bryant, S.E.; Molinuevo, J.L.; Zetterberg, H.; Masters, C.L.; Lista, S.; Kiddle, S.J.; Batrla, R.; Blennow, K. Blood-Based Biomarkers for Alzheimer Disease: Mapping the Road to the Clinic. Nat. Rev. Neurol. 2018, 14, 639–652. [Google Scholar] [CrossRef] [PubMed]
- Ashton, N.J.; Hye, A.; Rajkumar, A.P.; Leuzy, A.; Snowden, S.; Suárez-Calvet, M.; Karikari, T.K.; Schöll, M.; La Joie, R.; Rabinovici, G.D.; et al. An Update on Blood-Based Biomarkers for Non-Alzheimer Neurodegenerative Disorders. Nat. Rev. Neurol. 2020, 16, 265–284. [Google Scholar] [CrossRef]
- Blennow, K.; Mattsson, N.; Schöll, M.; Hansson, O.; Zetterberg, H. Amyloid Biomarkers in Alzheimer’s Disease. Trends Pharmacol. Sci. 2015, 36, 297–309. [Google Scholar] [CrossRef]
- Hampel, H.; Blennow, K.; Shaw, L.M.; Hoessler, Y.C.; Zetterberg, H.; Trojanowski, J.Q. Total and Phosphorylated Tau Protein as Biological Markers of Alzheimer’s Disease. Exp. Gerontol. 2010, 45, 30–40. [Google Scholar] [CrossRef]
- Hardy, J.; Selkoe, D.J. The Amyloid Hypothesis of Alzheimer’s Disease: Progress and Problems on the Road to Therapeutics. Science 2002, 19, 353–356. [Google Scholar] [CrossRef]
- Selkoe, D.J. The genetics and molecular pathology of alzheimer’s disease roles of amyloid and the presenilins. Neurol. Clin. 2000, 18, 903–922. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Lemaire, H.G.; Unterbeck, A.; Salbaum, J.M.; Masters, C.L.; Grzeschik, K.H.; Multhaup, G.; Beyreuther, K.; Müller-Hill, B. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 1987, 325, 733–736. [Google Scholar] [CrossRef]
- Müller, U.C.; Deller, T.; Korte, M. Not Just Amyloid: Physiological Functions of the Amyloid Precursor Protein Family. Nat. Rev. Neurosci. 2017, 18, 281–298. [Google Scholar] [CrossRef]
- Rice, H.C.; De Malmazet, D.; Schreurs, A.; Frere, S.; Van Molle, I.; Volkov, A.N.; Creemers, E.; Vertkin, I.; Nys, J.; Ranaivoson, F.M.; et al. Secreted Amyloid-b Precursor Protein Functions as a GABA B R1a Ligand to Modulate Synaptic Transmission. Science 2019, 363, 143. [Google Scholar] [CrossRef]
- Younkin, S.G. The Role of Aβ42 in Alzheimer’s Disease. J. Physiol. Paris 1998, 92, 289–292. [Google Scholar] [CrossRef]
- Teng, F.Y.H.; Tang, B.L. Widespread γ-Secretase Activity in the Cell, but Do We Need It at the Mitochondria? Biochem. Biophys. Res. Commun. 2005, 328, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Thorwald, M.A.; Silva, J.; Head, E.; Finch, C.E. Amyloid Futures in the Expanding Pathology of Brain Aging and Dementia. Alzheimer’s Dement. 2023, 19, 2605–2617. [Google Scholar] [CrossRef]
- Hanseeuw, B.J.; Betensky, R.A.; Jacobs, H.I.L.; Schultz, A.P.; Sepulcre, J.; Becker, J.A.; Cosio, D.M.O.; Farrell, M.; Quiroz, Y.T.; Mormino, E.C.; et al. Association of Amyloid and Tau with Cognition in Preclinical Alzheimer Disease: A Longitudinal Study. JAMA Neurol. 2019, 76, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Braak, H.; Braak, E. Neuropathological Stageing of Alzheimer-Related Changes. Acta Neuropathol. 1991, 82, 239–259. [Google Scholar] [CrossRef]
- Kim, J.; Onstead, L.; Randle, S.; Price, R.; Smithson, L.; Zwizinski, C.; Dickson, D.W.; Golde, T.; McGowan, E. Aβ40 Inhibits Amyloid Deposition in Vivo. J. Neurosci. 2007, 27, 627–633. [Google Scholar] [CrossRef]
- Panek, W.K.; Murdoch, D.M.; Gruen, M.E.; Mowat, F.M.; Marek, R.D.; Olby, N.J. Plasma Amyloid Beta Concentrations in Aged and Cognitively Impaired Pet Dogs. Mol. Neurobiol. 2021, 58, 483–489. [Google Scholar] [CrossRef]
- Smolek, T.; Madari, A.; Farbakova, J.; Kandrac, O.; Jadhav, S.; Cente, M.; Brezovakova, V.; Novak, M.; Zilka, N. Tau Hyperphosphorylation in Synaptosomes and Neuroinflammation Are Associated with Canine Cognitive Impairment. J. Comp. Neurol. 2016, 524, 874–895. [Google Scholar] [CrossRef]
- Ciurli, L.; Casini, L.; Cecchi, F.; Baragli, P.; Macchioni, F.; Curadi, M.C.; Gazzano, V.; Capsoni, S.; Gazzano, A. The Canine Cognitive Dysfunction Syndrome: Rating Scales. Dog Behav. 2023, 9, 23–35. [Google Scholar]
- Iqbal, K. Tau and Alzheimer’s Disease: Past, Present and Future. Cytoskeleton 2024, 81, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Arendt, T.; Stieler, J.T.; Holzer, M. Tau and Tauopathies. Brain Res. Bull. 2016, 126, 238–292. [Google Scholar]
- Janelidze, S.; Mattsson, N.; Palmqvist, S.; Smith, R.; Beach, T.G.; Serrano, G.E.; Chai, X.; Proctor, N.K.; Eichenlaub, U.; Zetterberg, H.; et al. Plasma P-Tau181 in Alzheimer’s Disease: Relationship to Other Biomarkers, Differential Diagnosis, Neuropathology and Longitudinal Progression to Alzheimer’s Dementia. Nat. Med. 2020, 26, 379–386. [Google Scholar] [CrossRef] [PubMed]
- McLean, A.N. Short-Term Spatial Memory in the Domestic Horse. Appl. Anim. Behav. Sci. 2004, 85, 93–105. [Google Scholar] [CrossRef]
- Hanggi, E.B.; Ingersoll, J.F. Long-Term Memory for Categories and Concepts in Horses (Equus Caballus). Anim. Cogn. 2009, 12, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Wolff, A.; Hausberger, M. Learning and Memorisation of Two Different Tasks in Horses: The Effects of Age, Sex and Sire. Appl. Anim. Behav. Sci. 1996, 46, 137–143. [Google Scholar] [CrossRef]
- Marinier, S.; Alexander, A.J. The Use of a Maze in Testing Learning and Memory in Horses. Appl. Anim. Behav. Sci. 1994, 39, 177–182. [Google Scholar] [CrossRef]
- Ballou, M.E.; Mueller, M.K.; Dowling-Guyer, S. Aging Equines: Understanding the Experience of Caring for a Geriatric Horse with a Chronic Condition. J. Equine Vet. Sci. 2020, 90, 102993. [Google Scholar] [CrossRef]
- Dong, R.; Yi, N.; Jiang, D. Advances in Single Molecule Arrays (SIMOA) for Ultra-Sensitive Detection of Biomolecules. Talanta 2024, 270, 125529. [Google Scholar] [CrossRef] [PubMed]
- Tharp, W.G.; Sarkar, I.N. Origins of Amyloid-β. BMC Genom. 2013, 14, 290. [Google Scholar] [CrossRef] [PubMed]
- Brothers, H.M.; Gosztyla, M.L.; Robinson, S.R. The Physiological Roles of Amyloid-β Peptide Hint at New Ways to Treat Alzheimer’s Disease. Front. Aging Neurosci. 2018, 10, 118. [Google Scholar] [CrossRef]
- Plant, L.D.; Boyle, J.P.; Smith, I.F.; Peers, C.; Pearson, H.A. The Production of Amyloid β Peptide Is a Critical Requirement for the Viability of Central Neurons. J. Neurosci. 2003, 23, 5531–5535. [Google Scholar] [CrossRef] [PubMed]
- López-Toledano, M.A.; Shelanski, M.L. Neurogenic Effect of β-Amyloid Peptide in the Development of Neural Stem Cells. J. Neurosci. 2004, 24, 5439–5444. [Google Scholar] [CrossRef]
- Li, Y.Q.; Tan, S.S.; Wu, D.; Zhang, Q.; Wang, T.; Zheng, G. The Role of Intracellular and Extracellular Copper Compartmentalization in Alzheimer’s Disease Pathology and Its Implications for Diagnosis and Therapy. Front. Neurosci. 2025, 19, 1553064. [Google Scholar] [CrossRef]
- Carrillo-Mora, P.; Luna, R.; Colín-Barenque, L. Amyloid Beta: Multiple Mechanisms of Toxicity and Only Some Protective Effects? Oxid. Med. Cell Longev. 2014, 2014, 795375. [Google Scholar] [CrossRef]
- Koudinov, A.; Koudinova, N. Amyloid Beta Protein Restores Hippocampal Long Term Potentiation: A Central Role for Cholesterol? Neurobiol. Lipids 2003, 1, 45–56. [Google Scholar]
- Puzzo, D.; Privitera, L.; Leznik, E.; Fà, M.; Staniszewski, A.; Palmeri, A.; Arancio, O. Picomolar Amyloid-β Positively Modulates Synaptic Plasticity and Memory in Hippocampus. J. Neurosci. 2008, 28, 14537–14545. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, K.M.; Yang, L.; Dong, Q.; Yu, J.T. Tauopathies: New Perspectives and Challenges. Mol. Neurodegener. 2022, 17, 28. [Google Scholar] [CrossRef]
- Bloom, G.S. Amyloid-β and Tau: The Trigger and Bullet in Alzheimer Disease Pathogenesis. JAMA Neurol. 2014, 71, 505–508. [Google Scholar] [CrossRef] [PubMed]
- Sperling, R.A.; Mormino, E.C.; Schultz, A.P.; Betensky, R.A.; Papp, K.V.; Amariglio, R.E.; Hanseeuw, B.J.; Buckley, R.; Chhatwal, J.; Hedden, T.; et al. The Impact of Amyloid-Beta and Tau on Prospective Cognitive Decline in Older Individuals. Ann. Neurol. 2019, 85, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Zetterberg, H.; Wilson, D.; Andreasson, U.; Minthon, L.; Blennow, K.; Randall, J.; Hansson, O. Plasma Tau Levels in Alzheimer’s Disease. Alzheimers Res. Ther. 2013, 5, 9. [Google Scholar] [CrossRef] [PubMed]
Sex | Age (Years) | pTau (pg/mL) | Aβ40 (pg/mL) | pTau/Aβ40 Ratio | |
---|---|---|---|---|---|
1 | Mare | 1.5 | 32.05 | 67.4 | 0.47 |
2 | Mare | 3 | 52.82 | 776.0 | 0.07 |
3 | Mare | 4 | 36.41 | 98.9 | 0.37 |
4 | Mare | 4 | 19.74 | 181.0 | 0.10 |
5 | Mare | 4 | 43.65 | 366.0 | 0.12 |
6 | Mare | 5 | 44.04 | 256.0 | 0.17 |
7 | Mare | 6 | 24.36 | 186.0 | 0.13 |
8 | Mare | 6 | 49.81 | 188.9 | 0.26 |
9 | Stallion | 8 | 51.28 | 743.9 | 0.07 |
10 | Mare | 9 | 5.38 | 86.0 | 0.06 |
11 | Mare | 9 | 19.23 | 338.1 | 0.06 |
12 | Mare | 9 | 51.73 | 198.9 | 0.26 |
13 | Mare | 11 | 31.03 | 101.7 | 0.30 |
14 | Mare | 12 | 36.15 | 135.3 | 0.26 |
15 | Stallion | 12 | 27.18 | 77.4 | 0.35 |
16 | Mare | 13 | 32.5 | 309.6 | 0.10 |
17 | Mare | 14 | 47.95 | 333.9 | 0.14 |
18 | Mare | 14 | 20.77 | 104.6 | 0.19 |
19 | Mare | 15 | 31.73 | 346.7 | 0.09 |
20 | Mare | 18 | 21.79 | 388.1 | 0.06 |
21 | Stallion | 21 | 30.58 | 66.7 | 0.46 |
22 | Mare | 22 | 54.42 | 249.6 | 0.22 |
23 | Stallion | 24 | 39.04 | 575.3 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gazzano, V.; Curadi, M.C.; Capsoni, S.; Baragli, P.; Kêdzierski, W.; Cecchi, F.; Gazzano, A. A Pilot Study on Blood Concentration of β-Amyloid (40 and 42) and Phospho-Tau 181 in Horses. Vet. Sci. 2025, 12, 610. https://doi.org/10.3390/vetsci12070610
Gazzano V, Curadi MC, Capsoni S, Baragli P, Kêdzierski W, Cecchi F, Gazzano A. A Pilot Study on Blood Concentration of β-Amyloid (40 and 42) and Phospho-Tau 181 in Horses. Veterinary Sciences. 2025; 12(7):610. https://doi.org/10.3390/vetsci12070610
Chicago/Turabian StyleGazzano, Valentina, Maria Claudia Curadi, Simona Capsoni, Paolo Baragli, Witold Kêdzierski, Francesca Cecchi, and Angelo Gazzano. 2025. "A Pilot Study on Blood Concentration of β-Amyloid (40 and 42) and Phospho-Tau 181 in Horses" Veterinary Sciences 12, no. 7: 610. https://doi.org/10.3390/vetsci12070610
APA StyleGazzano, V., Curadi, M. C., Capsoni, S., Baragli, P., Kêdzierski, W., Cecchi, F., & Gazzano, A. (2025). A Pilot Study on Blood Concentration of β-Amyloid (40 and 42) and Phospho-Tau 181 in Horses. Veterinary Sciences, 12(7), 610. https://doi.org/10.3390/vetsci12070610