Assessment of Bicarbonate Deficiency in Feline Acute and Chronic Kidney Disease
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adamczak, M.; Surma, S. Metabolic Acidosis in Patients with CKD: Epidemiology, Pathogenesis, and Treatment. Kidney Dis. 2021, 7, 452–467. [Google Scholar] [CrossRef]
- Nath, K.A.; Hostetter, M.K.; Hostetter, T.H. Pathophysiology of chronic tubulo-interstitial disease in rats. Interactions of dietary acid load, ammonia, and complement component C3. J. Clin. Investig. 1985, 76, 667–675. [Google Scholar] [CrossRef]
- Phisitkul, S.; Hacker, C.; Simoni, J.; Tran, R.M.; Wesson, D.E. Dietary protein causes a decline in the glomerular filtration rate of the remnant kidney mediated by metabolic acidosis and endothelin receptors. Kidney Int. 2008, 73, 192–199. [Google Scholar] [CrossRef]
- MacLaughlin, H.L.; Friedman, A.N.; Ikizler, T.A. Nutrition in Kidney Disease: Core Curriculum 2022. Am. J. Kidney Dis. 2022, 79, 437–449. [Google Scholar] [CrossRef]
- Navaneethan, S.D.; Schold, J.D.; Arrigain, S.; Jolly, S.E.; Wehbe, E.; Raina, R.; Simon, J.F.; Srinivas, T.R.; Jain, A.; Schreiber, M.J.; et al. Serum Bicarbonate and Mortality in Stage 3 and Stage 4 Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2011, 6, 2395–2402. [Google Scholar] [CrossRef] [PubMed]
- Segev, G.; Cortellini, S.; Foster, J.D.; Francey, T.; Langston, C.; Londoño, L.; Schweighauser, A.; Jepson, R.E. International Renal Interest Society best practice consensus guidelines for the diagnosis and management of acute kidney injury in cats and dogs. Vet. J. 2024, 305, 106068. [Google Scholar] [CrossRef]
- Lippi, I.; Perondi, F.; Gori, E.; Pierini, A.; Bernicchi, L.; Marchetti, V. Serum Bicarbonate Deficiency in Dogs with Acute and Chronic Kidney Disease. Vet. Sci. 2023, 10, 363. [Google Scholar] [CrossRef] [PubMed]
- Perondi, F.; Lippi, I.; Marchetti, V.; Bruno, B.; Borrelli, A.; Citi, S. How Ultrasound Can Be Useful for Staging Chronic Kidney Disease in Dogs: Ultrasound Findings in 855 Cases. Vet. Sci. 2020, 7, 147. [Google Scholar] [CrossRef] [PubMed]
- International Renal Interest Society (IRIS). IRIS Staging of Chronic Kidney Disease. Available online: www.iris-kidney.com/iris-staging-system (accessed on 1 January 2023).
- Lippi, I.; Guidi, G.; Marchetti, V.; Tognetti, R.; Meucci, V. Prognostic role of the product of serum calcium and phosphorus concentrations in dogs with chronic kidney disease: 31 cases (2008–2010). J. Am. Vet. Med. Assoc. 2014, 245, 1135–1140. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, S.; Syme, H.M.; Elliott, J. Clinicopathological Variables Predicting Progression of Azotemia in Cats with Chronic Kidney Disease. J. Vet. Intern. Med. 2012, 26, 275–281. [Google Scholar] [CrossRef]
- Raphael, K.L.; Zhang, Y.; Ying, J.; Greene, T. Prevalence of and risk factors for reduced serum bicarbonate in chronic kidney disease. Nephrology 2014, 19, 648–654. [Google Scholar] [CrossRef]
- Kim, H.J.; Ryu, H.; Kang, E.; Kang, M.; Han, M.; Song, S.H.; Lee, J.; Jung, J.Y.; Lee, K.-B.; Sung, S.; et al. Metabolic Acidosis Is an Independent Risk Factor of Renal Progression in Korean Chronic Kidney Disease Patients: The KNOW-CKD Study Results. Front. Med. 2021, 8, 707588. [Google Scholar] [CrossRef]
- Isakova, T.; Wahl, P.; Vargas, G.S.; Gutiérrez, O.M.; Scialla, J.; Xie, H.; Appleby, D.; Nessel, L.; Bellovich, K.; Chen, J.; et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011, 79, 1370–1378. [Google Scholar] [CrossRef]
- Gori, E.; Lippi, I.; Guidi, G.; Perondi, F.; Pierini, A.; Marchetti, V. Acute pancreatitis and acute kidney injury in dogs. Vet. J. 2019, 245, 77–81. [Google Scholar] [CrossRef]
- Bartges, J.; Polzin, D.J. (Eds.) Nephrology and Urology of Small Animals; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Lemann, J.; Bushinsky, D.A.; Hamm, L.L. Bone buffering of acid and base in humans. Am. J. Physiol. Ren. Physiol. 2003, 285, F811–F832. [Google Scholar] [CrossRef]
- Ritter, C.S.; Slatopolsky, E. Phosphate Toxicity in CKD: The Killer among Us. Clin. J. Am. Soc. Nephrol. 2016, 11, 1088–1100. [Google Scholar] [CrossRef] [PubMed]
- Elliott, J.; Syme, H.M.; Markwell, P.J. Acid-base balance of cats with chronic renal failure: Effect of deterioration in renal function. J. Small Anim. Pract. 2003, 44, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Elliott, J.; Barber, P.J. Feline chronic renal failure: Clinical findings in 80 cases diagnosed between 1992 and 1995. J. Small Anim. Pract. 1998, 39, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Parker, V.J.; Freeman, L.M. Association between Body Condition and Survival in Dogs with Acquired Chronic Kidney Disease. J. Vet. Intern. Med. 2011, 25, 1306–1311. [Google Scholar] [CrossRef]
- Kovesdy, C.P.; Anderson, J.E.; Kalantar-Zadeh, K. Paradoxical Association Between Body Mass Index and Mortality in Men With CKD Not Yet on Dialysis. Am. J. Kidney Dis. 2007, 49, 581–591. [Google Scholar] [CrossRef]
- von Haehling, S.; Lainscak, M.; Springer, J.; Anker, S.D. Cardiac cachexia: A systematic overview. Pharmacol Ther. 2009, 121, 227–252. [Google Scholar] [CrossRef]
- Mallery, K.F.; Freeman, L.M.; Harpster, N.K.; Rush, J.E. Factors contributing to the decision for euthanasia of dogs with congestive heart failure. J. Am. Vet. Med. Assoc. 1999, 214, 1201–1204. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Chronic Kidney Disease in the United States; US Department of Health and Human Services: Washington, DC, USA, 2021.
- Brown, C.A.; Elliott, J.; Schmiedt, C.W.; Brown, S.A. Chronic Kidney Disease in Aged Cats. Vet. Pathol. 2016, 53, 309–326. [Google Scholar] [CrossRef]
- Morii, K.; Yamasaki, S.; Doi, S.; Irifuku, T.; Sasaki, K.; Doi, T.; Nakashima, A.; Arihiro, K.; Masaki, T. microRNA-200c regulates KLOTHO expression in human kidney cells under oxidative stress. PLoS ONE 2019, 14, e0218468. [Google Scholar] [CrossRef]
- Kang, C.; Xu, Q.; Martin, T.D.; Li, M.Z.; Demaria, M.; Aron, L.; Lu, T.; Yankner, B.A.; Campisi, J.; Elledge, S.J. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 2015, 349, aaa5612. [Google Scholar] [CrossRef]
- Cowgill, L.D.; Polzin, D.J.; Elliott, J.; Nabity, M.B.; Segev, G.; Grauer, G.F.; Brown, S.; Langston, C.; van Dongen, A.M. Is Progressive Chronic Kidney Disease a Slow Acute Kidney Injury? Vet. Clin. North. Am. Small Anim. Pract. 2016, 46, 995–1013. [Google Scholar] [CrossRef]
- Hoste, E.A.J.; Kellum, J.A.; Selby, N.M.; Zarbock, A.; Palevsky, P.M.; Bagshaw, S.M.; Goldstein, S.L.; Cerdá, J.; Chawla, L.S. Global epidemiology and outcomes of acute kidney injury. Nat. Rev. Nephrol. 2018, 14, 607–625. [Google Scholar] [CrossRef]
- Monaghan, K.; Nolan, B.; Labato, M. Feline acute Kidney injury. J. Feline Med. Surg. 2012, 14, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Kuczera, P.; Ciaston-Mogilska, D.; Oslizlo, B.; Hycki, A.; Wiecek, A.; Adamczak, M. The Prevalence of Metabolic Acidosis in Patients with Different Stages of Chronic Kidney Disease: Single-Centre Study. Kidney Blood Press. Res. 2020, 45, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Rimer, D.; Chen, H.; Bar-Nathan, M.; Segev, G. Acute kidney injury in dogs: Etiology, clinical and clinicopathologic findings, prognostic markers, and outcome. J. Vet. Intern. Med. 2022, 36, 609–618. [Google Scholar] [CrossRef] [PubMed]
- DiBartola, S.P. Fluid, Electrolyte, and Acid-Base Disorders in Small Animal Practice, Fourth; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Adamczak, M.; Masajtis-Zagajewska, A.; Mazanowska, O.; Madziarska, K.; Stompór, T.; Więcek, A. Diagnosis and Treatment of Metabolic Acidosis in Patients with Chronic Kidney Disease—Position Statement of the Working Group of the Polish Society of Nephrology. Kidney Blood Press. Res. 2018, 43, 959–969. [Google Scholar] [CrossRef]

| Group | Gender | Weight (kg) | Age (Years) | |
|---|---|---|---|---|
| Males (n = 363) | Females (n = 255) | |||
| Intact/Neutered | Intact/Neutered | |||
| AKI (n = 83) | 15/44 | 1/23 | 4.55 a (2.30–8.00) | 4.8 a (0–18) |
| ACKD (n = 116) | 16/51 | 4/45 | 4.26 a (2.29–9.30) | 10.3 b (0–18) |
| CKD (n = 419) | 44/193 | 15/167 | 3.90 b (1.55–10.98) | 12.7 c (0–21) |
| p-value | 0.040 | <0.0001 | ||
| Group/Stage | IRIS 2 n (%) | IRIS 3 n (%) | IRIS 4 n (%) | IRIS 5 n (%) | p-Value | |
|---|---|---|---|---|---|---|
| AKI | Total (n = 83) | 25 | 20 | 17 | 21 | |
| No acidosis (n = 35) | 13 (52) | 13 (65) | 4 (24) | 5 (24) | 0.0145 | |
| Acidosis (n = 48) | 12 (25) | 7 (15) | 13 (27) | 16 (33) | ||
| Moderate acidosis | 8 (32) | 6 (30) | 8 (47) | 10 (48) | 0.7383 | |
| Severe acidosis | 4 (16) | 1 (5) | 5 (29) | 6 (28) | ||
| ACKD | Total (n = 116) | 12 | 29 | 39 | 36 | |
| No acidosis (n = 46) | 5 (42) | 17 (59) | 12 (31) | 12 (33) | 0.1039 | |
| Acidosis (n = 70) | 7 (10) | 12 (18) | 27 (38) | 24 (34) | ||
| Moderate acidosis | 3 (25) | 8 (27) | 16 (41) | 10 (28) | 0.4427 | |
| Severe acidosis | 4 (33) | 4 (14) | 11 (28) | 14 (39) | ||
| CKD | Total (n = 419) | 239 | 113 | 67 | - | |
| No acidosis (n = 261) | 160 (67) | 82 (72) | 19 (28) | - | <0.0001 | |
| Acidosis (n = 158) | 79 (50) | 31 (20) | 48 (30) | - | ||
| Moderate acidosis | 56 (23) | 20 (18) | 28 (42) | - | 0.3496 | |
| Severe acidosis | 23 (10) | 11 (10) | 20 (30) | - |
| Parameters | Reference Range | AKI | ACKD | CKD | p-Value |
|---|---|---|---|---|---|
| Creatinine | 0.7–1.7 | 4.02 a (1.82–33.48) | 6.89 b (1.77–28.69) | 2.53 c (1.71–19.86) | <0.0001 |
| Urea | 20–65 | 180 a (32–890) | 289 b (49–602) | 104 c (13–616) | <0.0001 |
| CaxP | <70 | 70.84 a (23.8–250) | 89.11 a (22.14–204) | 46.26 b (10.14–290) | <0.0001 |
| TCO2 | 14–27 | 16 a (2–38) | 15 a (3–36) | 19 b (4–45) | <0.0001 |
| TCO2 vs. | AKI | ACKD | CKD | |||
|---|---|---|---|---|---|---|
| Spearman r | p-Value | Spearman r | p-Value | Spearman r | p-Value | |
| Creatinine | −0.33 | 0.0025 | −0.24 | 0.0084 | −0.17 | 0.0005 |
| CaxP | −0.29 | 0.0074 | −0.16 | 0.0846 | −0.16 | 0.0007 |
| Ca | 0.07 | 0.5028 | 0.21 | 0.0261 | 0.06 | 0.2527 |
| p | −0.35 | 0.0014 | −0.22 | 0.0162 | −0.21 | <0.0001 |
| CaxP | No Acidosis | Acidosis | p-Value | Moderate Acidosis | Severe Acidosis | p-Value |
|---|---|---|---|---|---|---|
| <70 | 271 (65%) | 145 (35%) | <0.0001 | 96 (66%) | 49 (34%) | 0.2147 |
| ≥70 | 77 (59%) | 131 (65%) | 77 (59%) | 54 (41%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perondi, F.; Vernaccini, M.; Morelli, S.; Marchetti, V.; Lippi, I. Assessment of Bicarbonate Deficiency in Feline Acute and Chronic Kidney Disease. Vet. Sci. 2025, 12, 1097. https://doi.org/10.3390/vetsci12111097
Perondi F, Vernaccini M, Morelli S, Marchetti V, Lippi I. Assessment of Bicarbonate Deficiency in Feline Acute and Chronic Kidney Disease. Veterinary Sciences. 2025; 12(11):1097. https://doi.org/10.3390/vetsci12111097
Chicago/Turabian StylePerondi, Francesca, Matilde Vernaccini, Silvia Morelli, Veronica Marchetti, and Ilaria Lippi. 2025. "Assessment of Bicarbonate Deficiency in Feline Acute and Chronic Kidney Disease" Veterinary Sciences 12, no. 11: 1097. https://doi.org/10.3390/vetsci12111097
APA StylePerondi, F., Vernaccini, M., Morelli, S., Marchetti, V., & Lippi, I. (2025). Assessment of Bicarbonate Deficiency in Feline Acute and Chronic Kidney Disease. Veterinary Sciences, 12(11), 1097. https://doi.org/10.3390/vetsci12111097

