Epidemiological Review of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) in Japan: From Discovery and Spread to Economic Losses and Future Prospects
Simple Summary
Abstract
1. Introduction
2. Discovery of PRRSV and Characteristics of Early Genotypes in Japan (1993–2007)
3. Incursion of European Type and Expansion of Genetic Diversity (2008–2013)
4. Impact on Production Performance and Economic Losses (2006–2008 Survey and National Estimates)
5. Shift in Cluster Composition and Association with Vaccines (2018–2020)
6. Incursion of Foreign Strains and New Risks (2024: Emergence of NADC34-like Strain)
7. Challenges in Vaccines and Preventive Measures
8. Future Actions and Prospects
- Advanced Molecular Surveillance: Enhance nationwide surveillance by using not only ORF5 sequencing but also whole-genome sequencing (WGS) to rapidly detect genetic shifts, recombination events [23], virulence markers (e.g., NSP2 deletions) [21,25], antigenic changes, and transmission pathways [57]. The systematic analysis of large-scale sequencing data, as demonstrated in the US, is vital for tracking genetic evolution and identifying emerging strains [57,58]; dynamic classification systems can aid in monitoring these changes effectively. Continuous monitoring for emerging domestic variants and incursions of foreign strains, such as the NADC34-like virus, is critical.
- Strengthened Foreign Strain Risk Management: Maintain up-to-date knowledge of global PRRSV epidemiology, especially concerning Lineage 1 variants and HP-PRRSV. Bolster border biosecurity and quarantine measures. Improve early detection surveillance for foreign strains, while also refining contingency plans for rapid containment and eradication should incursions occur.
- To address these challenges, global research efforts are intensely focused on developing next-generation vaccines with improved safety and broader cross-protective efficacy [59]. Among nucleic acid vaccines, mRNA vaccine technology, which allows for rapid development, flexible antigen design, and induction of both humoral and cellular immunity, is emerging as a particularly promising platform for PRRSV. Recent studies have explored mRNA vaccines encoding various PRRSV antigens, such as GP5 alone or combinations like GP2-GP5-M polyprotein, which is easily encapsulated in lipid nanoparticles (LNPs) for efficient delivery and has demonstrated induction of significant antibody responses and T-cell activation in mice [59]. Self-amplifying RNA (saRNA) vaccines, which can achieve equivalent protection at lower doses than conventional mRNA, are also being investigated, though challenges in their delivery remain to be solved [59]. Subunit vaccines, utilizing specific viral proteins (e.g., GP3, GP5, M), epitopes, or even in silico designed immunogens, continue to be refined with advanced adjuvants and delivery systems (e.g., nanoparticles, virus-like particles, plant-based expression systems) to enhance their immunogenicity and protective breadth [59]. For example, ferritin-based nanoparticles displaying modified GP5 have been demonstrated to enhance Th1-type B cell immunity and protective effects in pigs [47,56].
- 4.
- Promotion and Support of Regional Control Programs (RCPs): Expand successful RCP models, such as Tahara’s [52], nationwide, adapting them to the local conditions. Robust RCP establishment and sustainability recommend a dual support approach, i.e., strengthening governmental financial and technical aid (e.g., for testing, culling, initial setup, emergency response), potentially via frameworks like the “Regional Chronic Disease Eradication Support Measures”, complemented by producer-led funding initiatives such as check-off systems. This dual approach is expected to bolster industry ownership and RCP resilience. Load-Close-Homogenize (LCH) strategies combined with vaccination also warrant consideration.
- 5.
- Data-Driven Disease Control: Develop and implement integrated data management systems that combine genomic, farm management, host genetic [10], and production data. This will enable real-time risk assessment, outbreak prediction, and evaluation of control measure effectiveness.
- 6.
- Continued Stakeholder Collaboration: Foster and maintain strong collaborative networks involving producers, veterinarians, government agencies, researchers, and industry partners (e.g., through P-JET). Such networks are essential for continuous information sharing, technology transfer, capacity building, and maintaining high biosecurity awareness.
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Snijder, E.J.; Kikkert, M.; Fang, Y. Arterivirus molecular biology and pathogenesis. J. Gen. Virol. 2013, 94, 2141–2163. [Google Scholar] [CrossRef]
- Rossow, K.D. Porcine Reproductive and Respiratory Syndrome. Vet. Pathol. 1998, 35, 1–20. [Google Scholar] [CrossRef]
- World Organisation for Animal Health (WOAH). Infection with porcine reproductive and respiratory syndrome virus. In Terrestrial Animal Health Code; WOAH: Paros, France; Available online: https://www.woah.org/fileadmin/Home/eng/Health_standards/tahc/2018/en_chapitre_prrs.htm (accessed on 25 May 2025).
- Holtkamp, D.J.; Kliebenstein, J.B.; Neumann, E.J.; Zimmerman, J.J.; Rotto, H.F.; Yoder, T.K.; Wang, C.; Yeske, P.E.; Mowrer, C.L.; Haley, C.A. Assessment of the economic impact of porcine reproductive and respiratory syndrome virus on United States pork producers. J. Swine Health Prod. 2013, 21, 72–84. [Google Scholar] [CrossRef]
- Yamane, I.; Kure, K.; Ishikawa, H.; Takagi, M.; Miyazaki, A.; Suzuki, T.; Shibahara, T.; Kubo, M.; Kobayashi, H.; Kokuho, T.; et al. Evaluation of the economical losses due to the outbreaks of porcine reproductive and respiratory syndrome. (A questionnaire-based epidemiological survey and estimation of the total economical losses in Japan). Proc. Jpn. Pig Vet. Soc. 2009, 55, 33–37. (In Japanese) [Google Scholar]
- Yamane, I.; Kure, K.; Ishikawa, H.; Takagi, M.; Yoshii, M.; Okinaga, T.; Miyazaki, A.; Suzuki, T.; Shibahara, T.; Kubo, M.; et al. Evaluation of the economical losses due to the outbreaks of porcine reproductive and respiratory syndrome. (Results from 6 targeted farms being investigated). Proc. Jpn. Pig Vet. Soc. 2009, 54, 8–13. (In Japanese) [Google Scholar]
- Hanada, K.; Suzuki, Y.; Nakane, T.; Hirose, O.; Gojobori, T. The origin and evolution of porcine reproductive and respiratory syndrome viruses. Mol. Biol. Evol. 2005, 22, 1024–1031. [Google Scholar] [CrossRef] [PubMed]
- Kimman, T.G.; Cornelissen, L.A.; Moormann, R.J.; Rebel, J.M.; Stockhofe-Zurwieden, N. Challenges for porcine reproductive and respiratory syndrome virus (PRRSV) vaccinology. Vaccine 2009, 27, 3704–3718. [Google Scholar] [CrossRef]
- Charerntantanakul, W. Porcine reproductive and respiratory syndrome virus vaccines: Immunogenicity, efficacy and safety aspects. World J. Virol. 2012, 1, 23–30. [Google Scholar] [CrossRef]
- Peng, N.; Zhou, P.; Pei, Y.; Lin, C.; Li, H.; Feng, Z.; Liu, X.; Chen, Y.; Wu, Z.; Ma, J.; et al. Genetic background influences pig responses to porcine reproductive and respiratory syndrome virus. Front. Vet. Sci. 2023, 10, 1289570. [Google Scholar]
- Mateu, E.; Diaz, I. The challenge of PRRS immunology. Vet. J. 2008, 177, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Opriessnig, T.; Giménez-Lirola, L.G.; Halbur, P.G. PRRSV: Interaction with Other Respiratory Pathogens. Pig333, 29 July 2013. Available online: https://www.pig333.com/articles/prrsv-interaction-with-other-respiratory-pathogens_7443/ (accessed on 25 May 2025).
- Fiers, J.; Cay, A.B.; Maes, D.; Tignon, M. A Comprehensive Review on Porcine Reproductive and Respiratory Syndrome Virus with Emphasis on Immunity. Vaccines 2024, 12, 935. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, H.; Li, R.; Xu, S.; Guo, J.; Xing, G.; Jia, B.; Qiao, S.; Chen, X.-X.; Zhang, G. PRRSV non-structural protein 5 inhibits antiviral innate immunity by degrading multiple proteins of RLR signaling pathway through FAM134B-mediated ER-phagy. J. Virol. 2024, 98, e0081624. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Ouchi, S.; Kato, K.; Komoda, M.; Higuchi, A.; Yamada, T.; Kobayashi, Y.; Ono, M. The first outbreak of predicted PRRS in Japan. (1) The case in Gunma Prefecture. Proc. Jpn. Pig Vet. Soc. 1995, 26, 6–9. (In Japanese) [Google Scholar]
- Murakami, Y.; Kato, A.; Tsuda, T.; Morozumi, T.; Miura, Y.; Sugimura, T. Isolation and Serological Characterization of Porcine Reproductive and Respiratory Syndrome (PRRS) Viruses from Pigs with Reproductive and Respiratory Disorders in Japan. J. Vet. Med. Sci. 1994, 56, 891–894. [Google Scholar] [CrossRef]
- Shimizu, M.; Yamada, S.; Murakami, Y.; Morozumi, T.; Kobayashi, H.; Mitani, K.; Ito, N.; Kubo, M.; Kimura, K.; Kobayashi, M.; et al. Isolation of porcine reproductive and respiratory syndrome (PRRS) virus from Heko-Heko disease of pigs. J. Vet. Med. Sci. 1994, 56, 389–391. [Google Scholar] [CrossRef]
- Yoshii, M.; Kaku, Y.; Murakami, Y.; Shimizu, M.; Kato, K.; Ikeda, H. Genetic variation and geographic distribution of porcine reproductive and respiratory syndrome virus in Japan. Arch. Virol. 2005, 150, 2313–2324. [Google Scholar] [CrossRef]
- Iseki, H.; Takagi, M.; Miyazaki, A.; Katsuda, K.; Mikami, O.; Tsunemitsu, H. Genetic analysis of ORF5 in porcine reproductive and respiratory syndrome virus in Japan. Microbiol. Immunol. 2011, 55, 211–216. [Google Scholar] [CrossRef]
- Iseki, H.; Takagi, M.; Kawashima, K.; Shibahara, T.; Kuroda, Y.; Tsunemitsu, H. Type 1 porcine reproductive and respiratory syndrome virus emerged in Japan. In Proceedings of the 22nd International Pig Veterinary Society Congress, Jeju, Republic of Korea, 10–13 June 2012; p. 978. [Google Scholar]
- Iseki, H.; Morozumi, T.; Takagi, M.; Kawashima, K.; Shibahara, T.; Uenishi, H.; Tsunemistu, H. Genomic sequence and virulence evaluation of MN184A-like porcine reproductive and respiratory syndrome virus in Japan. Microbiol. Immunol. 2016, 60, 824–834. [Google Scholar] [CrossRef]
- Kyutoku, F.; Yokoyama, T.; Sugiura, K. Genetic Diversity and Epidemic Types of Porcine Reproductive and Respiratory Syndrome (PRRS) Virus in Japan from 2018 to 2020. Epidemiologia 2022, 3, 285–296. [Google Scholar] [CrossRef]
- Trevisan, G.; Magstadt, D.; Woods, A.; Sparks, J.; Zeller, M.; Li, G.; Krueger, K.M.; Saxena, A.; Zhang, J.; Gauger, P.C.; et al. A recombinant porcine reproductive and respiratory syndrome virus type 2 field strain derived from two PRRSV-2-modified live virus vaccines. Front. Vet. Sci. 2023, 10, 1149293. [Google Scholar] [CrossRef]
- Ruedas-Torres, I.; Rodríguez-Gómez, I.M.; Sánchez-Carvajal, J.M.; Larenas-Muñoz, F.; Gómez-Laguna, J.; Pallarés, F.J.; Carrasco, L.; Oleksiewicz, M.B.; Risalde, M.Á.; Botti, S.; et al. The jigsaw of PRRSV virulence. Vet. Microbiol. 2021, 260, 109168. [Google Scholar] [CrossRef] [PubMed]
- Yoshii, M.; Okinaga, T.; Miyazaki, A.; Kato, K.; Ikeda, H.; Tsunemitsu, H. Genetic polymorphism of the nsp2 gene in North American type-Porcine reproductive and respiratory syndrome virus. Arch. Virol. 2008, 153, 1173–1178. [Google Scholar] [CrossRef] [PubMed]
- Iseki, H.; Kawashima, K.; Takagi, M.; Shibahara, T.; Mase, M. Studies on heterologous protection between Japanese type 1 and type 2 porcine reproductive and respiratory syndrome virus isolates. J. Vet. Med. Sci. 2020, 82, 935–942. [Google Scholar] [CrossRef]
- Iseki, H.; Takagi, M.; Kawashima, K.; Shibahara, T.; Kuroda, Y.; Tsunemitsu, H.; Yamakawa, M. Pathogenicity of emerging Japanese type 1 porcine reproductive and respiratory syndrome virus in experimentally infected pigs. J. Vet. Med. Sci. 2015, 77, 1507–1510. [Google Scholar] [CrossRef]
- Ishizeki, S.; Ishikawa, H.; Adachi, Y.; Yamazaki, H.; Yamane, I. Study on association of productivity and farm level status of porcine reproductive and respiratory syndrome in pig farms in Japan. Nihon Chikusan Gakkaiho 2014, 85, 171–177. (In Japanese) [Google Scholar] [CrossRef]
- Yamane, I. Evaluation of the economical losses due to the porcine reproductive and respiratory syndrome. Proc. Jpn. Pig Vet. Soc. 2013, 61, 1–4. (In Japanese) [Google Scholar]
- Yim-im, W.; Anderson, T.K.; Paploski, I.A.D.; VanderWaal, K.; Gauger, P.; Krueger, K.; Shi, M.; Main, R.; Zhang, J.Q.; Chao, D.Y. Refining PRRSV-2 genetic classification based on global ORF5 sequences and investigation of their geographic distributions and temporal changes. Microbiol. Spectr. 2023, 11, e02916-23. [Google Scholar] [CrossRef]
- Yonezawa, Y.; Taira, O.; Omori, T.; Tsutsumi, N.; Sugiura, K. First detection of NADC34-like porcine reproductive and respiratory syndrome virus strains in Japan. J. Vet. Med. Sci. 2025, 87, 110–114. [Google Scholar] [CrossRef]
- VanderWaal, K.; Pamornchainavakul, N.; Kikuti, M.; Zhang, J.; Zeller, M.; Trevisan, G.; Rossow, S.; Schwartz, M.; Linhares, D.C.L.; Holtkamp, D.J.; et al. PRRSV-2 variant classification: A dynamic nomenclature for enhanced monitoring and surveillance. mSphere 2024, 9, e00709-24. [Google Scholar]
- Ramirez, M.; Bauermann, F.V.; Navarro, D.; Rojas, M.; Manchego, A.; Nelson, E.A.; Diel, D.G.; Rivera, H. Detection of porcine reproductive and respiratory syndrome virus (PRRSV) 1-7-4-type strains in Peru. Transbound. Emerg. Dis. 2019, 66, 1107–1113. [Google Scholar] [CrossRef]
- Zhang, H.L.; Zhang, W.L.; Xiang, L.R.; Leng, C.L.; Tian, Z.J.; Tang, Y.D.; Cai, X.H. Emergence of novel porcine reproductive and respiratory syndrome viruses (ORF5 RFLP 1-7-4 viruses) in China. Vet. Microbiol. 2018, 222, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Van Geelen, A.M.; Anderson, T.K.; Lager, K.M.; Das, P.B.; Otis, N.J.; Montiel, N.A.; Miller, L.C.; Kulshreshtha, V.; Buckley, A.C.; Brockmeier, S.L. Porcine reproductive and respiratory disease virus: Evolution and recombination yields distinct ORF5 RFLP 1-7-4 viruses with individual pathogenicity. Virology 2017, 513, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Mei, Y.; Chen, J.; Chen, Y.; Huang, C.; Chen, X.; Zhang, Z.; Li, Y.; Zhou, L.; Wu, J.; Liu, X.; et al. Porcine Reproductive and Respiratory Syndrome Virus Prevalence and Pathogenicity of One NADC34-like Virus Isolate Circulating in China. Microorganisms 2025, 13, 796. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.-Z.; Wang, F.-X.; Han, X.-Y.; Guo, H.; Liu, C.-Y.; Hou, L.-N.; Wang, Y.-X.; Zheng, H.; Wang, L.; Wen, Y.-J. Recent advances in the study of NADC34-like porcine reproductive and respiratory syndrome virus in China. Front. Microbiol. 2022, 13, 950402. [Google Scholar] [CrossRef]
- Kim, S.C.; Moon, S.H.; Jeong, C.G.; Park, G.S.; Park, J.Y.; Jeoung, H.Y.; Shin, G.E.; Ko, M.K.; Kim, S.H.; Lee, K.K.; et al. Whole-genome sequencing and genetic characteristics of representative porcine reproductive and respiratory syndrome virus (PRRSV) isolates in Korea. Virol. J. 2022, 19, 66. [Google Scholar] [CrossRef]
- Fujita, Y. Report on Vaccine Usage Survey. All About SWINE 2018, 52, 23–25. (In Japanese) [Google Scholar]
- Li, L.; Tong, X.; Shu, J.; Feng, H.; Quan, Y.; He, Y. Efficacy Evaluation of a VR-2332-Based Modified Live Vaccine Against NADC30-like PRRSV in China. Vaccines 2025, 13, 538. [Google Scholar] [CrossRef]
- Wei, C.; Dai, A.; Fan, J.; Li, Y.; Chen, A.; Zhou, X.; Luo, M.; Yang, X.; Liu, J. Efficacy of Type 2 PRRSV vaccine against challenge with the Chinese lineage 1 (NADC30-like) PRRSVs in pigs. Sci. Rep. 2019, 9, 10781. [Google Scholar] [CrossRef]
- Yuan, L.; Zhu, Z.; Fan, J.; Li, Q.; Liu, P.; Li, X. Efficacy of a Commercial PRRSV Vaccine on NADC34-Like PRRSV Challenge. Transbound. Emerg. Dis. 2023, 2023, 4509261. [Google Scholar] [CrossRef]
- Zhang, R.; Zhu, L.; Li, Y.; Yan, Y.; Wang, Z.; Wang, X.; Zhang, J.; Ji, H.; Zhang, Y.; Zhou, E.-M.; et al. Protective evaluation of the commercialized porcine reproductive and respiratory syndrome virus vaccines in piglets challenged by NADC34-like strain. Front. Microbiol. 2024, 15, 1422335. [Google Scholar]
- Luo, Y.; Xu, J.; Xia, W.; Hou, G.; Wang, Z.; Wu, Y.; Cui, L.; Wang, X.; Xiao, Y.; Zhang, G.; et al. Efficacy of a reduced-dosage PRRS MLV vaccine against a NADC34-like strain of porcine reproductive and respiratory syndrome virus. Front. Vet. Sci. 2024, 11, 1493384. [Google Scholar]
- Iseki, H.; Kawashima, K.; Shibahara, T.; Mase, M. Immunity against a Japanese local strain of porcine reproductive and respiratory syndrome virus decreases viremia and symptoms of a highly pathogenic strain. BMC Vet. Res. 2021, 17, 156. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Miller, L.C.; Sang, Y. Current Status of Vaccines for Porcine Reproductive and Respiratory Syndrome: Interferon Response, Immunological Overview, and Future Prospects. Vaccines 2024, 12, 606. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Gao, Y.; Su, T.; Zhang, L.; Zhou, H.; Zhang, J.; Sun, H.; Bai, J.; Jiang, P. Nanoparticle Vaccine Triggers Interferon-Gamma Production and Confers Protective Immunity against Porcine Reproductive and Respiratory Syndrome Virus. ACS Nano. 2025, 9, 852–870. [Google Scholar] [CrossRef]
- Kawabata, T. Control measures against porcine reproductive and respiratory syndrome in a high-density swine production area. Proc. Jpn. Pig Vet. Soc. 2014, 63, 22–26. (In Japanese) [Google Scholar]
- Dee, S.; Brands, L.; Edler, R.; Schelkopf, A.; Nerem, J.; Spronk, G.; Kikuti, M.; Corzo, C.A. Further Evidence That Science-Based Biosecurity Provides Sustainable Prevention of Porcine Reproductive and Respiratory Syndrome Virus Infection and Improved Productivity in Swine Breeding Herds. Animals 2024, 14, 2530. [Google Scholar] [CrossRef] [PubMed]
- Havas, K.A.; Brands, L.; Cochrane, R.; Spronk, G.D.; Nerem, J.; Dee, S.A. An assessment of enhanced biosecurity interventions and their impact on porcine reproductive and respiratory syndrome virus outbreaks within a managed group of farrow-to-wean farms, 2020–2021. Front. Vet. Sci. 2023, 9, 952383. [Google Scholar]
- Fukunaga, W.; Hayakawa-Sugaya, Y.; Koike, F.; Diep, N.V.; Kojima, I.; Yoshida, Y.; Suda, Y.; Masatani, T.; Ozawa, M. Newly-designed primer pairs for the detection of type 2 porcine reproductive and respiratory syndrome virus genes. J. Virol. Methods 2021, 291, 114071. [Google Scholar] [CrossRef]
- Mizukami, Y. Construction of regional network for the PRRS free project. Proc. Jpn. Pig Vet. Soc. 2013, 61, 11–13. (In Japanese) [Google Scholar]
- Dee, S. How to control and eliminate PRRS from swine herds on farm and regional level. CAB Rev. 2012, 7, 1–9. [Google Scholar]
- Farm Stage Definitions for Promoting Eradication of Porcine Reproductive and Respiratory Syndrome (PRRS). Available online: https://site-pjet.com/wp-content/uploads/2017/07/document2.pdf (accessed on 25 May 2025). (In Japanese).
- Nagai, Y.; Ito, M. An Approach to PRRSV (Porcine Reproductive and Respiratory Syndrome Virus) Control in the Tahara Area: Local Efforts. In Proceedings of the 62nd Aichi Prefecture Livestock Technology Achievement Presentation Meeting, Aichi, Japan, 25 April 2021; Available online: https://www.pref.aichi.jp/uploaded/attachment/421433.pdf (accessed on 25 May 2025). (In Japanese).
- Magalhães, E.S.; Zimmerman, J.J.; Holtkamp, D.J.; Classen, D.M.; Groth, D.D.; Glowzenski, L.; Philips, R.; Silva, G.S.; Linhares, D.C.L. Next Generation of Voluntary PRRS Virus Regional Control Programs. Front. Vet. Sci. 2021, 8, 769312. [Google Scholar] [CrossRef]
- Baker, J.P.; Rovira, A.; VanderWaal, K. Repeat offenders: PRRSV-2 clinical re-breaks from a whole genome perspective. Vet. Microbiol. 2025, 302, 110411. [Google Scholar] [CrossRef]
- Chandra, A.M.; Linhares, D.C.L.; Trevisan, G.; Crim, B.; Burrough, E.; Gauger, P.; Madson, D.; Thomas, J.; Zeller, M.; Zhang, J.; et al. Harnessing sequencing data for porcine reproductive and respiratory syndrome virus (PRRSV): Tracking genetic evolution dynamics and emerging sequences in US swine industry. Front. Vet. Sci. 2025, 6, 1571020. [Google Scholar] [CrossRef]
- He, Z.; Li, F.; Liu, M.; Liao, J.; Guo, C. Porcine Reproductive and Respiratory Syndrome Virus: Challenges and Advances in Vaccine Development. Vaccines 2025, 13, 260. [Google Scholar] [CrossRef]
- Ye, Z.; Zhang, Z.; Zhu, Z.; Sun, Z.; Tian, K.; Li, X. A Live-Attenuated Chimeric Vaccine Candidate Against the Emerging NADC34-Like PRRSV. Vet. Sci. 2025, 12, 290. [Google Scholar] [CrossRef]
- Liu, J.; Liu, C.; Xu, Y.; Yang, Y.; Li, J.; Dai, A.; Huang, C.; Luo, M.; Wei, C. Molecular Characteristics and Pathogenicity of a Novel Recombinant Porcine Reproductive and Respiratory Syndrome Virus Strain from NADC30-, NADC34-, and JXA1-Like Strains That Emerged in China. Microbiol. Spectr. 2022, 10, e0266722. [Google Scholar] [CrossRef]
Vaccine Name | Type | Lineage | Manufacturer |
---|---|---|---|
Ingelvac® PRRS MLV | MLV (Type 2) | Lineage 5 | Boehringer Ingelheim (Ingelheim am Rhein, Germany) |
Fostera® PRRS | MLV (Type 2) | Lineage 8 | Zoetis (Parsippany, NJ, USA) |
Nisseiken PRRS Vaccine ME | KV (Type 2) | Lineage 4 | Nisseiken Co., Ltd. (Tokyo, Japan) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taira, O.; Kato, A.; Tsutsumi, N.; Sugiura, K. Epidemiological Review of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) in Japan: From Discovery and Spread to Economic Losses and Future Prospects. Vet. Sci. 2025, 12, 554. https://doi.org/10.3390/vetsci12060554
Taira O, Kato A, Tsutsumi N, Sugiura K. Epidemiological Review of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) in Japan: From Discovery and Spread to Economic Losses and Future Prospects. Veterinary Sciences. 2025; 12(6):554. https://doi.org/10.3390/vetsci12060554
Chicago/Turabian StyleTaira, Osamu, Atsushi Kato, Nobuyuki Tsutsumi, and Katsuaki Sugiura. 2025. "Epidemiological Review of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) in Japan: From Discovery and Spread to Economic Losses and Future Prospects" Veterinary Sciences 12, no. 6: 554. https://doi.org/10.3390/vetsci12060554
APA StyleTaira, O., Kato, A., Tsutsumi, N., & Sugiura, K. (2025). Epidemiological Review of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) in Japan: From Discovery and Spread to Economic Losses and Future Prospects. Veterinary Sciences, 12(6), 554. https://doi.org/10.3390/vetsci12060554