An Evaluation of the Anesthetic Properties and Serum Biochemical Response of Ocimum Essential Oil as a New Anesthetic Agent for Goldfish (Carassius auratus)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical Composition of Essential Oils
2.2. Animal Maintenance and Rearing Conditions
2.3. Experimental Design
2.3.1. Anesthesia Induction and Recovery
2.3.2. Laboratory Analyses
2.4. Statistical Analysis
3. Results
3.1. Chemical Composition of Essential Oils
3.2. Anesthesia Induction and Recovery Results
3.3. Laboratory Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martins, T.; Valentim, A.; Pereira, N.; Antunes, L.M. Anaesthetics and Analgesics Used in Adult Fish for Research: A review. Lab. Anim. 2019, 53, 325–341. [Google Scholar] [CrossRef]
- Rairat, T.; Chi, Y.; Hsieh, C.Y.; Liu, Y.K.; Chuchird, N.; Chou, C.C. Determination of Optimal Doses and Minimum Effective Concentrations of Tricaine Methanesulfonate, 2-Phenoxyethanol and Eugenol for Laboratory Managements in Nile Tilapia (Oreochromis niloticus). Animals 2021, 11, 1521. [Google Scholar] [CrossRef]
- Zhuang, Z.; Li, X.; Luo, Y.; Li, Y.; Ahmed Isse, S.; Zhang, Z.; Luo, Q.; Chen, X. Developmental Neurotoxicity of Anesthetic Etomidate in Zebrafish Larvae: Alterations in Motor Function, Neurotransmitter Signaling, and Lipid Metabolism. J. Hazard. Mater. 2025, 494, 138598. [Google Scholar] [CrossRef] [PubMed]
- Neiffer, D.L.; Stamper, M.A. Fish Sedation, Analgesia, Anesthesia, and Euthanasia: Considerations, Methods, and Types of Drugs. ILAR J. 2009, 50, 343–360. [Google Scholar] [CrossRef]
- Kizak, V.; Can, E.; Danabaş, D.; Can, S.S. Evaluation of Anesthetic Potential of Rosewood (Aniba rosaeodora) Oil as a New Anesthetic Agent for Goldfish (Carassius auratus). Aquaculture 2018, 493, 296–301. [Google Scholar] [CrossRef]
- Khumpirapang, N.; Chaichit, S.; Jiranusornkul, S.; Pikulkaew, S.; Müllertz, A.; Okonogi, S. In Vivo Anesthetic Effect and Mechanism of Action of Active Compounds from Alpinia galanga Oil on Cyprinus carpio (koi carp). Aquaculture 2018, 496, 176–184. [Google Scholar] [CrossRef]
- Zeng, X.; Dong, H.; Zhang, J.; Wang, W.; Duan, Y.; Chen, J.; Zhang, J. Essential Oil of Magnolia denudata is an Effective Anesthetic for Spotted Seabass (Lateolabrax maculatus): A Test of its Effect on Blood Biochemistry, Physiology, and Gill Morphology. Fish Physiol. Biochem. 2022, 48, 1349–1363. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, I.C.; Oliveira, R.S.M.; Lemos, C.H.D.P.; de Oliveira, C.P.B.; Silva, A.F.; Lorenzo, V.P.; Lima, A.O.; da Cruz, A.L.; Copatti, C.E. Essential Oils from Cymbopogon citratus and Lippia sidoides in the Anesthetic Induction and Transport of Ornamental Fish Pterophyllum scalare. Fish Physiol. Biochem. 2022, 48, 501–519. [Google Scholar] [CrossRef]
- Toni, C.; Martos-Sitcha, J.A.; Baldisserotto, B.; Heinzmann, B.M.; de Lima Silva, L.; Martínez-Rodríguez, G.; Mancera, J.M. Sedative Effect of 2-Phenoxyethanol and Essential Oil of Lippia alba on Stress Response in Gilthead Sea Bream (Sparus aurata). Res. Vet. Sci. 2015, 103, 20–27. [Google Scholar] [CrossRef]
- Bristol, D.W. NTP 3-Month Toxicity Studies of Estragole (CAS No. 140-67-0) Administered by Gavage to F344/N Rats and B6C3F1 Mice. Toxic. Rep. Ser. 2011, 82, 1–111. Available online: https://pubmed.ncbi.nlm.nih.gov/21445103/ (accessed on 20 June 2025).
- Dharsono, H.D.A.; Putri, S.A.; Kurnia, D.; Dudi, D.; Satari, M.H. Ocimum Species: A Review on Chemical Constituents and Antibacterial Activity. Molecules 2022, 27, 6350. [Google Scholar] [CrossRef]
- Devi, P.U.; Ganasoundari, A. Modulation of Glutathione and Antioxidant Enzymes by Ocimum sanctum and its Role in Protection Against Radiation Injury. Indian J. Exp. Biol. 1999, 37, 262–268. Available online: https://pubmed.ncbi.nlm.nih.gov/10641157/ (accessed on 17 May 2025).
- Sharma, P.; Kulshreshtha, S.; Sharma, A.L. Anti-Cataract Activity of Ocimum sanctum on Experimental Cataract. Indian J. Pharmacol. 1998, 30, 16–20. [Google Scholar]
- Lam, P.H.; Vo, H.D.N.; Truong, L.M.T.; Dang, D.M.T.; Dang, C.M.; Doan, T.C.D.; Mollaamin, F.; Monajjemi, M. Anesthetic Effects of Clove Basil Essential Oil (Ocimum gratissimum) Microemulsion on Asian Redtail Catfish (Hemibagrus wyckioides) and Its Biochemical Stress Indicators. Fishes 2025, 10, 104. [Google Scholar] [CrossRef]
- Capparucci, F.; De Benedetto, G.; Natale, S.; Pecoraro, R.; Iaria, C.; Marino, F. Evaluation of Anaesthetic Effect of Commercial Basil Ocimum basilicum on Zebrafish (Danio rerio) Embryos. Fishes 2022, 7, 318. [Google Scholar] [CrossRef]
- Ventura, A.S.; Jerônimo, G.T.; Corrêa Filho, R.A.C.; Souza, A.I.D.; Stringhetta, G.R.; Cruz, M.G.D.; Torres, G.D.S.; Gonçalves, L.U.; Povh, J.A. Ocimum basilicum Essential Oil as An Anesthetic for Tambaqui Colossoma macropomum: Hematological, Biochemical, Non-specific Immune Parameters and Energy Metabolism. Aquaculture 2021, 533, 736124. [Google Scholar] [CrossRef]
- Correia, A.M.; Pedrazzani, A.S.; Mendonça, R.C.; Massucatto, A.; Ozório, R.A.; Tsuzuki, M.Y. Basil, Tea Tree and Clove Essential Oils as Analgesics and Anesthetics in Amphiprion clarkii (Bennett, 1830). Braz. J. Biol. 2018, 78, 436–442. [Google Scholar] [CrossRef]
- Ross, L.G.; Ross, B.R. Anesthetic and Sedative Techniques for Aquatic Animals, 2nd ed.; Blackwell Science: Oxford, UK, 2008; pp. 41–67. [Google Scholar]
- Brown, J.L.; Bansiddhi, P.; Khonmee, J.; Thitaram, C. Commonalities in Management and Husbandry Factors Important for Health and Welfare of Captive Elephants in North America and Thailand. Animals 2020, 10, 737. [Google Scholar] [CrossRef]
- Abbas, M.A.; Kim, H.-J.; Lee, G.-Y.; Cho, H.-Y.; Al Jawad Sayem, S.; Lee, E.-B.; Lee, S.-J.; Park, S.-C. Development and Application of Lactobacillus plantarum PSCPL13 Probiotics in Olive Flounder (Paralichthys olivaceus) Farming. Microorganisms 2025, 13, 61. [Google Scholar] [CrossRef]
- Jiang, Y.-H.; Liang, M.; Yang, Y.-H.; Xue, J.; Suo, H.-Y. Probiotic Lactobacillus plantarum SHY21-2 Protected Zebrafish Against Aeromonas hydrophila Infection by Naintaining Intestinal Barrier Integrity, Inhibiting Inflammatory and Oxidative Stress Responses, and Regulating Intestinal Microbiome. Aquaculture 2024, 582, 740506. [Google Scholar] [CrossRef]
- Jeong, H.S.; Hwang, S.D.; Won, K.M.; Hwang, J.-A. Dietary Soy Isoflavones Promote Feminization and Enhance Growth of Juvenile Japanese Eel (Anguilla japonica). Animals 2025, 15, 2513. [Google Scholar] [CrossRef]
- Karim, A.; Shahzad, M.M.; Kamal, K.; Khwaja, S.; Ijaz, A.; Imtiaz, S. Efficacy of Clove Oil and Rosewood Oil as Anesthetics on Goldfish (Carassius auratus). Egypt. J. Aquat. Res. 2024, 50, 408–413. [Google Scholar] [CrossRef]
- Ventura, A.S.; Jerônimo, G.T.; de Oliveira, S.N.; de Araújo Gabriel, A.M.; Cardoso, C.A.L.; Teodoro, G.C.; Corrêa Filho, R.A.C.; Povh, J.A. Natural Anesthetics in the Transport of Nile Tilapia: Hematological and Biochemical Responses and Residual Concentration in the Fillet. Aquaculture 2020, 526, 735365. [Google Scholar] [CrossRef]
- Jerez-Cepa, I.; Fernández-Castro, M.; Alameda-López, M.; González-Manzano, G.; Mancera, J.M.; Ruiz-Jarabo, I. Transport and Recovery of Gilthead Seabream (Sparus aurata L.) Sedated with AQUI-S® and Etomidate: Effects on Intermediary Metabolism and Osmoregulation. Aquaculture 2021, 530, 735745. [Google Scholar] [CrossRef]
- Brandão, F.R.; Duncan, W.P.; Farias, C.F.S.; de Melo Souza, D.C.; de Oliveira, M.I.B.; Rocha, M.J.S.; Monteiro, P.C.; Majolo, C.; Chaves, F.C.M.; de Almeida O’Sullivan, F.L.; et al. Essential Oils of Lippia sidoides and Mentha piperita as Reducers of Stress During the Transport of Colossoma macropomum. Aquaculture 2022, 560, 738515. [Google Scholar] [CrossRef]
- Perdikaris, C.; Nathanailides, C.; Gouva, E.; Gabriel, U.U.; Bitchava, K.; Athanasopoulou, F.; Paschou, A.; Paschos, I. Size-relative Effectiveness of Clove Oil as an Anaesthetic for Rainbow Trout (Oncorhynchus mykiss Walbaum, 1792) and Goldfish (Carassius auratus Linnaeus, 1758). Acta Vet. Brno. 2010, 79, 481–490. [Google Scholar] [CrossRef]
- Maryani; Monalisa, S.S.; Rozik, M.; Yulintine; Dangeubun, J.L.; Rosdiana. Anesthesia Application of Holy Basil (Ocimum tenuiflorum) Leaf Essential Oil on Catfish (Pangasius sp.) Seed Transportation. AACL Bioflux 2022, 15, 2892–2899. Available online: https://bioflux.com.ro/docs/2022.2892-2899.pdf (accessed on 8 September 2025).
- Kheawfu, K.; Pikulkaew, S.; Wellendorph, P.; Jørgensen, L.G.; Rades, T.; Müllertz, A.; Okonogi, S. Elucidating Pathway and Anesthetic Mechanism of Action of Clove Oil Nanoformulations in Fish. Pharmaceutics 2022, 14, 919. [Google Scholar] [CrossRef]
- Nuanmanee, S.; Sriwanayos, P.; Boonyo, K.; Chaisri, W.; Saengsitthisak, B.; Tajai, P.; Pikulkaew, S. Synergistic Effect between Eugenol and 1,8-Cineole on Anesthesia in Guppy Fish (Poecilia reticulata). Vet. Sci. 2024, 11, 165. [Google Scholar] [CrossRef]
- Parodi, T.V.; Gressler, L.T.; Silva, L.D.L.; Becker, A.G.; Schmidt, D.; Caron, B.O.; Heinzmann, B.M.; Baldisserotto, B. Chemical Composition of The Essential Oil of Aloysia triphylla Under Seasonal Influence and its Anaesthetic Activity in Fish. Aquac. Res. 2020, 51, 2515–2524. [Google Scholar] [CrossRef]
- Javahery, S.; Nekoubin, H.; Moradlu, A.H. Effect of Anaesthesia with Clove Oil in Fish (Review). Fish Physiol. Biochem. 2012, 38, 1545–1552. [Google Scholar] [CrossRef]
- Zhakipbekov, K.; Turgumbayeva, A.; Akhelova, S.; Bekmuratova, K.; Blinova, O.; Utegenova, G.; Shertaeva, K.; Sadykov, N.; Tastambek, K.; Saginbazarova, A.; et al. Antimicrobial and Other Pharmacological Properties of Ocimum basilicum, Lamiaceae. Molecules 2024, 29, 388. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils—A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Yigit, N.O.; Metin, S.; Sabuncu, O.F.; Didinen, B.I.; Didinen, H.; Ozmen, O.; Koskan, O. Efficiency of Ocimum basilicum and Eucalyptus globulus Essential Oils on Anesthesia and Histopathology of Rainbow Trout, Oncorhynchus mykiss. J. World. Aquac. Soc. 2022, 53, 1051–1061. [Google Scholar] [CrossRef]
- Ventura, A.S.; Corrêa Filho, R.A.C.; Cardoso, C.A.L.; Stringhetta, G.R.; de Oliveira Brasileiro, L.; Ribeiro, J.S.; Pereira, S.A.; Jerônimo, G.T.; Povh, J.A. Ocimum basilicum Essential Oil in Pacu Piaractus mesopotamicus: Anesthetic Efficacy, Distribution, and Depletion in Different Tissues. Vet. Res. Commun. 2024, 48, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Netto, J.D.L.; Oliveira, R.S.M.; Copatti, C.E. Efficiency of Essential Oils of Ocimum basilicum and Cymbopogum flexuosus in The Sedation and Anesthesia of Nile Tilapia Juveniles. An. Acad. Bras. Cienc. 2017, 89, 2971–2974. [Google Scholar] [CrossRef]
- Farias, C.F.S.; Ventura, A.S.; Jerônimo, G.T.; Cardoso, C.A.L.; de Matos, L.V.; da Silva, G.S.; Gonçalves, L.U.; Povh, J.A.; Martins, M.L. Pharmacokinetics and Metabolism of Basil (Ocimum basilicum) Essential Oil as An Anesthetic for Tambaqui (Colossoma macropomum). Aquac. Int. 2024, 32, 2923–2938. [Google Scholar] [CrossRef]
- Akbulut, B.; Çakmak, E.; Özel, O.T.; Dülger, N. Effect of Anaesthesia with Clove Oil and Benzocaine on Feed Intake in Siberian Sturgeon (Acipenser baerii Brandt, 1869). Turk. J. Fish Aquat. Sci. 2012, 12, 667–673. Available online: https://www.trjfas.org/abstract.php?id=484 (accessed on 1 September 2025). [CrossRef]
- Zahl, I.H.; Samuelsen, O.; Kiessling, A. Anaesthesia of farmed fish: Implications for Welfare. Fish Physiol. Biochem. 2012, 38, 201–218. [Google Scholar] [CrossRef] [PubMed]
- Heldwein, C.G.; Silva, L.L.; Reckziegel, P.; Barros, F.M.; Bürger, M.E.; Baldisserotto, B.; Mallmann, C.A.; Schmidt, D.; Caron, B.O.; Heinzmann, B.M. Participation of the GABAergic System in the Anesthetic Effect of Lippia alba (Mill.) N.E. Brown Essential Oil. Braz. J. Med. Biol. Res. 2012, 45, 436–443. [Google Scholar] [CrossRef]
- Bianchini, A.E.; Garlet, Q.I.; da Cunha, J.A.; Bandeira, G.; Junior Brusque, I.C.M.; Salbego, J.; Heinzmann, B.M.; Baldisserotto, B. Monoterpenoids (Thymol, Carvacrol and S-(+)-Linalool) with Anesthetic Activity in Silver Catfish (Rhamdia quelen): Evaluation of Acetylcholinesterase and GABAergic Activity. Braz. J. Med. Biol. Res. 2017, 50, e6346. [Google Scholar] [CrossRef]
- Meyer, R.E.; Fish, R.E. Pharmacology of Injectable Anesthetics, Sedatives, and Tranquilizers. In Anesthesia and Analgesia in Laboratory Animals, 2nd ed.; Fish, R.E., Danneman, P.J., Brown, M.J., Karas, A.Z., Eds.; Academic Press: San Diego, CA, USA, 2008; pp. 27–82. [Google Scholar]
- Smith, M.E.; Kane, A.S.; Popper, A.N. Noise-induced Stress Response and Hearing Loss in Goldfish (Carassius auratus). J. Exp. Biol. 2004, 207, 427–435. [Google Scholar] [CrossRef]
- Zahl, I.H.; Kiessling, A.; Samuelsen, O.B.; Olsen, R.E. Anesthesia Induces Stress in Atlantic Salmon (Salmo salar), Atlantic Cod (Gadus morhua) and Atlantic Halibut (Hippoglossus hippoglossus). Fish Physiol. Biochem. 2010, 36, 719–730. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.L.; Garlet, Q.I.; Koakoski, G.; Abreu, M.S.; Mallmann, C.A.; Baldisserotto, B.; Barcellos, L.J.G.; Heinzmann, B.M. Anesthetic Activity of the Essential Oil of Ocimum americanum in Rhamdia quelen (Quoy & Gaimard, 1824) and its Effects on Stress Parameters. Neotrop. Ichthyol. 2015, 13, 715–722. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Joshi, S.R. Disorders of Calcium, Phosphorus and Magnesium Metabolism. J. Assoc. Physician. India 2008, 56, 613–621. Available online: https://pubmed.ncbi.nlm.nih.gov/19051708/ (accessed on 23 May 2025).
- Lepic, P.; Stara, A.; Turek, J.; Kozak, P.; Velisek, J. The Effects of Four Anaesthetics on Haematological and Blood Biochemical Profiles in Vimba Bream, Vimba vimba. Vet. Med-Czech. 2014, 59, 81–87. [Google Scholar] [CrossRef]
- Habib, S.S.; Naz, S.; Batool, A.I.; Rehman, M.F.U.; Ullah, M.; Kesbiç, O.S.; Maricchiolo, G.; Fazio, F. Effect of Different Anaesthetics on Hematology and Blood Biochemistry of Labeo rohita. Aquac. Stud. 2024, 24, AQUAST1195. [Google Scholar] [CrossRef]
- Gomułka, P.; Dągowski, J.; Własow, T.; Szczepkowski, M.; Czerniak, E.; Ziomek, E.; Szczerbowski, A.; Łuczyński, M.; Szkudlarek, M. Haematological and Biochemical Blood Profile in Russian Sturgeon Following Propofol and Eugenol Anaesthesia. Turk. J. Fish Aquat. Sci. 2015, 15, 13–17. Available online: https://www.trjfas.org/uploads/pdf_3.pdf (accessed on 1 September 2025). [CrossRef]
- Bojarski, B.; Witeska, M.; Kondera, E. Blood Biochemical Biomarkers in Fish Toxicology—A Review. Animals 2025, 15, 965. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, M.; Hoseini, S.M.; Vatnikov, Y.A.; Nikishov, A.A.; Kulikov, E.V. Thymol as A New Anesthetic in Common Carp (Cyprinus carpio): Efficacy and Physiological Effects in Comparison with Eugenol. Aquaculture 2018, 495, 376–383. [Google Scholar] [CrossRef]
- Taheri-Mirghaed, A.; Ghelichpour, M.; Zargari, A.; Yousefi, M. Anaesthetic Efficacy and Biochemical Effects of 1,8-cineole in Rainbow Trout (Oncorhynchus mykiss, Walbaum, 1792). Aquac. Res. 2018, 49, 2156–2165. [Google Scholar] [CrossRef]
- Rożyński, M.; Demska-Zakęś, K.; Sikora, A.; Zakęś, Z. Impact of Inducing General Anesthesia with Propiscin (Etomidate) on the Physiology and Health of European Perch (Perca fluviatilis L.). Fish Physiol. Biochem. 2018, 44, 927–937. [Google Scholar] [CrossRef] [PubMed]
- Caipang, C.M.A.; Berg, I.; Brinchmann, M.F.; Kiron, V. Short-term Crowding Stress in Atlantic Cod, Gadus morhua L. Modulates the Humoral Immune Response. Aquaculture 2009, 295, 110–115. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, J.; Gao, Y.; Huang, B. Hypoxia Tolerance, Hematological, and Biochemical Response in Juvenile Turbot (Scophthalmus maximus. L.). Aquaculture 2021, 535, 736380. [Google Scholar] [CrossRef]

| Stage | Description of Behavior |
|---|---|
| Anesthesia | |
| 1 | Responsive to stimuli; movement reduced |
| 2 | Partial loss of equilibrium; fish rolls and attempts to right itself |
| 3 | Total loss of equilibrium; ventilation reduced |
| 4 | Failure to respond to any external stimuli |
| 5 | No ventilation; collapse and death |
| Recovery | Swimming resumed, balance achieved, and responsiveness |
| No. | Retention Time (Rt) | Compounds | %Area | %QA |
|---|---|---|---|---|
| 1 | 6.585 | α-Pinene | 0.35 | 96 |
| 2 | 7.138 | Camphene | 0.38 | 97 |
| 3 | 8.083 | β-Pinene | 0.22 | 97 |
| 4 | 9.868 | Limonene | 0.17 | 98 |
| 5 | 9.969 | 1,8-Cineol | 0.89 | 98 |
| 6 | 12.282 | Linalool | 1.10 | 97 |
| 7 | 13.776 | Camphor | 0.40 | 98 |
| 8 | 14.308 | Isoborneol | 0.71 | 95 |
| 9 | 14.579 | Borneol | 0.79 | 95 |
| 10 | 15.297 | α-Terpineol | 0.40 | 91 |
| 11 | 15.381 | Estragole | 0.63 | 98 |
| 12 | 19.679 | Camphene | 0.82 | 94 |
| 13 | 19.871 | Eugenol | 21.63 | 98 |
| 14 | 20.488 | α-Copaene | 0.45 | 97 |
| 15 | 20.646 | Cembrene A | 0.15 | 80 |
| 16 | 20.703 | β-Bourbonene | 0.13 | 96 |
| 17 | 20.869 | (-)-β-Elemene | 6.47 | 99 |
| 18 | 21.180 | Methyl eugenol | 28.87 | 98 |
| 19 | 21.258 | Caryophyllene | 0.15 | 96 |
| 20 | 21.716 | β-Caryophyllene | 28.29 | 99 |
| 21 | 22.569 | α-humulene | 1.39 | 98 |
| 22 | 22.811 | Ethyl-cinnamate | 0.13 | 98 |
| 23 | 23.006 | γ-Selinene | 0.14 | 91 |
| 24 | 23.207 | β-Cubebene | 1.31 | 98 |
| 25 | 23.407 | β-Selinene | 0.59 | 99 |
| 26 | 23.579 | α-Selinene | 0.68 | 99 |
| 27 | 23.865 | β-Elemene | 1.25 | 93 |
| 28 | 24.111 | Δ-Cadinene | 0.23 | 99 |
| 29 | 24.830 | Hedycaryol | 0.14 | 83 |
| 30 | 25.653 | β-Caryophyllene oxide | 0.91 | 99 |
| 31 | 27.398 | Bulnesol | 0.14 | 93 |
| No. | Retention Time (Rt) | Compounds | %Area | %QA |
|---|---|---|---|---|
| 1 | 4.337 | trans-Linalool oxide | 0.05 | 86 |
| 2 | 4.509 | α-Terpinolen | 0.10 | 96 |
| 3 | 4.627 | Linalool | 10.00 | 97 |
| 4 | 4.957 | Neo-Allo-Ocimene | 0.02 | 97 |
| 5 | 5.376 | Dextro-camphor | 0.28 | 98 |
| 6 | 5.453 | (-)-Menthone | 0.04 | 98 |
| 7 | 5.611 | Isoborneol | 0.06 | 80 |
| 8 | 5.776 | L-Menthol | 0.46 | 91 |
| 9 | 6.207 | Estragole | 72.55 | 98 |
| 10 | 6.868 | (Z)-Citral | 0.37 | 93 |
| 11 | 7.548 | α-Citral | 0.45 | 97 |
| 12 | 8.198 | Isobornyl acetate | 0.12 | 91 |
| 13 | 12.451 | Methyl eugenol | 0.53 | 98 |
| 14 | 13.721 | Beta-Caryophyllene | 0.41 | 99 |
| 15 | 14.454 | α-Bergamotene | 0.55 | 95 |
| 16 | 15.622 | (E)-Beta-Farnesene | 0.15 | 96 |
| 17 | 15.732 | α-Caryophyllene | 0.18 | 97 |
| 18 | 17.266 | (E)- Germacrene D | 0.24 | 97 |
| 19 | 21.228 | α-Bisabolene | 1.35 | 98 |
| 20 | 34.969 | Benzyl benzoate | 11.80 | 97 |
| Agent | Concentration (mg/L) | Induction Time (s) | Recovery Time (s) | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Stage 1 | Stage 2 | Stage 3 | Stage 4 | ||||||||
| M | IQR | M | IQR | M | IQR | M | IQR | M | IQR | ||
| MS-222 | 200 | 31.00 ab | 28.50–35.25 | 51.50 abc | 46.75–56.75 | 98 ab | 85.00–118.75 | 110.00 a | 105.75–136.75 | 120.50 a | 110.25–131.25 |
| OTO | 40 | 57.50 c | 45.50–65.25 | 127.00 d | 120.25–148.00 | ||||||
| 60 | 33.00 bc | 30.25–38.50 | 67.00 c | 65.00–71.75 | 270.00 bc | 223.00–280.00 | |||||
| 80 | 30.50 ab | 28.25–32.75 | 44.50 ab | 41.00–46.00 | 190.00 c | 172.25–214.00 | 257.00 d | 222.25–282.00 | 293.50 b | 279.75–301.75 | |
| 100 | 31.50 b | 29.25–35.25 | 41.00 ab | 37.25–44.00 | 113.00 a | 100.00–119.75 | 169.50 ab | 144.00–174.75 | 270.00 b | 260.75–277.50 | |
| 120 | 24.00 a | 21.25–26.75 | 34.00 a | 32.00–37.75 | 90.00 ab | 73.50–107.25 | 135.50 a | 113.75–149.25 | 263.00 b | 254.25–282.75 | |
| OBO | 200 | 32.00 abc | 28.00–36.25 | 65.00 abc | 48.00–76.75 | 84.50 a | 68.25–98.00 | ||||
| 250 | 50.50 bc | 46.50–56.50 | 67.50 c | 61.50–74.75 | 92.00 a | 83.50–101.75 | 212.00 cd | 199.50–235.25 | 262.50 b | 234.00–272.75 | |
| 300 | 32.50 abc | 28.75–40.75 | 59.50 bc | 47.25–70.25 | 82.00 a | 74.25–94.75 | 190.00 bc | 181.25–197.50 | 553.50 c | 519.25–591.00 | |
| Blood Parameter (Unit) | Chemicals | p-Value (Kruskal–Wallis Test) | ||
|---|---|---|---|---|
| OTO Median (IQR) | OBO Median (IQR) | MS-222 Median (IQR) | ||
| Cortisol (ng/mL) | 81.56 a (74.26–89.09) | 210.19 b (190.79–234.16) | 240.07 b (214.29–257.71) | 0.00041 |
| Glucose (mg/dL) | 52.77 a (52.00–55.48) | 81.10 b (75.00–86.97) | 84.00 b (74.55–91.06) | 0.00042 |
| Total protein (g/dL) | 2.35 a (2.28–2.40) | 2.65 b (2.50–2.70) | 2.90 c (2.88–2.93) | 0.00008 |
| Albumin (g/dL) | 0.90 a (0.80–0.90) | 1.10 b (1.00–1.10) | 1.10 b (1.08–1.10) | 0.00061 |
| Globulin (g/dL) | 1.50 a (1.40–1.50) | 1.50 a (1.50–1.60) | 1.75 b (1.60–1.83) | 0.00179 |
| ALT (U/L) | 2.75 a (2.00–3.00) | 4.50 b (4.00–5.63) | 5.00 b (4.00–5.25) | 0.00479 |
| ALP (U/L) | 9.30 a (7.63–11.63) | 19.50 b (17.50–20.50) | 13.00 a (11.50–14.25) | 0.00028 |
| BUN (mg/dL) | 1.80 a (1.28–1.80) | 1.50 a (1.28–1.80) | 1.45 a (1.30–1.63) | 0.98300 |
| Creatinine (mg/dL) | 0.16 a (0.12–0.25) | 0.18 a (0.12–0.29) | 0.49 a (0.15–0.58) | 0.10800 |
| Calcium (mmol/L) | 9.35 a (8.90–10.35) | 10.70 a (10.20–11.60) | 10.45 a (10.15–11.28) | 0.06160 |
| Phosphorus (mg/dL) | 10.00 a (9.48–11.00) | 10.65 a (9.95–11.18) | 10.45 a (9.95–11.15) | 0.66900 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junmahasathien, T.; Kheawfu, K.; Chittasupho, C.; Nuanmanee, S.; Chaisri, W.; Pikulkaew, S. An Evaluation of the Anesthetic Properties and Serum Biochemical Response of Ocimum Essential Oil as a New Anesthetic Agent for Goldfish (Carassius auratus). Vet. Sci. 2025, 12, 1069. https://doi.org/10.3390/vetsci12111069
Junmahasathien T, Kheawfu K, Chittasupho C, Nuanmanee S, Chaisri W, Pikulkaew S. An Evaluation of the Anesthetic Properties and Serum Biochemical Response of Ocimum Essential Oil as a New Anesthetic Agent for Goldfish (Carassius auratus). Veterinary Sciences. 2025; 12(11):1069. https://doi.org/10.3390/vetsci12111069
Chicago/Turabian StyleJunmahasathien, Taepin, Kantaporn Kheawfu, Chuda Chittasupho, Saransiri Nuanmanee, Wasana Chaisri, and Surachai Pikulkaew. 2025. "An Evaluation of the Anesthetic Properties and Serum Biochemical Response of Ocimum Essential Oil as a New Anesthetic Agent for Goldfish (Carassius auratus)" Veterinary Sciences 12, no. 11: 1069. https://doi.org/10.3390/vetsci12111069
APA StyleJunmahasathien, T., Kheawfu, K., Chittasupho, C., Nuanmanee, S., Chaisri, W., & Pikulkaew, S. (2025). An Evaluation of the Anesthetic Properties and Serum Biochemical Response of Ocimum Essential Oil as a New Anesthetic Agent for Goldfish (Carassius auratus). Veterinary Sciences, 12(11), 1069. https://doi.org/10.3390/vetsci12111069

