Comparative Prediction of Methane Production In Vitro Using Multiple Regression Model and Backpropagation Neural Network Based on Cornell Net Carbohydrate and Protein System
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Construction of Two Datasets
2.2. In Vitro Fermentation
2.3. Chemical Analysis of the Mixed Ration
2.4. Calculations
2.5. Construction of MLR Prediction Models
2.6. Construction of BPNN Prediction Models
- >>
- Independent variable_train = Independent variable_train’;
- >>
- Dependent variable_train = Dependent variable_train’;
- >>
- Independent variable_validation = Independent variable_validation’;
- >>
- net = newff (Independent variable_train, Dependent variable_train, hidden layer number);
- >>
- net.trainParam.epochs = 1000;
- >>
- net.trainParam.lr = 0.1;
- >>
- net.trainParam.goal = 0.00001;
- >>
- net = train(net, Independent variable_train, Dependent variable_train);
- >>
- Predicted Dependent variable_validation = sim(net, Independent variable_validaton);
- >>
- Predicted Dependent variable_validation
2.7. Comparison of the Predictive Performance of MLR and BPNN
2.8. Statistical Analysis
3. Results
3.1. The CH4 and CO2 Productions Through In Vitro Fermentation
3.2. The Multiple Regression Relationship Between CH4 Emissions and CNCPS C-Components
(R2 = 0.85, n = 60, p < 0.0001, MLR model)
(R2 = 0.93, n = 60, p < 0.0001, MLR model)
3.3. The BPNN Model
3.4. Comparative Validation of the MLR and BPNN Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Predybaylo, E.; Lelieveld, J.; Pozzer, A.; Gromov, S.; Zimmermann, P.; Osipov, S.; Klingmüller, K.; Steil, B.; Stenchikov, G.; McCabe, M. Surface temperature and ozone responses to the 2030 Global Methane Pledge. Clim. Change 2025, 178, 78. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Global Warming of 1.5 °C; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2018; pp. 3–24. [Google Scholar]
- CCAC. Global Methane Assessment: Benefits and Costs of Mitigating Methane Emissions; United Nations Climate and Clean Air Coalition: Paris, France, 2021; Available online: https://www.ccacoalition.org/resources/global-methane-assessment-full-report (accessed on 1 May 2025).
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Beauchemin, K.A.; Kebreab, E.; Cain, M.; VandeHaar, M.J. The path to net-zero in dairy production: Are pronounced decreases in enteric methane achievable? Annu. Rev. Anim. Biosci. 2025, 13, 325–341. [Google Scholar] [CrossRef]
- Hristov, A.N.; Ott, T.; Tricarico, J.; Rotz, A.; Waghorn, G.; Adesogan, A.; Dijkstra, J.; Montes, F.; Oh, J.; Kebreab, E. Special topics—Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options. J. Anim. Sci. 2013, 91, 5095–5113. [Google Scholar] [CrossRef]
- Ellis, J.; Kebreab, E.; Odongo, N.; McBride, B.; Okine, E.; France, J. Prediction of methane production from dairy and beef cattle. J. Dairy Sci. 2007, 90, 3456–3466. [Google Scholar] [CrossRef]
- Ribeiro, R.; Rodrigues, J.; Maurício, R.; Borges, A.; e Silva, R.R.; Berchielli, T.; Valadares Filho, S.; Machado, F.; Campos, M.; Ferreira, A. Predicting enteric methane production from cattle in the tropics. Animal 2020, 14, s438–s452. [Google Scholar] [CrossRef] [PubMed]
- Donadia, A.B.; Torres, R.N.S.; Silva, H.M.d.; Soares, S.R.; Hoshide, A.K.; Oliveira, A.S.d. Factors affecting enteric emission methane and predictive models for dairy cows. Animals 2023, 13, 1857. [Google Scholar] [CrossRef]
- Wang, Y.; Song, W.; Wang, Q.; Yang, F.; Yan, Z. Predicting enteric methane emissions from dairy and beef cattle using nutrient composition and intake variables. Animals 2024, 14, 3452. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.K. Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems. Mitig. Adapt. Strateg. Glob. Change 2017, 22, 629–650. [Google Scholar] [CrossRef]
- Kass, M.; Ramin, M.; Hanigan, M.; Huhtanen, P. Comparison of Molly and Karoline models to predict methane production in growing and dairy cattle. J. Dairy Sci. 2022, 105, 3049–3063. [Google Scholar] [CrossRef]
- Muñoz-Tamayo, R.; Ruiz, B.; Blavy, P.; Giger-Reverdin, S.; Sauvant, D.; Williams, S.; Moate, P. Predicting the dynamics of enteric methane emissions based on intake kinetic patterns in dairy cows fed diets containing either wheat or corn. Animal 2022, 1, 100003. [Google Scholar] [CrossRef]
- Escobar-Bahamondes, P.; Oba, M.; Beauchemin, K. Universally applicable methane prediction equations for beef cattle fed high-or low-forage diets. Can. J. Anim. Sci. 2016, 97, 83–94. [Google Scholar] [CrossRef]
- Xue, B.; Thompson, J.P.; Yan, T.; Stergiadis, S.; Smith, L.; Theodoridou, K. Dose–response effects of dietary inclusion of agro-industrial by-products on in vitro ruminal fermentation and methane production. J. Sci. Food Agric. 2025, 105, 5447–5457. [Google Scholar] [CrossRef]
- Sniffen, C.J.; O’connor, J.; Van Soest, P.J.; Fox, D.G.; Russell, J. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef]
- Dong, R.; Zhao, G. Relationship between the methane production and the CNCPS carbohydrate fractions of rations with various concentrate/roughage ratios evaluated using in vitro incubation technique. Asian-Australas J. Anim. Sci. 2013, 26, 1708. [Google Scholar] [CrossRef]
- Fouts, J.Q.; Honan, M.C.; Roque, B.M.; Tricarico, J.M.; Kebreab, E. Enteric methane mitigation interventions. Transl. Anim. Sci. 2022, 6, txac041. [Google Scholar] [CrossRef]
- Li, R.; Xu, A.; Zhao, Y.; Chang, H.; Li, X.; Lin, G. Genetic algorithm (GA)—Artificial neural network (ANN) modeling for the emission rates of toxic volatile organic compounds (VOCs) emitted from landfill working surface. J. Environ. Manag. 2022, 305, 114433. [Google Scholar] [CrossRef]
- Liu, X.; Tao, F.; Du, H.; Yu, W.; Xu, K. Learning nonlinear constitutive laws using neural network models based on indirectly measurable data. J. Appl. Mech. 2020, 87, 081003. [Google Scholar] [CrossRef]
- Castillo-Girones, S.; Munera, S.; Martínez-Sober, M.; Blasco, J.; Cubero, S.; Gómez-Sanchis, J. Artificial neural networks in agriculture, the core of artificial intelligence: What, when, and why. Comput. Electron. Agric. 2025, 230, 109938. [Google Scholar] [CrossRef]
- Shadpour, S.; Chud, T.C.; Hailemariam, D.; Plastow, G.; Oliveira, H.R.; Stothard, P.; Lassen, J.; Miglior, F.; Baes, C.F.; Tulpan, D. Predicting methane emission in Canadian Holstein dairy cattle using milk mid-infrared reflectance spectroscopy and other commonly available predictors via artificial neural networks. J. Dairy Sci. 2022, 105, 8272–8285. [Google Scholar] [CrossRef]
- Sahraei, A.; Knob, D.; Lambertz, C.; Gattinger, A.; Breuer, L. Modeling enteric methane emission from dairy cows using deep learning approach. Sci. Total Environ. 2025, 984, 179713. [Google Scholar] [CrossRef] [PubMed]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. Available online: https://ci.nii.ac.jp/naid/10025840911/ (accessed on 1 April 2024).
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Dong, R.; Sun, G.; Yu, G. Estimating in vitro ruminal ammonia-N using multiple linear models and artificial neural networks based on the CNCPS nitrogenous fractions of cattle rations with low concentrate/roughage ratios. J. Anim. Physiol. Anim. Nutr. 2022, 106, 841–853. [Google Scholar] [CrossRef]
- Bibby, J.; Toutenburg, H. Prediction and Improved Estimation in Linear Models; Wiley: Chichester, UK, 1977; p. 188. [Google Scholar]
- Lin, L.I. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef]
- Aboagye, I.A.; Rosser, C.L.; Baron, V.S.; Beauchemin, K.A. In vitro assessment of enteric methane emission potential of whole-plant barley, oat, triticale and wheat. Animals 2021, 11, 450. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Fang, W.; Chang, J.; Zhang, G.; Ma, W.; Nabi, M.; Zubair, M.; Zhang, R.; Chen, L.; Huang, J. Long-term rumen microorganism fermentation of corn stover in vitro for volatile fatty acid production. Bioresour. Technol. 2022, 358, 127447. [Google Scholar] [CrossRef] [PubMed]
- Oikawa, K.; Terada, F.; Kurihara, M.; Suzuki, T.; Nonaka, I.; Hosoda, K.; Kamiya, Y.; Roh, S.; Haga, S. Methane emission prediction models for lactating cows based on feed intake, body weight, and milk yield and composition: Variable methane conversion factor-based approach. J. Dairy Sci. 2025, 108, 7248–7261. [Google Scholar] [CrossRef] [PubMed]
- Vargas, J.; Swenson, M.; Schilling-Hazlett, A.; Reis, I.; Velasquez, C.; Martins, E.; Sitorski, L.; Campos, L.; Carvalho, P.; Stackhouse-Lawson, K. Evaluation of models of enteric methane emissions in finishing steers. Animal 2025, 19, 101536. [Google Scholar] [CrossRef]
- Williams, S.R.O.; Hannah, M.C.; Jacobs, J.L.; Wales, W.J.; Moate, P.J. Volatile fatty acids in ruminal fluid can be used to predict methane yield of dairy cows. Animals 2019, 9, 1006. [Google Scholar] [CrossRef]
- Alcibahy, M.; Gafoor, F.A.; Mustafa, F.; El Fadel, M.; Al Hashemi, H.; Al Hammadi, A.; Al Shehhi, M.R. Improved estimation of carbon dioxide and methane using machine learning with satellite observations over the Arabian Peninsula. Sci. Rep. 2025, 15, 766. [Google Scholar] [CrossRef]
- Vivares, G.; Dijkstra, J.; Bannink, A. Modeling diurnal rumen metabolism dynamics in dairy cattle: An update to a mechanistic model representing eating behavior, rumen content, rumination, and acid-base balance. J. Dairy Sci. 2025, 108, 6934–6957. [Google Scholar] [CrossRef]
- Legaard, C.; Schranz, T.; Schweiger, G.; Drgoňa, J.; Falay, B.; Gomes, C.; Iosifidis, A.; Abkar, M.; Larsen, P. Constructing neural network based models for simulating dynamical systems. ACM Comput. Surv. 2023, 55, 236. [Google Scholar] [CrossRef]
- Jassim, M.S.; Coskuner, G.; Zontul, M. Comparative performance analysis of support vector regression and artificial neural network for prediction of municipal solid waste generation. Waste Manag. Res. 2022, 40, 195–204. [Google Scholar] [CrossRef]
- Odufuwa, O.; Tartibu, L.; Kusakana, K. Artificial neural network modelling for predicting efficiency and emissions in mini-diesel engines: Key performance indicators and environmental impact analysis. Fuel 2025, 387, 134294. [Google Scholar] [CrossRef]
- Louime, C.J.; Raza, T.A. Development of artificial intelligence/machine learning (AI/ML) models for methane emissions forecasting in seaweed. Methane 2024, 3, 485–499. [Google Scholar] [CrossRef]
- Bukhari, M.M.; Alkhamees, B.F.; Hussain, S.; Gumaei, A.; Assiri, A.; Ullah, S.S. An improved artificial neural network model for effective diabetes prediction. Complexity 2021, 2021, 5525271. [Google Scholar] [CrossRef]
- Stamenković, L.J.; Antanasijević, D.; Ristić, M.; Perić-Grujić, A.; Pocajt, V. Modeling of methane emissions using the artificial neural network approach. J. Serb. Chem. Soc. 2015, 80, 421–433. [Google Scholar] [CrossRef]
- Liu, J.; Huang, Q.; Ulishney, C.; Dumitrescu, C.E. Comparison of random forest and neural network in modeling the performance and emissions of a natural gas spark ignition engine. J. Energy Resour. Technol. 2022, 144, 032310. [Google Scholar] [CrossRef]
- Suraboyina, S.; Allu, S.K.; Anupoju, G.R.; Polumati, A. A comparative predictive analysis of back-propagation artificial neural networks and non-linear regression models in forecasting seasonal ozone concentrations. J. Earth Syst. Sci. 2022, 131, 189. [Google Scholar] [CrossRef]
- Wang, Z.; Peng, X.; Xia, A.; Shah, A.A.; Yan, H.; Huang, Y.; Zhu, X.; Zhu, X.; Liao, Q. Comparison of machine learning methods for predicting the methane production from anaerobic digestion of lignocellulosic biomass. Energy 2023, 263, 125883. [Google Scholar] [CrossRef]
- Wu, Y.-C.; Feng, J.-W. Development and application of artificial neural network. Wirel. Pers. Commun. 2018, 102, 1645–1656. [Google Scholar] [CrossRef]
- Negussie, E.; González-Recio, O.; Battagin, M.; Bayat, A.R.; Boland, T.; de Haas, Y.; Garcia-Rodriguez, A.; Garnsworthy, P.C.; Gengler, N.; Kreuzer, M.; et al. Integrating heterogeneous across-country data for proxy-based random forest prediction of enteric methane in dairy cattle. J. Dairy Sci. 2022, 105, 5124–5140. [Google Scholar] [CrossRef] [PubMed]





| Ration No. | CG | SM | WB | CM | RM | DDGS | CS | AH | CW | RS | WS | WCS | C/F |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 20 | 12 | 6.0 | — | — | 2.0 | — | — | — | — | — | 60 | 40:60 |
| 2 | 25 | 15 | 7.5 | — | — | 2.5 | — | — | — | — | — | 50 | 50:50 |
| 3 | 30 | 18 | 9.0 | — | — | 3.0 | — | — | — | — | — | 40 | 60:40 |
| 4 | 35 | 21 | 10.5 | — | — | 3.5 | — | — | — | — | — | 30 | 70:30 |
| 5 | 40 | 24 | 12.0 | — | — | 4.0 | — | — | — | — | — | 20 | 80:20 |
| 6 | 45 | 27 | 13.5 | — | — | 4.5 | — | — | — | — | — | 10 | 90:10 |
| 7 | 15 | 9 | 4.5 | — | — | 1.5 | 70 | — | — | — | — | — | 30:70 |
| 8 | 25 | 15 | 7.5 | — | — | 2.5 | 50 | — | — | — | — | — | 50:50 |
| 9 | 30 | 18 | 9.0 | — | — | 3.0 | 40 | — | — | — | — | — | 60:40 |
| 10 | 35 | 21 | 10.5 | — | — | 3.5 | 30 | — | — | — | — | — | 70:30 |
| 11 | 40 | 24 | 12.0 | — | — | 4.0 | 20 | — | — | — | — | — | 80:20 |
| 12 | 45 | 27 | 13.5 | — | — | 4.5 | 10 | — | — | — | — | — | 90:10 |
| 13 | 16.5 | 5.7 | 5.4 | 2.4 | — | — | — | 28 | — | — | — | 42 | 30:70 |
| 14 | 22 | 7.6 | 7.2 | 3.2 | — | — | — | 24 | — | — | — | 36 | 40:60 |
| 15 | 33 | 11.4 | 10.8 | 4.8 | — | — | — | 16 | — | — | — | 24 | 60:40 |
| 16 | 38.5 | 13.3 | 12.6 | 5.6 | — | — | — | 12 | — | — | — | 18 | 70:30 |
| 17 | 44 | 15.2 | 14.4 | 6.4 | — | — | — | 8.0 | — | — | — | 12 | 80:20 |
| 18 | 49.5 | 17.1 | 16.2 | 7.2 | — | — | — | 4.0 | — | — | — | 6 | 90:10 |
| 19 | 16.5 | 5.7 | 5.4 | 2.4 | — | — | — | — | 70 | — | — | — | 30:70 |
| 20 | 22 | 7.6 | 7.2 | 3.2 | — | — | — | — | 60 | — | — | — | 40:60 |
| 21 | 27.5 | 9.5 | 9.0 | 4.0 | — | — | — | — | 50 | — | — | — | 50:50 |
| 22 | 38.5 | 13.3 | 12.6 | 5.6 | — | — | — | — | 30 | — | — | — | 70:30 |
| 23 | 44 | 15.2 | 14.4 | 6.4 | — | — | — | — | 20 | — | — | — | 80:20 |
| 24 | 49.5 | 17.1 | 16.2 | 7.2 | — | — | — | — | 10 | — | — | — | 90:10 |
| 25 | 16.8 | 4.5 | 4.8 | 3.0 | 0.9 | — | — | — | — | 70 | — | — | 30:70 |
| 26 | 22.4 | 6.0 | 6.4 | 4.0 | 1.2 | — | — | — | — | 60 | — | — | 40:60 |
| 27 | 28 | 7.5 | 8.0 | 5.0 | 1.5 | — | — | — | — | 50 | — | — | 50:50 |
| 28 | 33.6 | 9.0 | 9.6 | 6.0 | 1.8 | — | — | — | — | 40 | — | — | 60:40 |
| 29 | 44.8 | 12 | 12.8 | 8.0 | 2.4 | — | — | — | — | 20 | — | — | 80:20 |
| 30 | 50.4 | 13.5 | 14.4 | 9.0 | 2.7 | — | — | — | — | 10 | — | — | 90:10 |
| 31 | 16.8 | 4.5 | 4.8 | 3.0 | 0.9 | — | — | — | — | — | 70 | — | 30:70 |
| 32 | 22.4 | 6.0 | 6.4 | 4.0 | 1.2 | — | — | — | — | — | 60 | — | 40:60 |
| 33 | 28 | 7.5 | 8.0 | 5.0 | 1.5 | — | — | — | — | — | 50 | — | 50:50 |
| 34 | 33.6 | 9.0 | 9.6 | 6.0 | 1.8 | — | — | — | — | — | 40 | — | 60:40 |
| 35 | 39.2 | 10.5 | 11.2 | 7.0 | 2.1 | — | — | — | — | — | 30 | — | 70:30 |
| 36 | 50.4 | 13.5 | 14.4 | 9.0 | 2.7 | — | — | — | — | — | 10 | — | 90:10 |
| 37 | 15 | 3.9 | 4.5 | 1.8 | 1.8 | 3.0 | — | — | — | — | 28 | 42 | 30:70 |
| 38 | 20 | 5.2 | 6.0 | 2.4 | 2.4 | 4.0 | — | — | — | — | 24 | 36 | 40:60 |
| 39 | 25 | 6.5 | 7.5 | 3.0 | 3.0 | 5.0 | — | — | — | — | 20 | 30 | 50:50 |
| 40 | 30 | 7.8 | 9.0 | 3.6 | 3.6 | 6.0 | — | — | — | — | 16 | 24 | 60:40 |
| 41 | 35 | 9.1 | 10.5 | 4.2 | 4.2 | 7.0 | — | — | — | — | 12 | 18 | 70:30 |
| 42 | 40 | 10.4 | 12.0 | 4.8 | 4.8 | 8.0 | — | — | — | — | 8 | 12 | 80:20 |
| 43 | 15 | 3.9 | 4.5 | 1.8 | 1.8 | 3.0 | — | — | — | 28 | — | 42 | 30:70 |
| 44 | 20 | 5.2 | 6.0 | 2.4 | 2.4 | 4.0 | — | — | — | 24 | — | 36 | 40:60 |
| 45 | 25 | 6.5 | 7.5 | 3.0 | 3.0 | 5.0 | — | — | — | 20 | — | 30 | 50:50 |
| 46 | 30 | 7.8 | 9.0 | 3.6 | 3.6 | 6.0 | — | — | — | 16 | — | 24 | 60:40 |
| 47 | 40 | 10.4 | 12 | 4.8 | 4.8 | 8.0 | — | — | — | 8 | — | 12 | 80:20 |
| 48 | 45 | 11.7 | 13.5 | 5.4 | 5.4 | 9.0 | — | — | — | 4 | — | 6 | 90:10 |
| 49 | 17.1 | 6.0 | 5.1 | — | 1.8 | — | — | 70 | — | — | — | — | 30:70 |
| 50 | 22.8 | 8.0 | 6.8 | — | 2.4 | — | — | 60 | — | — | — | — | 40:60 |
| 51 | 28.5 | 10 | 8.5 | — | 3.0 | — | — | 50 | — | — | — | — | 50:50 |
| 52 | 34.2 | 12 | 10.2 | — | 3.6 | — | — | 40 | — | — | — | — | 60:40 |
| 53 | 39.9 | 14 | 11.9 | — | 4.2 | — | — | 30 | — | — | — | — | 70:30 |
| 54 | 51.3 | 18 | 15.3 | — | 5.4 | — | — | 10 | — | — | — | — | 90:10 |
| 55 | 17.1 | 6.0 | 5.1 | — | 1.8 | — | 28 | — | — | — | — | 42 | 30:70 |
| 56 | 22.8 | 8.0 | 6.8 | — | 2.4 | — | 24 | — | — | — | — | 36 | 40:60 |
| 57 | 28.5 | 10 | 8.5 | — | 3.0 | — | 20 | — | — | — | — | 30 | 50:50 |
| 58 | 34.2 | 12 | 10.2 | — | 3.6 | — | 16 | — | — | — | — | 24 | 60:40 |
| 59 | 39.9 | 14 | 11.9 | — | 4.2 | — | 12 | — | — | — | — | 18 | 70:30 |
| 60 | 45.6 | 16 | 13.6 | — | 4.8 | — | 8 | — | — | — | — | 12 | 80:20 |
| Ration No. | CG | SM | WB | CM | RM | DDGS | CS | AH | CW | RS | WS | WCS | C/F |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 15 | 9 | 4.5 | — | — | 1.5 | — | — | — | — | — | 70 | 30:70 |
| 2 | 20 | 12 | 6 | — | — | 2 | 60 | — | — | — | — | — | 40:60 |
| 3 | 27.5 | 9.5 | 9 | 4 | — | — | — | 20 | — | — | — | 30 | 50:50 |
| 4 | 33 | 11.4 | 10.8 | 4.8 | — | — | — | — | 40 | — | — | — | 60:40 |
| 5 | 39.2 | 10.5 | 11.2 | 7 | 2.1 | — | — | — | — | 30 | — | — | 70:30 |
| 6 | 44.8 | 12 | 12.8 | 8 | 2.4 | — | — | — | — | — | 20 | — | 80:20 |
| 7 | 45 | 11.7 | 13.5 | 5.4 | 5.4 | 9 | — | — | — | — | 4 | 6 | 90:10 |
| 8 | 35 | 9.1 | 10.5 | 4.2 | 4.2 | 7 | — | — | — | 12 | — | 18 | 70:30 |
| 9 | 45.6 | 16 | 13.6 | — | 4.8 | — | — | 20 | — | — | — | — | 80:20 |
| 10 | 51.3 | 18 | 15.3 | — | 5.4 | — | 4 | — | — | — | — | 6 | 90:10 |
| Ration No. | Carbohydrates | CNCPS Carbohydrate Components | NSC 1 | |||
|---|---|---|---|---|---|---|
| CA | CB1 | CB2 | CC | |||
| 1 | 80.03 | 40.13 | 20.55 | 14.69 | 4.66 | 60.67 |
| 2 | 78.47 | 37.15 | 23.52 | 13.72 | 4.08 | 60.67 |
| 3 | 76.91 | 34.18 | 26.49 | 12.74 | 3.50 | 60.68 |
| 4 | 75.36 | 31.21 | 29.47 | 11.76 | 2.92 | 60.68 |
| 5 | 73.80 | 28.24 | 32.44 | 10.78 | 2.34 | 60.68 |
| 6 | 72.24 | 25.26 | 35.41 | 9.80 | 1.77 | 60.68 |
| 7 | 76.53 | 22.16 | 14.54 | 32.13 | 7.70 | 36.71 |
| 8 | 74.86 | 22.20 | 21.36 | 25.47 | 5.84 | 43.55 |
| 9 | 74.02 | 22.22 | 24.76 | 22.14 | 4.91 | 46.98 |
| 10 | 73.19 | 22.24 | 28.17 | 18.81 | 3.98 | 50.40 |
| 11 | 72.35 | 22.25 | 31.57 | 15.48 | 3.05 | 53.83 |
| 12 | 71.52 | 22.27 | 34.98 | 12.15 | 2.12 | 57.25 |
| 13 | 81.41 | 37.96 | 17.08 | 15.02 | 11.35 | 55.04 |
| 14 | 80.28 | 35.81 | 20.38 | 14.15 | 9.94 | 56.19 |
| 15 | 78.01 | 31.53 | 26.97 | 12.40 | 7.12 | 58.50 |
| 16 | 76.88 | 29.38 | 30.27 | 11.52 | 5.71 | 59.65 |
| 17 | 75.75 | 27.24 | 33.57 | 10.65 | 4.30 | 60.80 |
| 18 | 74.62 | 25.09 | 36.86 | 9.78 | 2.89 | 61.96 |
| 19 | 83.12 | 21.05 | 16.72 | 29.44 | 15.91 | 37.77 |
| 20 | 81.75 | 21.32 | 20.07 | 26.51 | 13.84 | 41.39 |
| 21 | 80.37 | 21.60 | 23.42 | 23.57 | 11.78 | 45.01 |
| 22 | 77.62 | 22.14 | 30.11 | 17.71 | 7.66 | 52.25 |
| 23 | 76.24 | 22.41 | 33.46 | 14.77 | 5.60 | 55.87 |
| 24 | 74.86 | 22.68 | 36.81 | 11.84 | 3.54 | 59.49 |
| 25 | 80.73 | 13.47 | 14.44 | 37.98 | 14.83 | 27.91 |
| 26 | 79.68 | 14.72 | 18.16 | 33.85 | 12.94 | 32.89 |
| 27 | 78.64 | 15.97 | 21.89 | 29.71 | 11.06 | 37.86 |
| 28 | 77.59 | 17.22 | 25.61 | 25.58 | 9.18 | 42.83 |
| 29 | 75.50 | 19.72 | 33.06 | 17.31 | 5.42 | 52.78 |
| 30 | 74.46 | 20.97 | 36.78 | 13.17 | 3.54 | 57.75 |
| 31 | 81.89 | 14.32 | 15.15 | 45.67 | 6.75 | 29.46 |
| 32 | 80.68 | 15.45 | 18.77 | 40.44 | 6.02 | 34.21 |
| 33 | 79.47 | 16.57 | 22.39 | 35.21 | 5.29 | 38.97 |
| 34 | 78.26 | 17.70 | 26.01 | 29.97 | 4.57 | 43.72 |
| 35 | 77.05 | 18.83 | 29.64 | 24.74 | 3.84 | 48.47 |
| 36 | 74.62 | 21.09 | 36.88 | 14.27 | 2.38 | 57.97 |
| 37 | 81.75 | 31.02 | 16.52 | 28.17 | 6.04 | 47.55 |
| 38 | 80.35 | 29.50 | 19.73 | 25.65 | 5.46 | 49.23 |
| 39 | 78.95 | 27.98 | 22.93 | 23.14 | 4.89 | 50.92 |
| 40 | 77.54 | 26.46 | 26.14 | 20.62 | 4.32 | 52.60 |
| 41 | 76.14 | 24.94 | 29.35 | 18.11 | 3.74 | 54.29 |
| 42 | 74.74 | 23.42 | 32.55 | 15.59 | 3.17 | 55.98 |
| 43 | 81.29 | 30.69 | 16.24 | 25.09 | 9.27 | 46.93 |
| 44 | 79.95 | 29.21 | 19.49 | 23.02 | 8.23 | 48.70 |
| 45 | 78.61 | 27.74 | 22.73 | 20.94 | 7.20 | 50.48 |
| 46 | 77.28 | 26.27 | 25.98 | 18.86 | 6.16 | 52.25 |
| 47 | 74.60 | 23.33 | 32.47 | 14.71 | 4.09 | 55.80 |
| 48 | 73.27 | 21.86 | 35.72 | 12.64 | 3.06 | 57.57 |
| 49 | 72.81 | 32.09 | 5.88 | 13.50 | 21.33 | 37.97 |
| 50 | 69.53 | 31.80 | 6.18 | 12.61 | 18.94 | 37.98 |
| 51 | 66.25 | 31.52 | 6.48 | 11.71 | 16.55 | 37.99 |
| 52 | 62.97 | 31.23 | 6.78 | 10.81 | 14.15 | 38.01 |
| 53 | 59.70 | 30.94 | 7.08 | 9.92 | 11.76 | 38.02 |
| 54 | 53.14 | 30.36 | 7.68 | 8.12 | 6.98 | 38.04 |
| 55 | 73.32 | 37.06 | 7.24 | 21.78 | 7.24 | 44.30 |
| 56 | 69.97 | 36.06 | 7.35 | 19.70 | 6.86 | 43.41 |
| 57 | 66.61 | 35.06 | 7.45 | 17.62 | 6.48 | 42.52 |
| 58 | 63.26 | 34.06 | 7.56 | 15.54 | 6.10 | 41.62 |
| 59 | 59.91 | 33.07 | 7.66 | 13.46 | 5.72 | 40.73 |
| 60 | 56.56 | 32.07 | 7.77 | 11.38 | 5.34 | 39.84 |
| Ration No. | Carbohydrates | CNCPS Carbohydrate Components | NSC 1 | |||
|---|---|---|---|---|---|---|
| CA | CB1 | CB2 | CC | |||
| 1 | 81.58 | 43.10 | 17.58 | 15.67 | 5.24 | 60.67 |
| 2 | 75.69 | 22.18 | 17.95 | 28.80 | 6.77 | 40.13 |
| 3 | 79.15 | 33.67 | 23.67 | 13.27 | 8.53 | 57.34 |
| 4 | 78.99 | 21.87 | 26.77 | 20.64 | 9.72 | 48.63 |
| 5 | 76.55 | 18.47 | 29.33 | 21.44 | 7.30 | 47.80 |
| 6 | 75.83 | 19.96 | 33.26 | 19.51 | 3.11 | 53.22 |
| 7 | 73.33 | 21.91 | 35.76 | 13.08 | 2.60 | 57.66 |
| 8 | 75.94 | 24.80 | 29.22 | 16.79 | 5.13 | 54.02 |
| 9 | 56.42 | 30.65 | 7.38 | 9.02 | 9.37 | 38.03 |
| 10 | 53.21 | 31.07 | 7.88 | 9.31 | 4.96 | 38.95 |
| Ration No. | CH4 | CO2 | pH Value |
|---|---|---|---|
| 1 | 46 ± 0 | 196 ± 2 | 6.37 ± 0.01 |
| 2 | 46 ± 1 | 195 ± 2 | 6.72 ± 0.01 |
| 3 | 47 ± 0 | 193 ± 2 | 6.80 ± 0.03 |
| 4 | 47 ± 1 | 192 ± 1 | 6.84 ± 0.01 |
| 5 | 51 ± 1 | 207 ± 1 | 6.48 ± 0.06 |
| 6 | 48 ± 0 | 211 ± 1 | 6.92 ± 0.01 |
| 7 | 40 ± 1 | 153 ± 0 | 6.48 ± 0.02 |
| 8 | 40 ± 1 | 185 ± 2 | 6.12 ± 0.01 |
| 9 | 42 ± 1 | 195 ± 1 | 6.23 ± 0.01 |
| 10 | 43 ± 1 | 199 ± 2 | 6.30 ± 0.02 |
| 11 | 45 ± 1 | 202 ± 1 | 6.37 ± 0.01 |
| 12 | 47 ± 1 | 217 ± 2 | 6.41 ± 0.03 |
| 13 | 45 ± 1 | 170 ± 1 | 6.19 ± 0.03 |
| 14 | 42 ± 1 | 182 ± 2 | 6.28 ± 0.02 |
| 15 | 45 ± 1 | 189 ± 2 | 6.44 ± 0.01 |
| 16 | 46 ± 1 | 197 ± 1 | 6.51 ± 0.03 |
| 17 | 47 ± 1 | 206 ± 1 | 6.58 ± 0.02 |
| 18 | 53 ± 1 | 199 ± 1 | 6.43 ± 0.01 |
| 19 | 30 ± 0 | 115 ± 1 | 6.19 ± 0.03 |
| 20 | 33 ± 0 | 131 ± 1 | 6.28 ± 0.02 |
| 21 | 36 ± 0 | 147 ± 1 | 6.36 ± 0.03 |
| 22 | 40 ± 1 | 180 ± 2 | 6.51 ± 0.03 |
| 23 | 43 ± 1 | 196 ± 2 | 6.58 ± 0.02 |
| 24 | 50 ± 1 | 212 ± 1 | 6.45 ± 0.01 |
| 25 | 34 ± 1 | 113 ± 2 | 6.44 ± 0.05 |
| 26 | 39 ± 1 | 130 ± 2 | 6.46 ± 0.02 |
| 27 | 35 ± 1 | 143 ± 2 | 6.56 ± 0.03 |
| 28 | 38 ± 1 | 159 ± 2 | 6.58 ± 0.03 |
| 29 | 44 ± 1 | 191 ± 1 | 6.61 ± 0.03 |
| 30 | 47 ± 1 | 200 ± 1 | 6.57 ± 0.02 |
| 31 | 31 ± 1 | 113 ± 1 | 6.35 ± 0.03 |
| 32 | 35 ± 1 | 125 ± 1 | 6.23 ± 0.02 |
| 33 | 37 ± 1 | 135 ± 2 | 6.16 ± 0.01 |
| 34 | 39 ± 1 | 165 ± 2 | 6.20 ± 0.02 |
| 35 | 41 ± 1 | 180 ± 2 | 6.18 ± 0.01 |
| 36 | 46 ± 1 | 211 ± 2 | 6.20 ± 0.02 |
| 37 | 41 ± 0 | 154 ± 2 | 6.24 ± 0.01 |
| 38 | 43 ± 1 | 156 ± 2 | 6.21 ± 0.01 |
| 39 | 43 ± 0 | 184 ± 1 | 6.17 ± 0.01 |
| 40 | 43 ± 1 | 190 ± 1 | 6.22 ± 0.03 |
| 41 | 45 ± 1 | 197 ± 1 | 6.28 ± 0.03 |
| 42 | 43 ± 1 | 204 ± 2 | 6.27 ± 0.01 |
| 43 | 38 ± 1 | 163 ± 1 | 6.39 ± 0.04 |
| 44 | 39 ± 0 | 172 ± 2 | 6.40 ± 0.01 |
| 45 | 40 ± 1 | 180 ± 2 | 6.42 ± 0.02 |
| 46 | 42 ± 1 | 183 ± 1 | 6.42 ± 0.01 |
| 47 | 45 ± 0 | 191 ± 1 | 6.50 ± 0.01 |
| 48 | 54 ± 0 | 191 ± 1 | 6.47 ± 0.02 |
| 49 | 30 ± 1 | 100 ± 2 | 6.33 ± 0.01 |
| 50 | 32 ± 1 | 103 ± 2 | 6.36 ± 0.01 |
| 51 | 33 ± 1 | 105 ± 2 | 6.36 ± 0.01 |
| 52 | 34 ± 0 | 107 ± 1 | 6.38 ± 0.01 |
| 53 | 35 ± 1 | 110 ± 2 | 6.40 ± 0.01 |
| 54 | 44 ± 1 | 114 ± 1 | 6.40 ± 0.01 |
| 55 | 38 ± 1 | 154 ± 2 | 6.32 ± 0.01 |
| 56 | 38 ± 0 | 148 ± 2 | 6.24 ± 0.02 |
| 57 | 38 ± 1 | 143 ± 1 | 6.23 ± 0.02 |
| 58 | 38 ± 1 | 138 ± 1 | 6.17 ± 0.01 |
| 59 | 38 ± 1 | 132 ± 1 | 6.19 ± 0.03 |
| 60 | 38 ± 1 | 127 ± 1 | 6.21 ± 0.01 |
| Number of Nodes | RMSPE% | r2 | ||
|---|---|---|---|---|
| CH4 Production | CO2 Production | CH4 Production | CO2 Production | |
| 1 | 5.12 | 4.97 | 0.79 | 0.93 |
| 2 | 2.29 | 9.62 | 0.93 | 0.81 |
| 3 | 4.83 | 6.81 | 0.83 | 0.87 |
| 4 | 3.42 | 3.87 | 0.88 | 0.95 |
| 5 | 9.57 | 3.33 | 0.09 | 0.97 |
| 6 | 3.42 | 5.12 | 0.84 | 0.93 |
| 7 | 4.54 | 5.89 | 0.76 | 0.93 |
| 8 | 2.88 | 4.88 | 0.90 | 0.95 |
| 9 | 6.16 | 3.71 | 0.63 | 0.98 |
| 10 | 2.43 | 3.22 | 0.93 | 0.97 |
| 11 | 3.81 | 4.94 | 0.81 | 0.95 |
| 12 | 9.31 | 3.26 | 0.28 | 0.98 |
| 13 | 9.60 | 3.33 | 0.38 | 0.98 |
| 14 | 4.47 | 3.87 | 0.79 | 0.95 |
| 15 | 3.06 | 2.95 | 0.91 | 0.98 |
| 16 | 8.47 | 3.06 | 0.18 | 0.98 |
| 17 | 6.25 | 9.45 | 0.71 | 0.74 |
| 18 | 4.65 | 5.18 | 0.78 | 0.94 |
| 19 | 7.25 | 4.90 | 0.51 | 0.93 |
| 20 | 8.16 | 7.26 | 0.25 | 0.84 |
| Mixed Rations | CH4 Production | CO2 Production | pH Value | ||||
|---|---|---|---|---|---|---|---|
| Observed Values | MLR Predicted | BPNN Predicted | Observed Values | MLR Predicted | BPNN Predicted | ||
| 1 | 47 ± 0 | 45 | 45 | 199 ± 1 | 192 | 198 | 6.36 ± 0.03 |
| 2 | 38 ± 1 | 38 | 37 | 164 ± 1 | 148 | 170 | 6.47 ± 0.01 |
| 3 | 43 ± 1 | 43 | 43 | 184 ± 1 | 183 | 183 | 6.36 ± 0.03 |
| 4 | 38 ± 1 | 40 | 39 | 163 ± 1 | 167 | 166 | 6.44 ± 0.01 |
| 5 | 41 ± 1 | 41 | 40 | 175 ± 2 | 172 | 174 | 6.60 ± 0.02 |
| 6 | 44 ± 1 | 45 | 44 | 196 ± 2 | 195 | 190 | 6.15 ± 0.01 |
| 7 | 46 ± 1 | 47 | 47 | 211 ± 2 | 206 | 206 | 6.26 ± 0.03 |
| 8 | 43 ± 1 | 44 | 44 | 185 ± 2 | 188 | 188 | 6.43 ± 0.01 |
| 9 | 36 ± 1 | 37 | 36 | 112 ± 2 | 120 | 108 | 6.36 ± 0.01 |
| 10 | 38 ± 1 | 40 | 38 | 122 ± 1 | 130 | 111 | 6.22 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, G.; Li, Z.; Dong, R. Comparative Prediction of Methane Production In Vitro Using Multiple Regression Model and Backpropagation Neural Network Based on Cornell Net Carbohydrate and Protein System. Vet. Sci. 2025, 12, 1099. https://doi.org/10.3390/vetsci12111099
Yu G, Li Z, Dong R. Comparative Prediction of Methane Production In Vitro Using Multiple Regression Model and Backpropagation Neural Network Based on Cornell Net Carbohydrate and Protein System. Veterinary Sciences. 2025; 12(11):1099. https://doi.org/10.3390/vetsci12111099
Chicago/Turabian StyleYu, Guanghui, Zenghui Li, and Ruilan Dong. 2025. "Comparative Prediction of Methane Production In Vitro Using Multiple Regression Model and Backpropagation Neural Network Based on Cornell Net Carbohydrate and Protein System" Veterinary Sciences 12, no. 11: 1099. https://doi.org/10.3390/vetsci12111099
APA StyleYu, G., Li, Z., & Dong, R. (2025). Comparative Prediction of Methane Production In Vitro Using Multiple Regression Model and Backpropagation Neural Network Based on Cornell Net Carbohydrate and Protein System. Veterinary Sciences, 12(11), 1099. https://doi.org/10.3390/vetsci12111099

