Evaluation of the Effects of Colostrum Substitutes on IgG Levels and Humoral Immune Development in Polypay Lambs
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Handling and Sample Collection
2.2. IgG Detection
2.3. Anti-Ovalbumin Antibody Detection
2.4. Microbial DNA Extraction and PCR Amplification of the 16S rRNA Gene
2.5. Bacterial Composition Analyses
2.6. Statistical Analyses
3. Results
3.1. Colostrum IgG Concentrations
3.2. Lamb Performance
3.3. IgG Levels
3.3.1. Validation of Species-Specific IgG Detection
3.3.2. Serum IgG Levels
3.4. Ovalbumin Challenge
3.5. Fecal Microbiome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| IgG | Immunoglobulin G |
| FrC | Fresh ewe colostrum |
| FZ | Frozen ewe colostrum |
| CC | Frozen bovine colostrum |
| AC | Artificial bovine colostrum |
| D | Days of age |
| ELISA | Enzyme-Linked Immunosorbent Assay |
| RID | Radial Immunodiffusion |
| OVA | Ovalbumin |
| BAD | Blocking antibody diluent |
| PBS | Phosphate-buffered saline |
| PBST | Phosphate-buffered saline + 0.01% Tween 20 |
| OD | Optical densities |
| OTU | Operational Taxonomic Unit |
| FcRn | Neonatal Fc receptor |
References
- Marsh, D. U.S. Sheep Industry Economic Contribution Analysis. Available online: https://www.sheepusa.org/wp-content/uploads/2024/02/U.S.-Sheep-Industry-Contribution-Analysis-Nov.-2023.pdf (accessed on 1 August 2025).
- Huffman, E.; Kirk, J.; Pappaioanou, M. Factors associated with neonatal lamb mortality. Theriogenology 1985, 24, 163–171. [Google Scholar] [CrossRef]
- Holmøy, I.; Waage, S.; Granquist, E.; L’Abée-Lund, T.; Ersdal, C.; Hektoen, L.; Sørby, R. Early neonatal lamb mortality: Postmortem findings. Animal 2017, 11, 295–305. [Google Scholar] [CrossRef]
- McCarthy, E.; McDougall, E. Absorption of immune globulin by the young lamb after ingestion of colostrum. Biochem. J. 1953, 55, 177. [Google Scholar] [CrossRef]
- Lee, C.-S.; Wooding, F.P.; Kemp, P. Identification, properties, and differential counts of cell populations using electron microscopy of dry cows secretions, colostrum and milk from normal cows. J. Dairy Res. 1980, 47, 39–50. [Google Scholar] [CrossRef]
- Hagiwara, K.; Kataoka, S.; Yamanaka, H.; Kirisawa, R.; Iwai, H. Detection of cytokines in bovine colostrum. Vet. Immunol. Immunopathol. 2000, 76, 183–190. [Google Scholar] [CrossRef]
- Hurley, W.L.; Theil, P.K. Perspectives on Immunoglobulins in Colostrum and Milk. Nutrients 2011, 3, 442–474. [Google Scholar] [CrossRef]
- Alves, A.; Alves, N.; Ascari, I.; Junqueira, F.; Coutinho, A.; Lima, R.; Pérez, J.; De Paula, S.; Furusho-Garcia, I.; Abreu, L. Colostrum composition of Santa Inês sheep and passive transfer of immunity to lambs. J. Dairy Sci. 2015, 98, 3706–3716. [Google Scholar] [CrossRef]
- Kessler, E.; Bruckmaier, R.; Gross, J. Immunoglobulin G content and colostrum composition of different goat and sheep breeds in Switzerland and Germany. J. Dairy Sci. 2019, 102, 5542–5549. [Google Scholar] [CrossRef]
- Martin, K.; Quigley Iii, J. Effect of freezing colostrum on resistance of neonatal lambs to experimental infection with Escherichia coli. Food Agric. Immunol. 2001, 13, 63–72. [Google Scholar] [CrossRef]
- Reber, A.J.; Hippen, A.R.; Hurley, D.J. Effects of the ingestion of whole colostrum or cell-free colostrum on the capacity of leukocytes in newborn calves to stimulate or respond in one-way mixed leukocyte cultures. Am. J. Vet. Res. 2005, 66, 1854–1860. [Google Scholar] [CrossRef]
- Chase, C.C.; Hurley, D.J.; Reber, A.J. Neonatal immune development in the calf and its impact on vaccine response. Vet. Clin. N. Am. Food Anim. Pract. 2008, 24, 87–104. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Castellano, L.E.; Morales-delaNuez, A.; Sánchez-Macías, D.; Moreno-Indias, I.; Torres, A.; Capote, J.; Argüello, A.; Castro, N. The effect of colostrum source (goat vs. sheep) and timing of the first colostrum feeding (2 h vs. 14 h after birth) on body weight and immune status of artificially reared newborn lambs. J. Dairy Sci. 2015, 98, 204–210. [Google Scholar] [CrossRef]
- Argüello, A.; Castro, N.; Zamorano, M.; Castroalonso, A.; Capote, J. Passive transfer of immunity in kid goats fed refrigerated and frozen goat colostrum and commercial sheep colostrum. Small Rumin. Res. 2004, 54, 237–241. [Google Scholar] [CrossRef]
- Kessler, E.; Bruckmaier, R.; Gross, J. Comparative estimation of colostrum quality by Brix refractometry in bovine, caprine, and ovine colostrum. J. Dairy Sci. 2021, 104, 2438–2444. [Google Scholar] [CrossRef]
- Gershwin, L.J.; Olsen, C.L. Immunologic responses of calves to aerosolized antigen: Humoral response to ovalbumin. Am. J. Vet. Res. 1984, 45, 2511–2517. [Google Scholar] [CrossRef]
- HogenEsch, H.; Torregrosa, S.E.; Borie, D.; Gaskell, C.; Bowersock, T.L. Systemic and pulmonary immune response to intrabronchial administration of ovalbumin in calves. Vet. Immunol. Immunopathol. 1996, 51, 293–302. [Google Scholar] [CrossRef]
- Kavanagh, O.V.; Earley, B.; Murray, M.; Foster, C.J.; Adair, B.M. Antigen-specific IgA and IgG responses in calves inoculated intranasally with ovalbumin encapsulated in poly (DL-lactide-co-glycolide) microspheres. Vaccine 2003, 21, 4472–4480. [Google Scholar] [CrossRef]
- Froehlich, K.; Abdelsalam, K.; Chase, C.; Koppien-Fox, J.; Casper, D. Evaluation of essential oils and prebiotics for newborn dairy calves. J. Anim. Sci. 2017, 95, 3772–3782. [Google Scholar] [CrossRef]
- Ferrin, N.H.; Fang, Y.; Johnson, C.R.; Murtaugh, M.P.; Polson, D.D.; Torremorell, M.; Gramer, M.L.; Nelson, E.A. Validation of a blocking enzyme-linked immunosorbent assay for detection of antibodies against porcine reproductive and respiratory syndrome virus. Clin. Vaccine Immunol. 2004, 11, 503–514. [Google Scholar] [CrossRef]
- Okda, F.; Liu, X.; Singrey, A.; Clement, T.; Nelson, J.; Christopher-Hennings, J.; Nelson, E.A.; Lawson, S. Development of an indirect ELISA, blocking ELISA, fluorescent microsphere immunoassay and fluorescent focus neutralization assay for serologic evaluation of exposure to North American strains of Porcine Epidemic Diarrhea Virus. BMC Vet. Res. 2015, 11, 180. [Google Scholar] [CrossRef]
- Okda, F.; Lawson, S.; Liu, X.; Singrey, A.; Clement, T.; Hain, K.; Nelson, J.; Christopher-Hennings, J.; Nelson, E.A. Development of monoclonal antibodies and serological assays including indirect ELISA and fluorescent microsphere immunoassays for diagnosis of porcine deltacoronavirus. BMC Vet. Res. 2016, 12, 95. [Google Scholar] [CrossRef]
- Yu, Z.; Morrison, M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 2004, 36, 808–812. [Google Scholar] [CrossRef]
- Edwards, U.; Rogall, T.; Blöcker, H.; Emde, M.; Böttger, E.C. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 1989, 17, 7843–7853. [Google Scholar] [CrossRef]
- Lane, D.J.; Pace, B.; Olsen, G.J.; Stahl, D.A.; Sogin, M.L.; Pace, N.R. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 1985, 82, 6955–6959. [Google Scholar] [CrossRef]
- Opdahl, L.J.; Gonda, M.G.; St-Pierre, B. Identification of uncultured bacterial species from Firmicutes, Bacteroidetes and CANDIDATUS Saccharibacteria as candidate cellulose utilizers from the rumen of beef cows. Microorganisms 2018, 6, 17. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Kim, M.; Morrison, M.; Yu, Z. Evaluation of different partial 16S rRNA gene sequence regions for phylogenetic analysis of microbiomes. J. Microbiol. Methods 2011, 84, 81–87. [Google Scholar] [CrossRef]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.-Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef]
- Haas, B.J.; Gevers, D.; Earl, A.M.; Feldgarden, M.; Ward, D.V.; Giannoukos, G.; Ciulla, D.; Tabbaa, D.; Highlander, S.K.; Sodergren, E. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 2011, 21, 494–504. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Gillett, D.; Halmagyi, D. Blood volume in reversible and irreversible posthemorrhagic shock in sheep. J. Surg. Res. 1966, 6, 259–261. [Google Scholar] [CrossRef]
- Mayer, B.; Zolnai, A.; Frenyó, L.V.; Jancsik, V.; Szentirmay, Z.; Hammarström, L.; Kacskovics, I. Redistribution of the sheep neonatal Fc receptor in the mammary gland around the time of parturition in ewes and its localization in the small intestine of neonatal lambs. Immunology 2002, 107, 288–296. [Google Scholar] [CrossRef]
- Araujo, G.; Yunta, C.; Terré, M.; Mereu, A.; Ipharraguerre, I.; Bach, A. Intestinal permeability and incidence of diarrhea in newborn calves. J. Dairy Sci. 2015, 98, 7309–7317. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.A.; Waldmann, T.A. The mechanism of intestinal uptake and transcellular transport of IgG in the neonatal rat. J. Clin. Investig. 1972, 51, 2916–2927. [Google Scholar] [CrossRef]
- Evans, T.; Ryley, H.; Neale, L.; Dodge, J.; Lewarne, V. Effect of storage and heat on antimicrobial proteins in human milk. Arch. Dis. Child. 1978, 53, 239–241. [Google Scholar] [CrossRef]
- Maciag, S.; Volpato, F.; Bombassaro, G.; Forner, R.; Oliveira, K.P.; Bovolato, A.L.C.; Lopes, L.; Bastos, A.P. Effects of freezing storage on the stability of maternal cellular and humoral immune components in porcine colostrum. Vet. Immunol. Immunopathol. 2022, 254, 110520. [Google Scholar] [CrossRef]
- Cripps, A.; Lascelles, A. The Biological ‘Half-Lives’ of IgG1 and IgG2 in Young Milk-Fed Lambs and in Non-Pregnant Colostrum-Forming Sheep. Aust. J. Exp. Biol. Med. Sci. 1974, 52, 717–719. [Google Scholar] [CrossRef]
- Ramírez-Santana, C.; Pérez-Cano, F.; Audí, C.; Castell, M.; Moretones, M.; López-Sabater, M.; Castellote, C.; Franch, A. Effects of cooling and freezing storage on the stability of bioactive factors in human colostrum. J. Dairy Sci. 2012, 95, 2319–2325. [Google Scholar] [CrossRef]
- Liu, C.; Chu, D.; Kalantar-Zadeh, K.; George, J.; Young, H.A.; Liu, G. Cytokines: From clinical significance to quantification. Adv. Sci. 2021, 8, 2004433. [Google Scholar] [CrossRef]
- Ober, R.J.; Radu, C.G.; Ghetie, V.; Ward, E.S. Differences in promiscuity for antibody–FcRn interactions across species: Implications for therapeutic antibodies. Int. Immunol. 2001, 13, 1551–1559. [Google Scholar] [CrossRef]
- Nonnecke, B.; Waters, W.; Goff, J.; Foote, M. Adaptive immunity in the colostrum-deprived calf: Response to early vaccination with Mycobacterium bovis strain bacille Calmette Guerin and ovalbumin. J. Dairy Sci. 2012, 95, 221–239. [Google Scholar] [CrossRef]
- Massimini, G.; Britti, D.; Peli, A.; Cinotti, S. Effect of passive transfer status on preweaning growth performance in dairy lambs. J. Am. Vet. Med. Assoc. 2006, 229, 111–115. [Google Scholar] [CrossRef]
- Quigley, J.; Carson, A.F.; Polo, J. Immunoglobulin derived from bovine plasma as a replacement for colostrum in newborn lambs. Vet. Ther. 2002, 3, 262–269. [Google Scholar]



| Treatment Group | * IgG (mg/mL) ± SEM |
|---|---|
| Frozen Ewe Colostrum | 87.47 ± 1.52 |
| Frozen Cattle Colostrum | 139.37 ± 4.22 |
| Artificial Colostrum | 89.99 ± 3.36 |
| Fresh Ewe Colostrum 1 | |
| Dam 1 | 78.53 ± 0.12 |
| Dam 2 | 98.86 ± 3.15 |
| Dam 3 | 83.15 ± 0.00 |
| Dam 4 | 54.84 ± 2.41 |
| Dam 5 | 59.27 ± 4.09 |
| Treatment Groups | ||||||
|---|---|---|---|---|---|---|
| FrC (n = 10) | FZ (n = 11) | CC (n = 11) | AC (n = 11) | SEM 1 | p-Value | |
| Variable | ||||||
| BW 2, kg | 5.13 | 4.64 | 4.62 | 4.79 | 0.33 | 0.40 |
| WWT 3, kg | 16.71 | 15.66 | 16.10 | 15.59 | 0.85 | 0.54 |
| PWWT 4, kg | 35.09 | 33.77 | 32.42 | 32.91 | 1.91 | 0.51 |
| PrWADG 5, kg/d | 0.39 | 0.37 | 0.38 | 0.36 | 0.05 | 0.55 |
| PoWADG 6, kg/d | 0.28 | 0.25 | 0.27 | 0.26 | 0.07 | 0.77 |
| Treatment Groups | p-Value | |||||||
|---|---|---|---|---|---|---|---|---|
| WOA 1 | FrC (n = 10) | FZ (n = 11) | CC (n = 11) | AC (n = 11) | SEM 2 | Trt | Time | Trt * Time |
| 1 | 70.14 a | 63.27 ab | 55.24 bc | 48.92 c | 3.21 | <0.01 | <0.01 | <0.01 |
| 2 | 47.35 a | 41.98 ab | 34.78 b | 23.14 c | 3.36 | |||
| 3 | 42.31 a | 31.79 bc | 22.83 cd | 15.81 d | 3.53 | |||
| 4 | 35.64 a | 24.62 b | 14.76 c | 8.71 c | 3.53 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schoen, C.; Johnson, B.; Lawson, S.; Nold, R.; Chase, C.; St-Pierre, B.; Vasquez-Hidalgo, M.A. Evaluation of the Effects of Colostrum Substitutes on IgG Levels and Humoral Immune Development in Polypay Lambs. Vet. Sci. 2025, 12, 1075. https://doi.org/10.3390/vetsci12111075
Schoen C, Johnson B, Lawson S, Nold R, Chase C, St-Pierre B, Vasquez-Hidalgo MA. Evaluation of the Effects of Colostrum Substitutes on IgG Levels and Humoral Immune Development in Polypay Lambs. Veterinary Sciences. 2025; 12(11):1075. https://doi.org/10.3390/vetsci12111075
Chicago/Turabian StyleSchoen, Clay, Blake Johnson, Steven Lawson, Rosemarie Nold, Christopher Chase, Benoit St-Pierre, and Manuel Alexander Vasquez-Hidalgo. 2025. "Evaluation of the Effects of Colostrum Substitutes on IgG Levels and Humoral Immune Development in Polypay Lambs" Veterinary Sciences 12, no. 11: 1075. https://doi.org/10.3390/vetsci12111075
APA StyleSchoen, C., Johnson, B., Lawson, S., Nold, R., Chase, C., St-Pierre, B., & Vasquez-Hidalgo, M. A. (2025). Evaluation of the Effects of Colostrum Substitutes on IgG Levels and Humoral Immune Development in Polypay Lambs. Veterinary Sciences, 12(11), 1075. https://doi.org/10.3390/vetsci12111075

