Establishment of an Inferred Reference Range for Blood Ammonia in Dogs and Cats Using a Point-of-Care Assay
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection and Classification
2.3. Ammonia Measurement
2.4. Ethics Statement
2.5. Data Manipulation and Statistical Analysis
3. Results
3.1. Descriptive Statistics (Dogs)
3.2. Blood Ammonia Comparisons (Dogs)
3.3. Descriptive Statistics (Cats)
3.4. Blood Ammonia Comparisons (Cats)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BA | Blood ammonia |
HE | Hepatic encephalopathy |
POC | Point-of-care |
BCS | Body condition score |
References
- Wright, G.; Noiret, L.; Olde Damink, S.W.; Jalan, R. Interorgan ammonia metabolism in liver failure: The basis of current and future therapies. Liver Int. 2011, 31, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Lidbury, J.A.; Cook, A.K.; Steiner, J.M. Hepatic encephalopathy in dogs and cats. J. Vet. Emerg. Crit. Care 2016, 26, 471–487. [Google Scholar] [CrossRef] [PubMed]
- Haüssinger, D.; Sies, H.; Gerok, W. Functional hepatocyte heterogeneity in ammonia metabolism: The intercellular glutamine cycle. J. Hepatology 1985, 1, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Welbourne, T.C.; Childress, D.; Givens, G. Renal regulation of interorgan glutamine flow in metabolic acidosis. Am. J. Physiol. 1986, 251, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Damink, S.W.O.; Deutz, N.E.; Dejong, C.H.; Soeters, P.B.; Jalan, R. Interorgan ammonia metabolism in liver failure. Neurochem. Int. 2002, 41, 177–188. [Google Scholar] [CrossRef]
- Cooper, A.J.; Plum, F. Biochemistry and physiology of brain ammonia. Physiol. Rev. 1987, 67, 440–519. [Google Scholar] [CrossRef]
- Vidal-Cevallos, P.; Chávez-Tapia, N.C.; Uribe, M. Current approaches to hepatic encephalopathy. Ann. Hepatol. 2022, 27, 6. [Google Scholar] [CrossRef]
- Jayakumar, A.R.; Norenberg, M.D. Hyperammonemia in Hepatic Encephalopathy. J. Clin. Exp. Hepatol. 2018, 8, 272–280. [Google Scholar] [CrossRef]
- Machado, M.C.; Pinheiro da Silva, F. Hyperammonemia due to urea cycle disorders: A potentially fatal condition in the intensive care setting. J. Intensive Care. 2014, 2, 22. [Google Scholar] [CrossRef]
- Häberle, J.; Chakrapani, A.; Ah Mew, N.; Longo, N. Hyperammonaemia in classic organic acidaemias: A review of the literature and two case histories. Orphanet J. Rare Dis. 2018, 13, 219. [Google Scholar] [CrossRef]
- Merritt, J.L., 2nd; MacLeod, E.; Jurecka, A.; Hainline, B. Clinical manifestations and management of fatty acid oxidation disorders. Rev. Endocr. Metab. Disord. 2020, 21, 479–493. [Google Scholar] [CrossRef] [PubMed]
- Ravindranath, A.; Sarma, M.S. Mitochondrial hepatopathy: Anticipated difficulties in management of fatty acid oxidation defects and urea cycle defects. World J. Hepatol. 2022, 14, 180–194. [Google Scholar] [CrossRef] [PubMed]
- Limketkai, B.N.; Zucker, S.D. Hyperammonemic encephalopathy caused by carnitine deficiency. J. Gen. Intern. Med. 2008, 23, 210–213. [Google Scholar] [CrossRef]
- Taneja, V.; Jasuja, H. Severe hyperammonemia from intense skeletal muscle activity: A rare case report and literature review. Medicine 2019, 98, e17981. [Google Scholar] [CrossRef]
- Kenzaka, T.; Kato, K.; Kitao, A.; Kosami, K.; Minami, K.; Yahata, S.; Fukui, M.; Okayama, M. Hyperammonemia in Urinary Tract Infections. PLoS ONE 2015, 10, e0136220. [Google Scholar] [CrossRef] [PubMed]
- Szatmári, V.; Rothuizen, J.; van den Ingh, T.S.; van Sluijs, F.; Voorhout, G. Ultrasonographic findings in dogs with hyperammonemia: 90 cases (2000–2002). J. Am. Vet Med. Assoc. 2004, 224, 717–727. [Google Scholar] [CrossRef]
- Ruland, K.; Fischer, A.; Hartmann, K. Sensitivity and specificity of fasting ammonia and serum bile acids in the diagnosis of portosystemic shunts in dogs and cats. Vet. Clin. Pathol. 2010, 39, 57–64. [Google Scholar] [CrossRef]
- Zandvliet, M.M.; Rothuizen, J. Transient hyperammonemia due to urea cycle enzyme deficiency in Irish wolfhounds. J. Vet. Intern. Med. 2007, 21, 215–218. [Google Scholar] [CrossRef]
- Washizu, T.; Washizu, M.; Zhang, C.; Matsumoto, I.; Sawamura, M.; Suzuki, T. A suspected case of ornithine transcarbamylase deficiency in a cat. J. Vet. Med. Sci. 2004, 66, 701–703. [Google Scholar] [CrossRef]
- Battersby, I.A.; Giger, U.; Hall, E.J. Hyperammonaemic encephalopathy secondary to selective cobalamin deficiency in a juvenile Border collie. J. Small Anim. Pract. 2005, 46, 339–344. [Google Scholar] [CrossRef]
- Watanabe, T.; Hoshi, K.; Zhang, C.; Ishida, Y.; Sakata, I. Hyperammonaemia due to cobalamin malabsorption in a cat with exocrine pancreatic insufficiency. J. Feline Med. Surg. 2012, 14, 942–945. [Google Scholar] [CrossRef] [PubMed]
- Simpson, K.; Battersby, I.; Lowrie, M. Suspected acquired hypocobalaminaemic encephalopathy in a cat: Resolution of encephalopathic signs and MRI lesions subsequent to cobalamin supplementation. J. Feline Med. Surg. 2012, 14, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Kim, J.H. Feline hyperammonemia associated with functional cobalamin deficiency: A case report. Can. Vet. J. 2023, 64, 426–430. [Google Scholar] [PubMed]
- Morris, J.G.; Rogers, Q.R. Ammonia intoxication in the near-adult cat as a result of a dietary deficiency of arginine. Science 1978, 199, 431–432. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, L.; Kelley, D.; Labato, M.A.; Webster, C.R. Hyperammonemia in azotemic cats. J. Feline Med. Surg. 2021, 23, 700–707. [Google Scholar] [CrossRef]
- Nilsson, C.H.; Svensson, M.B.; Säve, S.J.; Van Meervenne, S.A. Transient hyperammonaemia following epileptic seizures in cats. J. Feline Med. Surg. 2021, 23, 534–539. [Google Scholar] [CrossRef]
- Tofteng, F.; Hauerberg, J.; Hansen, B.A.; Pedersen, C.B.; Jørgensen, L.; Larsen, F.S. Persistent arterial hyperammonemia increases the concentration of glutamine and alanine in the brain and correlates with intracranial pressure in patients with fulminant hepatic failure. J. Cereb. Blood Flow. Metab. 2006, 26, 21–27. [Google Scholar] [CrossRef]
- Cagnon, L.; Braissant, O. Hyperammonemia-induced toxicity for the developing central nervous system. Brain Res. Rev. 2007, 56, 183–197. [Google Scholar] [CrossRef]
- Barsotti, R.J. Measurement of ammonia in blood. J. Pediatr. 2001, 138 (Suppl. S1), S11–S19; discussion S19–S20. [Google Scholar] [CrossRef]
- Howanitz, J.H.; Howanitz, P.J.; Skrodzki, C.A.; Iwanski, J.A. Influences of specimen processing and storage conditions on results for plasma ammonia. Clin. Chem. 1984, 30, 906–908. [Google Scholar] [CrossRef]
- Goggs, R.; Serrano, S.; Szladovits, B.; Keir, I.; Ong, R.; Hughes, D. Clinical investigation of a point-of-care blood ammonia analyzer. Vet. Clin. Pathol. 2008, 37, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Odunayo, A.; Tobias, K.M.; Okafor, C.C.; Flatland, B. Ammonia concentrations in canine whole blood, EDTA-anticoagulated whole blood, and plasma measured by use of a point-of-care ammonia meter. Am. J. Vet. Res. 2017, 78, 1239–1244. [Google Scholar] [CrossRef] [PubMed]
- Kather, S.; Grützner, N.; Kook, P.H.; Dengler, F.; Heilmann, R.M. Review of cobalamin status and disorders of cobalamin metabolism in dogs. J. Vet. Intern. Med. 2020, 34, 13–28. [Google Scholar] [CrossRef] [PubMed]
- Meier, C.; Burns, K.; Manolikos, C.; Fatovich, D.; Bell, D.A. Hyperammonaemia: Review of the pathophysiology, aetiology and investigation. Pathology. 2024, 56, 763–772. [Google Scholar] [CrossRef]
- Sakusic, A.; Sabov, M.; McCambridge, A.J.; Rabinstein, A.A.; Singh, T.D.; Mukesh, K.; Kashani, K.B.; Cook, D.; Gajic, O. Features of Adult Hyperammonemia Not Due to Liver Failure in the ICU. Crit. Care Med. 2018, 46, e897–e903. [Google Scholar] [CrossRef]
- Hall, J.A.; Allen, T.A.; Fettman, M.J. Hyperammonemia associated with urethral obstruction in a dog. J. Am. Vet. Med. Assoc. 1987, 191, 1116–1118. [Google Scholar] [CrossRef]
- Harris, A.N.; Weiner, I.D. Sex differences in renal ammonia metabolism. Am. J. Physiol. Renal Physiol. 2021, 320, F55–F60. [Google Scholar] [CrossRef]
- Webster, L.T., Jr.; Gabuzda, G.J. Relation of azotemia to blood ammonium in patients with hepatic cirrhosis. AMA Arch. Intern. Med. 1959, 103, 15–22. [Google Scholar] [CrossRef]
- LaBuzetta, J.N.; Yao, J.Z.; Bourque, D.L.; Zivin, J. Adult nonhepatic hyperammonemia: A case report and differential diagnosis. Am. J. Med. 2010, 123, 885–891. [Google Scholar] [CrossRef]
- Laish, I.; Ben Ari, Z. Noncirrhotic hyperammonaemic encephalopathy. Liver Int. 2011, 31, 1259–1270. [Google Scholar] [CrossRef]
- Walker, V. Severe hyperammonaemia in adults not explained by liver disease. Ann. Clin. Biochem. 2012, 49 Pt 3, 214–228. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, D.; Diodato, D.; Ponzi, E.; Monné, M.; Boenzi, S.; Bertini, E.; Fiermonte, G.; Dionisi-Vici, C. The hyperornithinemia–hyperammonemia-homocitrullinuria syndrome. Orphanet J. Rare Dis. 2015, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Wijarnpreech, K. Association between sarcopenia and hepatic encephalopathy: A systematic review and meta-analysis. Ann. Hepatol. 2019, 19, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Piantedosi, D.; Palatucci, A.T.; Giovazzino, A.; Ruggiero, G.; Rubino, V.; Musco, N.; Carriero, F.; Farina, F.; Attia, Y.A.E.W.; Terrazzano, G.; et al. Effect of a Weight Loss Program on Biochemical and Immunological Profile, Serum Leptin Levels, and Cardiovascular Parameters in Obese Dogs. Front. Vet. Sci. 2020, 7, 398. [Google Scholar] [CrossRef]
- Fenves, A.Z.; Shchelochkov, O.A.; Mehta, A. Hyperammonemic syndrome after Roux-en-Y gastric bypass. Obesity 2015, 23, 746–749. [Google Scholar] [CrossRef]
- Kim, S.E.; Giglio, R.F.; Reese, D.J.; Reese, S.L.; Bacon, N.J.; Ellison, G.W. Comparison of computed tomographic angiography and ultrasonography for the detection and characterization of portosystemic shunts in dogs. Vet. Radiol. Ultrasound. 2013, 54, 569–574. [Google Scholar] [CrossRef]
(a) | |||||||
Clinical Feature | Binary BA Subgroup | n | Median BA (IQR) | Range (Min-Max) | U | SE | p (2-Sided) |
Age (y) | 0 | 124 | 7.96 (5.64) | 14.42 (0.58–15.00) | 2915 | 304.526 | 0.417 |
>0 | 51 | 6.83 (5.25) | 13.41 (0.42–13.83) | ||||
BCS (1–9/9) | 0 | 116 | 5 (2) | 7 (1–8) | 2110 | 239.380 | 0.263 |
>0 | 41 | 3 (2) | 5 (3–8) | ||||
(b) | |||||||
Clinical feature | Subgroup | n | Median BA(IQR) | Range (min-max) | H | df | p (2-sided) |
Age (y) | <4 | 39 | 0 (11) | 0–139 | 2.309 | 2 | 0.315 |
4–8 | 52 | 0 (16) | 0–171 | ||||
>8 | 84 | 0 (7) | 0–400 | ||||
BCS (1–9/9) | 1–3 | 17 | 0 (15) | 0–96 | 1.071 | 2 | 0.585 |
4–6 | 99 | 0 (7) | 0–400 | ||||
7–9 | 41 | 0 (4) | 0–135 |
Clinical Feature | Binary BA Subgroup | n: BA Subgroup | n (%): Clinical Feature | t | df | p (2-Sided) | OR | 95% CI |
---|---|---|---|---|---|---|---|---|
Male sex | 0 | 124 | 59 (47.6) | 5.286 | 1 | 0.021 | 2.203 | 1.116–4.352 |
>1 | 51 | 34 (66.7) | ||||||
Weight loss | 0 | 104 | 47 (45.2) | 0.429 | 1 | 0.512 | - | - |
>0 | 41 | 2 (51.2) | ||||||
*1 Liver disease | 0 | 114 | 34 (29.8) | 5.652 | 1 | 0.017 | 2.262 | 1.146–4.466 |
>0 | 51 | 25 (49.0) | ||||||
*2 Hepatic involvement | 0 | 122 | 18 (14.8) | 16.996 | 1 | <0.001 | 4.540 | 2.154–9.608 |
0 | 50 | 22 (44) | ||||||
GI signs | 0 | 124 | 41 (33.1) | 0.047 | 1 | 0.828 | - | - |
>0 | 52 | 16 (31.4) | ||||||
CNS signs | 0 | 124 | 12 (9.7) | 15.177 | 1 | <0.001 | 4.808 | 2.087–11.079 |
>0 | 50 | 17 (34%) | ||||||
Azotaemia | 0 | 122 | 13 (10.7) | 4.821 | 1 | 0.028 | 2.580 | 1.086–6.131 |
>0 | 51 | 12 (23.5) | ||||||
B12 deficiency | 0 | 31 | 14 (45.2) | 2.127 | 1 | 0.145 | - | - |
>0 | 13 | 9 (69.2) | ||||||
Inflammatory pathology | 0 | 90 | 61 (80.3) | 0.908 | 1 | 0.341 | - | - |
>0 | 26 | 15 (19.7) |
Clinical Feature | Subgroup | n | Median BA (IQR) | Range | U | df | SE | t | p (2-Sided) |
---|---|---|---|---|---|---|---|---|---|
Sex | Male | 93 | 0 (14) | 0–171 | 4429.5 | 1 | 268.421 | 2.297 | 0.022 |
Female | 82 | 0 (0) | 0–400 | ||||||
Weight loss | No | 77 | 0 (9) | 0–135 | 2748.0 | 1 | 200.282 | 0.648 | 0.517 |
Yes | 68 | 0 (9) | 0–400 | ||||||
*1 Liver disease | No | 106 | 0 (2) | 0–38 | 3847.5 | 1 | 240.777 | 2.992 | 0.003 |
Yes | 59 | 0 (24) | 0–400 | ||||||
*2 Hepatic involvement | No | 132 | 0 (0) | 0–38 | 3693.0 | 1 | 221.249 | 4.759 | <0.001 |
Yes | 40 | 9 (61) | 0–400 | ||||||
GI signs | No | 118 | 0 (10) | 0–400 | 3310.5 | 1 | 252.085 | −0.208 | 0.835 |
Yes | 57 | 0 (11) | 0–107 | ||||||
CNS signs | No | 145 | 0 (0) | 0–171 | 3147.5 | 1 | 202.728 | 4.797 | <0.001 |
Yes | 30 | 11.5 (84) | 0–400 | ||||||
Azotaemia | No | 148 | 0 (9) | 0–171 | 2209.0 | 1 | 186.631 | 1.924 | 0.054 |
Yes | 25 | 0 (14) | 0–400 | ||||||
B12 deficiency | No | 21 | 0 (0) | 0–21 | 296.0 | 1 | 34.313 | 1.588 | 0.112 |
Yes | 23 | 0 (15) | 0–44 | ||||||
Pathology type | Inflammatory | 76 | 0 (0) | 0–400 | 1606.5 | 1 | 125.685 | 0.688 | 0.491 |
Neoplastic | 40 | 0 (9) | 0–28 |
Clinical Feature | BA Data Format | F | t | dfh | df | p |
---|---|---|---|---|---|---|
Age (<4 y/4–8 y/>8 y) | Binary | 0.186 | - | 2 | 161 | 0.830 |
Continuous | 0.472 | - | 2 | 161 | 0.625 | |
Sex (male/female) | Binary | 4.752 | −2.180 | 1 | 162 | 0.031 |
Continuous | 4.236 | −2.058 | 1 | 162 | 0.041 | |
Weight loss (y/n) | Binary | 0.072 | −0.269 | 1 | 135 | 0.788 |
Continuous | 0.075 | −0.275 | 1 | 135 | 0.784 | |
BCS (1–3, 4–6, 7–9) | Binary | 0.433 | - | 2 | 146 | 0.649 |
Continuous | 0.569 | - | 2 | 146 | 0.567 | |
Cobalamin deficiency (y/n) | Binary | 1.987 | −1.410 | 1 | 42 | 0.166 |
Continuous | 2.551 | −1.597 | 1 | 42 | 0.118 | |
Pathology type (inflammatory/neoplastic) | Binary | 0.659 | −0.811 | 1 | 108 | 0.419 |
Continuous | 0.243 | −0.493 | 1 | 108 | 0.623 | |
*1 Liver disease (y/n) | Binary | 2.297 | −1.510 | 1 | 162 | 0.133 |
Continuous | 5.000 | −2.236 | 1 | 162 | 0.027 | |
*2 Hepatic involvement (y/n) | Binary | 11.814 | −3.437 | 1 | 168 | 0.001 |
Continuous | 17.599 | −4.195 | 1 | 168 | <0.001 | |
Azotaemia (y/n) | Binary | 6.887 | −2.624 | 1 | 162 | 0.010 |
Continuous | 5.195 | −2.279 | 1 | 162 | 0.024 | |
GI signs (y/n) | Binary | 0.255 | −0.505 | 1 | 162 | 0.614 |
Continuous | 0.600 | −0.775 | 1 | 162 | 0.440 | |
CNS signs (y/n) | Binary | 16.924 | −4.114 | 1 | 162 | <0.001 |
Continuous | 25.161 | −5.016 | 1 | 162 | <0.001 |
(a) | |||||||
Clinical Feature | Binary BA Subgroup | n | Median (IQR) | Range (Min-Max) | U | SE | p (2-Sided) |
Age (y) | 0 | 29 | 6.67 (8.3) | 16.6 (0.4–17.0) | 522.0 | 72.504 | 0.783 |
>0 | 34 | 9.0 (7.0) | 14.6 (0.4–15.0) | ||||
BCS (1–9/9) | 0 | 28 | 5 (2) | 6 (2–8) | 423.0 | 67.386 | 0.563 |
>0 | 33 | 4 (3) | 7 (2–9) | ||||
(b) | |||||||
Clinical feature | Subgroup | n | Median BA (IQR) | BA range (min-max) | H | df | p (2-sided) |
Age (y) | <3 | 14 | 0 (24) | 0–264 | 0.585 | 2 | 0.747 |
3–10 | 24 | 4.5 (25) | 0–49 | ||||
>10 | 25 | 11 (20) | 0–267 | ||||
BCS (1–9/9) | 1–3 | 25 | 12 (38) | 0–267 | 2.443 | 2 | 0.295 |
4–6 | 28 | 8 (21) | 0–49 | ||||
7–9 | 8 | 0 (12) | 0–25 |
Clinical Feature | Binary BA Subgroup | n (%) with Clinical Feature | t | df | p (2-Sided) |
---|---|---|---|---|---|
Male sex | 0 | 21/29 (72.4) | 1.845 | 1 | 0.174 |
>0 | 19/34 (55.9) | ||||
Weight loss | 0 | 12/28 (42.9) | 0.828 | 1 | 0.363 |
>0 | 18/33 (54.5) | ||||
Liver pathology | 0 | 9/29 (31.0) | 0.037 | 1 | 0.847 |
>0 | 11/33 (33.3) | ||||
GI signs | 0 | 16/29 (55.2) | 0.229 | 1 | 0.268 |
>0 | 14/34 (41.2) | ||||
CNS signs | 0 | 2/29 (6.9) | 0.966 | 1 | 0.326 |
>0 | 5/34 (14.7) | ||||
Lower urinary tract signs | 0 | 3/29 (10.3) | 1.443 | 1 | 0.230 |
>0 | 1/34 (2.9) | ||||
Azotaemia | 0 | 12/28 (42.9) | 0.726 | 1 | 0.394 |
>0 | 11/34 (32.4) | ||||
Cobalamin deficiency | 0 | 2/9 (22.2) | 1.028 | 1 | 0.311 |
>0 | 6/14 (42.9) | ||||
Inflammatory pathology | 0 | 18/23 (78.3) | 0.639 | 1 | 0.424 |
>0 | 17/25 (68.0) |
Clinical Feature | Subgroup | n | Median BA (IQR) | BA Range | U | df | SE | t | p (2-Sided) |
---|---|---|---|---|---|---|---|---|---|
Sex | Male | 23 | 0 (22) | 0–267 | 247.0 | 1 | 66.533 | −0.496 | 0.620 |
Female | 40 | 9 (19) | 0–264 | ||||||
Weight loss | No | 31 | 0 (16) | 0–267 | 540.5 | 1 | 65.869 | 1.146 | 0.252 |
Yes | 30 | 11.5 (31) | 0–102 | ||||||
*1 Liver disease | No | 47 | 7 (16) | 0–267 | 453.0 | 1 | 60.152 | 1.280 | 0.201 |
Yes | 16 | 16.5 (31) | 0–264 | ||||||
*2 Hepatic involvement | No | 42 | 7 (17) | 0–267 | 456.5 | 1 | 62.907 | 0.580 | 0.562 |
Yes | 20 | 9 (29) | 0–264 | ||||||
GI signs | No | 33 | 13 (27) | 0–267 | 397.0 | 1 | 69.018 | −1.420 | 0.156 |
Yes | 30 | 0 (17) | 0–61 | ||||||
CNS signs | No | 56 | 7 (20) | 0–77 | 270.0 | 1 | 43.430 | 1.704 | 0.080 |
Yes | 7 | 23 (264) | 0–267 | ||||||
Azotaemia | No | 39 | 9 (23) | 0–267 | 404.0 | 1 | 65.376 | −0.681 | 0.496 |
Yes | 23 | 0 (19) | 0–77 | ||||||
B12 deficiency | No | 15 | 9 (44) | 0–267 | 71.0 | 1 | 15.022 | 0.732 | 0.464 |
Yes | 8 | 14 (53) | 0–102 | ||||||
Pathology type | Inflammatory | 35 | 0 (21) | 0–102 | 255.5 | 1 | 40.656 | 0.689 | 0.491 |
Neoplastic | 13 | 14 (20) | 0–61 |
Clinical Feature | BA Data Format | F | t | dfh | df | p |
---|---|---|---|---|---|---|
Age (<3 y/3–10 y/>10 y) | Binary | 0.930 | - | 2 | 57 | 0.400 |
Continuous | 0.256 | - | 2 | 57 | 0.775 | |
Sex (male/female) | Binary | 2.799 | 1.673 | 1 | 58 | 0.100 |
Continuous | 0.301 | 0.549 | 1 | 58 | 0.585 | |
Weight loss (y/n) | Binary | 0.602 | −0.776 | 1 | 58 | 0.441 |
Continuous | 0.909 | −0.954 | 1 | 58 | 0.344 | |
BCS (1–9/9) | Binary | 0.481 | - | 2 | 55 | 0.621 |
Continuous | 0.561 | - | 2 | 55 | 0.574 | |
Cobalamin deficiency (y/n) | Binary | 0.582 | −0.763 | 1 | 20 | 0.454 |
Continuous | 0.249 | −0.499 | 1 | 20 | 0.623 | |
Pathology type (inflammatory/neoplastic) | Binary | 0.005 | −0.069 | 1 | 43 | 0.945 |
Continuous | 0.000 | −0.018 | 1 | 43 | 0.986 | |
*1 Liver disease (y/n) | Binary | 0.022 | −0.149 | 1 | 58 | 0.820 |
Continuous | 0.271 | −0.520 | 1 | 58 | 0.605 | |
*2 Hepatic involvement (y/n) | Binary | 0.612 | 0.782 | 1 | 57 | 0.437 |
Continuous | 0.881 | 0.938 | 1 | 57 | 0.352 | |
Azotaemia (y/n) | Binary | 0.682 | 0.826 | 1 | 58 | 0.412 |
Continuous | 0.356 | 0.596 | 1 | 58 | 0.553 | |
GI signs (y/n) | Binary | 0.820 | 0.906 | 1 | 58 | 0.369 |
Continuous | 1.180 | 1.086 | 1 | 58 | 0.282 | |
CNS signs (y/n) | Binary | 0.968 | −0.984 | 1 | 58 | 0.329 |
Continuous | 3.190 | −1.786 | 1 | 58 | 0.079 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Specchia, G.; Seidel, E.H.D.; Dye, C. Establishment of an Inferred Reference Range for Blood Ammonia in Dogs and Cats Using a Point-of-Care Assay. Vet. Sci. 2025, 12, 596. https://doi.org/10.3390/vetsci12060596
Specchia G, Seidel EHD, Dye C. Establishment of an Inferred Reference Range for Blood Ammonia in Dogs and Cats Using a Point-of-Care Assay. Veterinary Sciences. 2025; 12(6):596. https://doi.org/10.3390/vetsci12060596
Chicago/Turabian StyleSpecchia, Giulia, Emily Hannah Doran Seidel, and Charlotte Dye. 2025. "Establishment of an Inferred Reference Range for Blood Ammonia in Dogs and Cats Using a Point-of-Care Assay" Veterinary Sciences 12, no. 6: 596. https://doi.org/10.3390/vetsci12060596
APA StyleSpecchia, G., Seidel, E. H. D., & Dye, C. (2025). Establishment of an Inferred Reference Range for Blood Ammonia in Dogs and Cats Using a Point-of-Care Assay. Veterinary Sciences, 12(6), 596. https://doi.org/10.3390/vetsci12060596