Role of Calcium Propionate and Monensin on Performance, Rumen Fermentation Patterns, and Ruminal Bacterial Populations in Growing Lambs
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Animals, Feeding, and Management
2.3. Sample Collection and Analytical Methods
2.4. Statical Analysis
3. Results
3.1. Animal Performance
3.2. Ruminal Fermentation
3.3. Ruminal Methanogenics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ku-Vera, J.C.; Castelán-Ortega, O.A.; Galindo-Maldonado, F.A.; Arango, J.; Chirinda, N.; Jiménez-Ocampo, R.; Valencia-Salazar, S.S.; Flores-Santiago, E.J.; Montoya-Flores, M.D.; Molina-Botero, I.C.; et al. Review: Strategies for enteric methane mitigation in cattle fed tropical forages. Animal 2020, 14, s453–s463. [Google Scholar] [CrossRef]
- Johnson, K.A.; Johnson, D.E. Methane emission from the cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Kamke, J.; Kittelmann, S.; Soni, P.; Li, Y.; Tavendale, M.; Ganesh, S.; Janssen, P.H.; Shi, W.; Froula, J.; Rubin, E.M.; et al. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilization. Microbiome 2016, 4, 56. [Google Scholar] [CrossRef] [PubMed]
- Roque, B.M.; Salwen, J.K.; Kinley, R.; Kebreab, E. Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. J. Clean Prod. 2019, 234, 132–138. [Google Scholar] [CrossRef]
- Moraes, L.E.; Strathe, A.B.; Fadel, J.G.; Casper, D.P.; Kebreab, E. Prediction of enteric methane emissions from cattle. Glob. Change Biol. 2014, 20, 2140–2148. [Google Scholar] [CrossRef]
- Ibañez, C.; Criscioni, P.; Arriaga, H.; Merino, P.; Espinos, F.J.; Fernandez, C. Murciano-Granadina goat performance and methane emission after replacing barley grain with fibrous byproducts. PLoS ONE 2016, 11, e0151215. [Google Scholar] [CrossRef] [PubMed]
- Grossi, G.; Goglio, P.; Vitali, A.; Williams, A.G. Livestock and climate change: Impact of livestock on climate and mitigation strategies. Anim. Front. 2019, 9, 69–76. [Google Scholar] [CrossRef]
- Thirumalaisamy, G.; Malik, P.K.; Kolte, A.P.; Bhatta, R. In vitro evaluation of graded level of Silkworm pupae (Bombyx mori) oil on methane production, fermentation characteristics, and protozoal populations. Vet. World 2020, 13, 586. [Google Scholar] [CrossRef]
- Chalupa, W. Manipulation of rumen fermentation. In Recent Developments in Ruminant Nutrition—2; Haresign, W., Cole, D.J.A., Eds.; Butterworth-Heinemann: London, UK, 1988; pp. 1–18. [Google Scholar]
- Kim, M.; Felix, T.L.; Loerch, S.C.; Yu, Z. Effect of haylage and monensin supplementation on ruminal bacterial communities of feedlot cattle. Curr. Microbiol. 2014, 69, 169–175. [Google Scholar] [CrossRef]
- Patra, A.; Park, T.; Kim, M.; Yu, Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 2017, 8, 13. [Google Scholar] [CrossRef]
- Appuhamy, J.R.N.; Strathe, A.B.; Jayasundara, S.; Wagner-Riddle, C.; Dijkstra, J.; France, J.; Kebreab, E. Anti-methanogenic effects of monensin in dairy and beef cattle: A meta-analysis. J. Dairy Sci. 2013, 96, 5161–5173. [Google Scholar] [CrossRef]
- Lee-Rangel, H.; Mendoza, G.D.; Gonzalez, S. Effect of calcium propionate and sorghum level on lamb performance. Anim. Feed Sci. Technol. 2012, 177, 237–241. [Google Scholar] [CrossRef]
- Miranda, L.A.; Lee, R.H.A.; Mendoza, M.G.D.; Crosby, G.M.M.; Relling, A.E.; Pinos, R.J.M.; Rojo, R.; González, M. Influence of Calcium Propionate on In Vitro Fermentation of Sorghum-Based Diets. Revista de la Facultad de Ciencias Agrarias de la Universidad Nacional de Cuyo. 2017. Available online: http://revista.fca.uncu.edu.ar/index.php?option=com_content&view=article&id=459:influence-of-calcium-propionate-on-in-vitro-fermentation-of-sorghum-based-diets&catid=25:2017-06-19-19-12-51&Itemid=32 (accessed on 1 January 2020).
- Stevenson, D.; Weimer, P.J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 2007, 75, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Lan, W.; Yang, C. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Sci. Total Environ. 2019, 654, 1270–1283. [Google Scholar] [CrossRef] [PubMed]
- Shima, S.; Warkentin, E.; Thauer, R.; Ermler, U. Review. Structure and function of enzymes involved in the methanogenic pathway utilizing carbone dioxide and Molecular Hydrogen. J. Biosci. Bioeng. 2002, 93, 519–530. [Google Scholar] [CrossRef]
- Volmer, J.G.; McRae, H.; Morrison, M. The evolving role of methanogenic archaea in mammalian microbiomes. Front. Microbiol. 2023, 14, 1268451. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Erwin, E.S.; Marco, G.J.; Emery, E.M. Volatile fatty acids analysis of blood and rumen fluid by gas chromatography. J. Dairy Sci. 1961, 44, 1768–1771. [Google Scholar] [CrossRef]
- Russell, J.B.; Strobel, H.J. Effect of ionophores on ruminal fermentation. Appl. Environ. Microbiol. 1989, 55, 1–6. [Google Scholar]
- Vasta, V.; Yáñez-Ruiz, D.R.; Mele, M.; Serra, A.; Luciano, G.; Lanza, M.; Bondi, L.; Priolo, A. Bacterial and protozoal communities and fatty acid profile in the rumen of sheep fed a diet containing added tannins. Appl. Environ. Microbiol. 2010, 76, 2549–2555. [Google Scholar]
- Sall, J.; Lehman, A.; Stephens, M.; Creighton, L. JMP® Start Statistics: A Guide to Statistics and Data Analysis, 5th ed.; SAS Institute Inc.: Cary, NC, USA, 2012. [Google Scholar]
- Beauchemin, K.A.; Ungerfeld, E.M.; Abdalla, A.L.; Alvarez, C.; Arndt, C.; Becquet, P.; Benchaar, C.; Berndt, A.; Mauricio, R.M.; McAllister, T.A.; et al. Invited review: Current enteric methane mitigation options. J. Dairy Sci. 2022, 105, 9297–9326. [Google Scholar] [CrossRef]
- Marques, R.D.S.; Cooke, R.F. Effects of ionophores on ruminal function of beef cattle. Animals 2021, 11, 2871. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, M.G.D.; Pinos, J.; Lee, R.H.; Hernández, G.P.A.; Rojo, R.; Relling, A.E. Effects of dietary calcium propionate on growth performance and carcass characteristics of finishing lambs. Anim. Prod. Sci. 2017, 56, 1194–1198. [Google Scholar] [CrossRef]
- Jia, P.; Cui, K.; Ma, T.; Wan, F.; Wang, W.; Yang, D.; Wang, Y.; Guo, B.; Zhao, L.; Diao, Q. Influence of dietary supplementation with Bacillus licheniformis and Saccharomyces cerevisiae as alternatives to monensin on growth performance, antioxidant, immunity, ruminal fermentation and microbial diversity of fattening lambs. Sci. Rep. 2018, 8, 16712. [Google Scholar] [CrossRef]
- Cifuentes-López, O.; Lee-Rangel, H.A.; Mendoza, G.D.; Delgado-Sánchez, P.; Guerrero-González, L.; Chay-Canul, A.; Pinos-Rodríguez, J.M.; Flores-Ramirez, R.; Roque-Jiménez, J.A.; Relling, A.E. Effects of dietary calcium propionate supplementation on hypothalamic neuropeptide messenger RNA expression and growth performance in finishing Rambouillet lambs. Life 2021, 11, 566. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Q.; Wang, B.; Li, Z.; Luo, H.L.; Wang, Y.J.; Zhang, C.; Jian, L.Y.; Gao, Y.F.; Lu, W.; Liu, M.; et al. Effects of rumen-protected folic acid addition in maternal and post-weaning diets on growth performance, total tract digestibility, ruminal fermentation and blood metabolites in lambs. Anim. Feed Sci. Technol. 2020, 260, 114364. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Y.; Wang, H.; Nan, X.; Guo, Y.; Xiong, B. Calcium propionate supplementation has minor effects on major ruminal bacterial community composition of early lactation dairy cows. Front. Microbi. 2022, 13, 847488. [Google Scholar] [CrossRef]
- Velázquez-Cruz, L.A.; Hernández-García, P.A.; Mendoza-Martínez, G.D.; Espinosa-Ayala, E.; Lee-Rangel, H.A.; Vázquez-Silva, G.; Razo-Ortiz, P.B.; Diaz-Galvan, C.; Orzuna-Orzuna, J.F.; de la Torre-Hernández, M.E. Growth Performance, Rumen Fermentation, and Meat Quality of Finishing Lambs Supplemented with Calcium Propionate or Sodium Propionate. Vet. Sci. 2024, 11, 604. [Google Scholar] [CrossRef]
- Zhang, J.; Gaowa, N.; Wang, Y.; Li, H.; Cao, Z.; Yang, H.; Zhang, X.; Li, S. Complementary hepatic metabolomics and proteomics reveal the adaptive mechanisms of dairy cows to the transition period. J. Dairy Sci. 2023, 106, 2071–2088. [Google Scholar] [CrossRef]
- Martínez-Aispuro, J.; Sánchez-Torres, M.; Mendoza-Martínez, G.; Cordero Mora, J.; Figueroa-Velasco, J.; Ayala-Monter, M.; Crosby-Galván, M. Addition of calcium propionate to finishing lamb diets. Vet. Mex. 2019, 5, 37–46. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, Y.; Wang, H.; Nan, X.; Wang, Y.; Guo, Y.; Xiong, B. Alterations in the milk metabolome of dairy cows supplemented with different levels of calcium propionate in early lactation. Metabolites 2022, 12, 699. [Google Scholar] [CrossRef] [PubMed]
- Polizel, D.M.; Martins, A.S.; Miszura, A.A.; Ferraz, M.V.D.C.; Bertoloni, A.V.; Oliveira, G.B.; Roman-Barroso, J.P.; MaiaFerreira, E.; Vaz-Pires, A. Low doses of monensin for lambs fed diets containing high level of ground flint corn. Sci. Agric. 2020, 78, e20190263. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Wang, Y.L.; Chen, Y.Y.; Wang, W.K.; Zhang, L.T.; Luo, H.L.; Yang, H.J. Nitroethanol in comparison with monensin exhibits greater feed efficiency through inhibiting rumen methanogenesis more efficiently and persistently in feedlotting lambs. Animals 2019, 9, 784. [Google Scholar] [CrossRef] [PubMed]
- Aderinboye, R.Y.; Onwuka, C.F.; Arigbede, O.M.; Oduguwa, O.O.; Aina, A.B. Effect of dietary monensin inclusion on performance, nutrient utilisation, rumen volatile fatty acid concentration and blood status of West African dwarf bucks fed with basal diets of forages. Trop. Anim. Health Prod. 2012, 44, 1079–1087. [Google Scholar] [CrossRef]
- Chapman, C.E.; Chester-Jones, H.; Ziegler, D.; Clapper, J.A.; Erickson, P.S. Effects of cinnamaldehyde or monensin on performance of weaned Holstein dairy heifers. J. Dairy Sci. 2017, 100, 1712–1719. [Google Scholar] [CrossRef] [PubMed]
- Susin, I.; Mendes, C.Q.; Pires, A.V.; Packer, I.U. Monensin or decoquinate in high concentrate diets fed to Santa Ines lambs. J. Dairy Sci. 2004, 87, 40. [Google Scholar]
- Moss, A.R.; Pierre, J.J.; Newbold, J. Review article Methane production by ruminants: Its contribution to global warming. Ann. Zootech. 2000, 49, 231–253. [Google Scholar] [CrossRef]
- Hook, K.C.; Machen, R.V.; Wester, D.B.; McCuistion, K.C.; Gonzalez, D.A.; Hernandez, A.G.; Bell, N.L. Effects of cyclic monensin feeding on ruminal function in cannulated beef steers consuming low-quality forage. Appl. Anim. Sci. 2022, 38, 129–140. [Google Scholar] [CrossRef]
- Thomas, P.C.; Martin, P.A. The influence of nutrient balance on milk yield and composition. In Nutrition and Lactation in the Dairy Cow; Garnsworthy, P.C., Ed.; Butterworths: London, UK, 1988; pp. 97–118. [Google Scholar]
- He, T.; Wang, X.; Long, S.; Li, J.; Wu, Z.; Guo, Y.; Sun, F.; Chen, Z. Calcium Propionate Supplementation Mitigated Adverse Effects of Incubation Temperature Shift on In Vitro Fermentation by Modulating Microbial Composition. Fermentation 2023, 9, 544. [Google Scholar] [CrossRef]
- Fellner, V.; Spears, J.W. Effect of Calcium Propionate on Ruminal Soluble Calcium and Microbial Fermentation; Animal Science Departmental Report; North Carolina State University: Raleigh, NC, USA, 2005. [Google Scholar]
- Ferraro, M.S.; Mendoza, G.D.; Miranda, L.A.; Gutiérrez, C.G. In vitro gas production and ruminal fermentation of glycerol, propylene glycol and molasses. Anim. Feed Sci. Technol. 2009, 154, 112–118. [Google Scholar] [CrossRef]
- Bell, N.L.; Anderson, R.C.; Callaway, T.R.; Franco, M.O.; Sawyer, J.E.; Wickersham, T.A. Effect of monensin inclusion on intake, digestion, and ruminal fermentation parameters by Bos taurus indicus and Bos taurus taurus steers consuming bermudagrass hay. J. Anim. Sci. 2017, 95, 2736–2746. [Google Scholar] [CrossRef]
- Wittenberg, H.K.M.; Ominski, K.H.; Krause, D.O. Efficacy of ionophores in cattle diets for mitigation of enteric methane. J. Anim. Sci. 2006, 84, 1896–1906. [Google Scholar] [CrossRef]
- Osorio-Teran, A.I.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Martínez-Gomez, D.; Hernández-García, P.A.; Martínez-García, J.A. Effect of calcium propionate and monensin on in vitro digestibility and gas production. Rev. Bras. Zootec. 2017, 46, 348–353. [Google Scholar] [CrossRef]
- Garcia, C.C.G.; Mendoza, G.D.; González, S.; Cobos, M.; Ortega, M.E.; Ramirez, R. Effect of a yeast culture (Saccharomyces cerevisiae) and monensin on ruminal fermentation and digestion in sheep. Anim. Feed Sci. Technol. 2000, 83, 165–170. [Google Scholar] [CrossRef]
- Melchoir, E.A.; Hales, K.E.; Lindholm-Perry, A.K.; Freetly, H.C.; Wells, J.E.; Hemphill, C.N.; Wickersham, T.A.; Sawyer, J.E.; Myer, P.R. The effects of feeding monensin on rumen microbial communities and methagenesis in bred heifers fed in a dry lot. Livestock Sci. 2012, 212, 131–136. [Google Scholar] [CrossRef]
- Hook, S.E.; Northwood, K.S.; Wright, A.G.; McBride, B.W. Long-term monensin supplementation does not significantly affect the quantity or diversity of methanogens in the rumen of the lactating dairy cow. Appl. Environ. Microbiol. 2009, 75, 374–380. [Google Scholar] [CrossRef]
- Mendoza, M.G.D.; Britton, R.A.; Stock, R.A. Influence of ruminal protozoa on site and extent of starch digestion and ruminal fermentation. J. Anim. Sci. 1993, 71, 1572–1578. [Google Scholar] [CrossRef]
Control | MON | CaPr | MON + CaPr | |
---|---|---|---|---|
Ingredient, g/kg DM | ||||
Ground corn | 400 | 400 | 300 | 300 |
Soybean meal | 150 | 150 | 165 | 165 |
Molasses | 90 | 90 | 120 | 120 |
Corn stover | 340 | 340 | 385 | 385 |
Urea | 10 | 10 | 10 | 10 |
Minerals a | 10 | 0 | 10 | 0 |
Minerals with monensin | 0 | 10 | 0 | 10 |
Calcium propionate b | 0 | 0 | 10 | 10 |
Chemical composition (g/kg DM) | ||||
Dry matter | 905 | 896 | 886 | 891 |
Crude protein | 122 | 130 | 111 | 125 |
Neutral detergent fiber | 418 | 389 | 441 | 413 |
Acid detergent fiber | 205 | 214 | 217 | 209 |
ME, Mcal/kg c | 2.55 | 2.55 | 2.47 | 2.47 |
Target | Primer Sequence (5′-3′) | Temp. Annealing (°C) | Product Size (bp) |
---|---|---|---|
Genus Prevotella a | F:GGTGTCGGCTTAAGTGCCAT R:CGGACGTAAGGGCCGTGC | 58 | 83 |
Fibrobacter succinogenes a | F:GTTCGGAATTACTGGGCGTAAA R:CGCCTGCCCCTGAACTATC | 56 | 118 |
Ruminococcus albus c | F:CCACATTGGGACTGAGACAC R:CATTATCGTCCTTTAAGACAGGAG | 58 | 146 |
Selenomonas ruminantium c | F:TAAAAGTGCGGGGCTCAAC R:TCAGCGTCAGTTACAGTCCAGA | 60 | 123 |
Methanogenic bacteria c | F:TGTCAGGTGGTGTCGGATTC R:TTGTTCAGTGCGTAGTCGTATCC | 60 | 122 |
Total bacteria b | F:GTGSTGCAYGGYTGTCGTCA R:ACGTCRTCCMCACCTTCCTC | 56 | 110 |
Item | Treatment | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
Control | MON | CaPr | MON + CaPr | MON | CaPr | MON*CaPr | ||
Initial Body Weight, kg | 24.04 | 25.37 | 23.23 | 23.85 | 0.92 | 0.56 | 0.50 | 0.78 |
Final Body Weight, kg | 31.6 | 32.04 | 30.07 | 31.57 | 1.83 | 0.09 | 0.96 | 0.12 |
Dry Matter Intake, g/day | 1047 | 1097 | 1038 | 1070 | 0.02 | 0.14 | 0.51 | 0.75 |
Average Daily Gain, g/day | 180 | 159 | 163 | 184 | 0.015 | 0.96 | 0.80 | 0.18 |
Feed Conversion Ratio, ADG/DMI | 5.81 | 6.89 | 6.36 | 5.81 | 0.35 | 0.93 | 0.26 | 0.66 |
Item VFA (mol/100 mol) | Treatment | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Control | MON | CaPr | MON + CaPr | SEM | MON | CaPr | MON*CaPr | |
Acetate | 65.77 | 65.50 | 65.09 | 63.22 | 0.69 | 0.12 | 0.03 | 0.25 |
Propionate | 22.69 | 23.01 | 23.18 | 24.85 | 0.88 | 0.26 | 0.19 | 0.44 |
Butyrate | 11.51 | 11.47 | 11.70 | 11.90 | 0.43 | 0.85 | 0.48 | 0.78 |
Acetate/propionate | 2.04 | 2.11 | 2.17 | 2.05 | 0.14 | 0.48 | 0.81 | 0.84 |
Total VFA, mmol | 55.07 | 68.38 | 59.05 | 64.18 | 3.18 | 0.36 | 0.98 | 0.47 |
Ruminal pH | 6.69 | 6.46 | 6.74 | 6.67 | 0.09 | 0.10 | 0.16 | 0.38 |
CO2 (%) | 55.83 | 55.71 | 55.89 | 55.68 | 0.60 | 0.78 | 0.98 | 0.93 |
CH4 (%) | 35.69 | 35.52 | 35.04 | 33.49 | 0.56 | 0.13 | 0.02 | 0.22 |
Treatment | SEM | p-Value | ||||||
Control | MON | Ca-Pr | MON + PrCa | SEM | MON | PrCa | MON*CaPr | |
Fibrobacter succinogenes, CYC | 2.06 | 2.05 | 2.38 | 2.28 | 0.13 | 0.69 | 0.04 | 0.75 |
Genus Prevotella, CYC | 4.27 | 4.69 | 4.40 | 4.78 | 0.13 | 0.001 | 0.43 | 0.88 |
Ruminococcus albus, CYC | 2.64 | 2.84 | 3.29 | 3.29 | 0.12 | 0.44 | 0.001 | 0.41 |
Selenomonas ruminantium, CYC | 2.12 | 2.11 | 2.43 | 2.34 | 0.13 | 0.69 | 0.04 | 0.75 |
Methanogenic archaea, CYC | 2.48 | 2.39 | 2.06 | 2.25 | 0.04 | 0.27 | 0.001 | <0.001 |
Total bacteria, CYC | 7.00 | 7.64 | 7.46 | 7.22 | 0.17 | 0.24 | 0.89 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osorio-Terán, A.I.; Mendoza, G.D.; Miranda-Romero, L.A.; Martínez-Gomez, D.; Hernández-García, P.A.; Rangel-Ramírez, V.V.; Lee-Rangel, H.A. Role of Calcium Propionate and Monensin on Performance, Rumen Fermentation Patterns, and Ruminal Bacterial Populations in Growing Lambs. Vet. Sci. 2025, 12, 298. https://doi.org/10.3390/vetsci12040298
Osorio-Terán AI, Mendoza GD, Miranda-Romero LA, Martínez-Gomez D, Hernández-García PA, Rangel-Ramírez VV, Lee-Rangel HA. Role of Calcium Propionate and Monensin on Performance, Rumen Fermentation Patterns, and Ruminal Bacterial Populations in Growing Lambs. Veterinary Sciences. 2025; 12(4):298. https://doi.org/10.3390/vetsci12040298
Chicago/Turabian StyleOsorio-Terán, Amada Isabel, German D. Mendoza, Luis A. Miranda-Romero, Daniel Martínez-Gomez, Pedro A. Hernández-García, Velia Verónica Rangel-Ramírez, and Héctor A. Lee-Rangel. 2025. "Role of Calcium Propionate and Monensin on Performance, Rumen Fermentation Patterns, and Ruminal Bacterial Populations in Growing Lambs" Veterinary Sciences 12, no. 4: 298. https://doi.org/10.3390/vetsci12040298
APA StyleOsorio-Terán, A. I., Mendoza, G. D., Miranda-Romero, L. A., Martínez-Gomez, D., Hernández-García, P. A., Rangel-Ramírez, V. V., & Lee-Rangel, H. A. (2025). Role of Calcium Propionate and Monensin on Performance, Rumen Fermentation Patterns, and Ruminal Bacterial Populations in Growing Lambs. Veterinary Sciences, 12(4), 298. https://doi.org/10.3390/vetsci12040298