Environmental and Serological Monitoring of Porcine Circovirus by Loop-Mediated Isothermal Amplification in Pig Farms
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Farm Description
2.2. Sample Laboratory Pretreatment
2.3. LAMP Primer Design
2.4. Laboratory Analysis
2.4.1. Procedure A: qPCR Assay (DNA Extraction + PCV2 qPCR)
2.4.2. Procedure B: LAMP Assay (DNA Extraction + PCV2 LAMP)
2.4.3. Procedure C: Direct PCV2 LAMP Assay
2.5. Statistical Analysis
3. Results
3.1. Comparison Among PCV2 qPCR, PCV2 LAMP and Direct PCV2 LAMP
3.2. PCV2 Health Situation
3.2.1. Unvaccinated Pigs (Farm A)
3.2.2. Vaccinated Pigs (Farm B)
3.3. Monitoring PCV2 Infection
3.3.1. Unvaccinated Pigs (Farm A)
3.3.2. Vaccinated Pigs (Farm B)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Segalés, J. Porcine Circovirus Type 2 (PCV2) Infections: Clinical Signs, Pathology and Laboratory Diagnosis. Virus Res. 2012, 164, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Segalés, J. Best Practice and Future Challenges for Vaccination against Porcine Circovirus Type 2. Expert. Rev. Vaccines 2015, 14, 473–487. [Google Scholar] [CrossRef] [PubMed]
- Alarcon, P.; Rushton, J.; Wieland, B. Cost of Post-Weaning Multi-Systemic Wasting Syndrome and Porcine Circovirus Type-2 Subclinical Infection in England—An Economic Disease Model. Prev. Vet. Med. 2013, 110, 88–102. [Google Scholar] [CrossRef]
- Fan, M.; Bian, L.; Tian, X.; Hu, Z.; Wu, W.; Sun, L.; Yuan, G.; Li, S.; Yue, L.; Wang, Y.; et al. Infection Characteristics of Porcine Circovirus Type 2 in Different Herds from Intensive Farms in China, 2022. Front. Vet. Sci. 2023, 10, 1187753. [Google Scholar] [CrossRef] [PubMed]
- Martín-Valls, G.E.; Li, Y.; Díaz, I.; Cano, E.; Sosa-Portugal, S.; Mateu, E. Diversity of Respiratory Viruses Present in Nasal Swabs under Influenza Suspicion in Respiratory Disease Cases of Weaned Pigs. Front. Vet. Sci. 2022, 9, 1014475. [Google Scholar] [CrossRef] [PubMed]
- Sagrera, M.; Garza-Moreno, L.; Sibila, M.; Oliver-Ferrando, S.; Cárceles, S.; Casanovas, C.; Prieto, P.; García-Flores, A.; Espigares, D.; Segalés, J. Frequency of PCV-2 Viremia in Nursery Piglets from a Spanish Swine Integration System in 2020 and 2022 Considering PRRSV Infection Status. Porc. Health Manag. 2024, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Eddicks, M.; Beuter, B.; Stuhldreier, R.; Nolte, T.; Reese, S.; Sutter, G.; Ritzmann, M.; Fux, R. Cross-Sectional Study on Viraemia and Shedding of Porcine Circovirus Type 2 in a Subclinically Infected Multiplier Sow Herd. Vet. Rec. 2019, 184, 189. [Google Scholar] [CrossRef] [PubMed]
- López-Lorenzo, G.; López-Novo, C.; Prieto, A.; Díaz, P.; Panadero, R.; Rodríguez-Vega, V.; Morrondo, P.; Fernández, G.; Díaz-Cao, J.M. Monitoring of Porcine Circovirus Type 2 Infection through Air and Surface Samples in Vaccinated and Unvaccinated Fattening Farms. Transbound. Emerg. Dis. 2022, 69, 1108–1117. [Google Scholar] [CrossRef]
- López-Lorenzo, G.; Prieto, A.; López-Novo, C.; Díaz, P.; Remesar, S.; Morrondo, P.; Fernández, G.; Díaz-Cao, J.M. Presence of Porcine Circovirus Type 2 in the Environment of Farm Facilities without Pigs in Long Term-Vaccinated Farrow-to-Wean Farms. Animals 2022, 12, 3515. [Google Scholar] [CrossRef]
- Vilalta, C.; Sanhueza, J.; Garrido, J.; Murray, D.; Morrison, R.; Corzo, C.A.; Torremorell, M. Indirect Assessment of Porcine Reproductive and Respiratory Syndrome Virus Status in Pigs Prior to Weaning by Sampling Sows and the Environment. Vet. Microbiol. 2019, 237, 108406. [Google Scholar] [CrossRef] [PubMed]
- Vilalta, C.; Sanhueza, J.; Alvarez, J.; Murray, D.; Torremorell, M.; Corzo, C.; Morrison, R. Use of Processing Fluids and Serum Samples to Characterize Porcine Reproductive and Respiratory Syndrome Virus Dynamics in 3 Day-Old Pigs. Vet. Microbiol. 2018, 225, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Mantilla, J.; Alvarez, J.; Culhane, M.; Nirmala, J.; Cano, J.P.; Torremorell, M. Comparison of Individual, Group and Environmental Sampling Strategies to Conduct Influenza Surveillance in Pigs. BMC Vet. Res. 2019, 15, 61. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, G.B.; Nielsen, J.P.; Haugegaard, J.; Leth, S.C.; Larsen, L.E.; Kristensen, C.S.; Pedersen, K.S.; Stege, H.; Hjulsager, C.K.; Houe, H. Comparison of Serum Pools and Oral Fluid Samples for Detection of Porcine Circovirus Type 2 by Quantitative Real-Time PCR in Finisher Pigs. Porc. Health Manag. 2018, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Baliellas, J.; Novell, E.; Enric-Tarancón, V.; Vilalta, C.; Fraile, L. Porcine Reproductive and Respiratory Syndrome Surveillance in Breeding Herds and Nurseries Using Tongue Tips from Dead Animals. Vet. Sci. 2021, 8, 259. [Google Scholar] [CrossRef] [PubMed]
- Prieto, A.; Fernández-Antonio, R.; Díaz-Cao, J.M.; López, G.; Díaz, P.; Alonso, J.M.; Morrondo, P.; Fernández, G. Distribution of Aleutian Mink Disease Virus Contamination in the Environment of Infected Mink Farms. Vet. Microbiol. 2017, 204, 59–63. [Google Scholar] [CrossRef]
- Notomi, T.; Mori, Y.; Tomita, N.; Kanda, H. Loop-Mediated Isothermal Amplification (LAMP): Principle, Features, and Future Prospects. J. Microbiol. 2015, 53, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Maestu, A.; Prado, M. Naked-Eye Detection Strategies Coupled with Isothermal Nucleic Acid Amplification Techniques for the Detection of Human Pathogens. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1913–1939. [Google Scholar] [CrossRef]
- Iwamoto, T.; Sonobe, T.; Hayashi, K. Loop-Mediated Isothermal Amplification for Direct Detection of Mycobacterium tuberculosis Complex, M. Avium, and M. Intracellulare in Sputum Samples. J. Clin. Microbiol. 2003, 41, 2616–2622. [Google Scholar] [CrossRef] [PubMed]
- Tveten, A.K.; Ørstenvik, H.L.; Tolaas, I. Loop-Mediated Isothermal Amplification (LAMP) for Detection of Atypical Enterovirus D68 Strain VR-1197. J. Virol. Methods 2024, 330, 115030. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Yeo, D.; Won, H.; Choi, C. One-Step Reverse Transcription Loop-Mediated Isothermal Amplification of Norovirus Genogroup I and II in Oysters. In Foodborne Pathogens. Methods and Protocols in Food Science; Garrido-Maestu, A., Lamas, A., Eds.; Springer: New York, NY, USA, 2025; pp. 121–133. [Google Scholar]
- Cadamuro, R.D.; Elois, M.A.; Yeramian, N.; Pérez-Alonso, D.; Fongaro, G.; Rodríguez-Lázaro, D. Hepatitis A Virus Detection Using the Loop-Mediated Isothermal Amplification-Based (LAMP) Technique in Foods. In Foodborne Pathogens. Methods and Protocols in Food Science; Garrido-Maestu, A., Lamas, A., Eds.; Springer: New York, NY, USA, 2025; pp. 135–142. [Google Scholar]
- Niessen, L.; Luo, J.; Denschlag, C.; Vogel, R.F. The Application of Loop-Mediated Isothermal Amplification (LAMP) in Food Testing for Bacterial Pathogens and Fungal Contaminants. Food Microbiol. 2013, 36, 191–206. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, H.; Kawana, T.; Fukushima, E.; Suzutani, T. Tolerance of Loop-Mediated Isothermal Amplification to a Culture Medium and Biological Substances. J. Biochem. Biophys. Methods 2007, 70, 499–501. [Google Scholar] [CrossRef] [PubMed]
- Francois, P.; Tangomo, M.; Hibbs, J.; Bonetti, E.J.; Boehme, C.C.; Notomi, T.; Perkins, M.D.; Schrenzel, J. Robustness of a Loop-Mediated Isothermal Amplification Reaction for Diagnostic Applications. FEMS Immunol. Med. Microbiol. 2011, 62, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Tomás, D.; Rodrigo, A.; Hernández, M.; Ferrús, M.A.; Tomas, D.; Rodrigo, A.; Hernandez, M.; Ferrus, M.A. Validation of Real-Time PCR and Enzyme-Linked Fluorescent Assay-Based Methods for Detection of Salmonella spp. in Chicken Feces Samples. Food Anal. Methods 2009, 2, 180–189. [Google Scholar] [CrossRef]
- Garrido-Maestu, A.; Azinheiro, S.; Carvalho, J.; Prado, M. Rapid and Sensitive Detection of Viable Listeria monocytogenes in Food Products by a Filtration-Based Protocol and QPCR. Food Microbiol. 2018, 73, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Rajkhowa, S.; Choudhury, M.; Sarma, D.K.; Pegu, S.R.; Gupta, V.K. Development of a Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid Visual Detection of Porcine Circovirus Type 2 (PCV2) and Its Application. Anim. Biotechnol. 2023, 34, 2441–2448. [Google Scholar] [CrossRef] [PubMed]
- Spiteri, S.; Marino, F.; Girolamini, L.; Pascale, M.R.; Derelitto, C.; Caligaris, L.; Paghera, S.; Cristino, S. Loop-Mediated Isothermal Amplification (LAMP): An Innovative Approach for the Environmental Monitoring of SARS-CoV-2. Pathogens 2024, 13, 1022. [Google Scholar] [CrossRef] [PubMed]
- Spiteri, S.; Salamon, I.; Girolamini, L.; Pascale, M.R.; Marino, F.; Derelitto, C.; Caligaris, L.; Paghera, S.; Ferracin, M.; Cristino, S. Surfaces Environmental Monitoring of SARS-CoV-2: Loop Mediated Isothermal Amplification (LAMP) and Droplet Digital PCR (ddPCR) in Comparison with Standard Reverse-Transcription Quantitative Polymerase Chain Reaction (RT-QPCR) Techniques. PLoS ONE 2025, 20, e0317228. [Google Scholar] [CrossRef]
- Roumani, F.; Azinheiro, S.; Sousa, H.; Sousa, A.; Timóteo, M.; Varandas, T.; Fonseca-Silva, D.; Baldaque, I.; Carvalho, J.; Prado, M.; et al. Optimization and Clinical Evaluation of a Multi-Target Loop-Mediated Isothermal Amplification Assay for the Detection of SARS-CoV-2 in Nasopharyngeal Samples. Viruses 2021, 13, 940. [Google Scholar] [CrossRef] [PubMed]
- Pourakbari, R.; Gholami, M.; Shakerimoghaddam, A.; Khiavi, F.M.; Mohammadimehr, M.; Khomartash, M.S. Comparison of RT-LAMP and RT-QPCR Assays for Detecting SARS-CoV-2 in the Extracted RNA and Direct Swab Samples. J. Virol. Methods 2024, 324, 114871. [Google Scholar] [CrossRef] [PubMed]
- Cisneros-Villanueva, M.; Blancas, S.; Cedro-Tanda, A.; Ríos-Romero, M.; Hurtado-Córdova, E.; Almaraz-Rojas, O.; Ortiz-Soriano, D.R.; Álvarez-Hernández, V.; Arriaga-Guzmán, I.; Tolentino-García, L.; et al. Validation of the RT-LAMP Assay in a Large Cohort of Nasopharyngeal Swab Samples Shows That It Is a Useful Screening Method for Detecting SARS-CoV-2 and Its VOC Variants. MedRxiv 2022. [Google Scholar] [CrossRef]
- Oscorbin, I.P.; Belousova, E.A.; Boyarskikh, U.A.; Zakabunin, A.I.; Khrapov, E.A.; Filipenko, M.L. Derivatives of Bst-like Gss-Polymerase with Improved Processivity and Inhibitor Tolerance. Nucleic Acids Res. 2017, 45, 9595–9610. [Google Scholar] [CrossRef]
- Nwe, M.K.; Jangpromma, N.; Taemaitree, L. Evaluation of Molecular Inhibitors of Loop-Mediated Isothermal Amplification (LAMP). Sci. Rep. 2024, 14, 5916. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Grandal, D.; López, M.; Garrido-Maestu, A. Design of a Duplex Loop-Mediated Isothermal Amplification Assay Suitable for Real-Time, and End-Point, Colorimetric Detection of Vibrio parahaemolyticus, and a Universal Internal Amplification Control, in Mussel Samples. Food Control 2025, 168, 110965. [Google Scholar] [CrossRef]
- Carasova, P.; Celer, V.; Takacova, K.; Trundova, M.; Molinkova, D.; Lobova, D.; Smola, J. The Levels of PCV2 Specific Antibodies and Viremia in Pigs. Res. Vet. Sci. 2007, 83, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Haake, M.; Palzer, A.; Rist, B.; Weissenbacher-Lang, C.; Fachinger, V.; Eggen, A.; Ritzmann, M.; Eddicks, M. Influence of Age on the Effectiveness of PCV2 Vaccination in Piglets with High Levels of Maternally Derived Antibodies. Vet. Microbiol. 2014, 168, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Segalés, J.; Fraile, L.; López-Soria, S.; Sibila, M. Effect of High and Low Levels of Maternally Derived Antibodies on Porcine Circovirus Type 2 (PCV2) Infection Dynamics and Production Parameters in PCV2 Vaccinated Pigs under Field Conditions. Vaccine 2016, 34, 3044–3050. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Guan, Y.; Li, S.; Deng, Y.; Wu, Y.; Chen, H. Detection of Severe Acute Respiratory Syndrome Coronavirus 2 in Bioaerosols Using Digital Droplet Polymerase Chain Reaction and Loop-Mediated Isothermal Amplification. Anal. Methods 2024, 16, 8449–8456. [Google Scholar] [CrossRef] [PubMed]
- Alonso, C.; Goede, D.P.; Morrison, R.B.; Davies, P.R.; Rovira, A.; Marthaler, D.G.; Torremorell, M. Evidence of Infectivity of Airborne Porcine Epidemic Diarrhea Virus and Detection of Airborne Viral RNA at Long Distances from Infected Herds. Vet. Res. 2014, 45, 73. [Google Scholar] [CrossRef]
Sample | Procedure |
---|---|
Serum | Venipuncture in jugular vein |
Air | Using the MD8 Airport (Sartorius AG, Göttingen, Germany) with sterile gelatine filters of 80 mm in diameter and a pore size of 3 μm (Sartorius Stedim Biotech GmbH, Göttingen, Germany): a flow of 50 L air for 30 min for each air sample. |
Surfaces | Using sterile cotton swabs:
|
Primer | Sequence (5′ → 3′) | Final Concentration (nM) |
---|---|---|
PCV2_F3 | GGG AGT CTG GTG ACC GTT | 200 |
PCV2_B3 | CCA TCC CAC CAC TTG TTT CT | 200 |
PCV2_FIP | ACG CTT CTG CAT TTT CCC GCT C tttt AGC AGC ACC CTG TAA CGT | 800 |
PCV2_BIP | CAC GTC ATT GTG GGG CCA CC tttt TTC CAG TAT GTG GTT TCC GG | 800 |
PCV2_LF | ACT TTC AAA AGT TCA GCC AGC CC | 400 |
PCV2_LB | TGG GTG TGG TAA AAG CAA ATG G | 400 |
Samples | qPCR No. (%) | LAMP No. (%) | Direct LAMP No. (%) | |
---|---|---|---|---|
Positive | 85/160 (53.12%) | 101/160 (63.12%) | 90/160 (56.25%) | |
Serum | 22/50 (44.00%) | 26/50 (52.00%) | 4/50 (8.00%) | |
Air | 30/60 (50.00%) | 36/60 (60.00%) | 53/60 (83.33%) | |
Surfaces | 33/50 (66.00%) | 39/50 (78.00%) | 33/50 (66.00%) |
Compared Analytical Methods | Positive Concordant Samples (True Positives) No. | Negative Concordant Samples (True Negatives) No. | Total Concordance No. (%) | κ Value | SE (%) | SP (%) | PPV (%) | NPV (%) | ||
---|---|---|---|---|---|---|---|---|---|---|
qPCR vs. LAMP | Total | 74 | 48 | 122 (76.25%) | 0.52 | 87.06% | 64.00% | 73.27% | 81.36% | |
Serum | 21 | 23 | 44 (88.00%) | 0.76 | 95.45% | 82.14% | 80.77% | 95.83% | ||
Air | 24 | 18 | 42 (70.00%) | 0.40 | 80.00% | 60.00% | 66.67% | 75.00% | ||
Surfaces | 29 | 7 | 36 (72.00%) | 0.32 | 87.88% | 41.18% | 74.36% | 63.64% | ||
qPCR vs. Direct LAMP | Total | 54 | 39 | 93 (58.12%) | 0.16 | 64.29% | 51.32% | 59.34% | 56.52% | |
Serum | 4 | 28 | 32 (64.00%) | 0.2 | 18.18% | 100% | 100% | 60.87% | ||
Air | 29 | 6 | 35 (58.33%) | 0.17 | 96.67% | 20.00% | 54.72% | 85.71% | ||
Surfaces | 21 | 5 | 26 (52.00%) | −0.07 | 65.63% | 27.78% | 61.76% | 31.25% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamas, A.; Garrido-Maestu, A.; López-Lorenzo, G. Environmental and Serological Monitoring of Porcine Circovirus by Loop-Mediated Isothermal Amplification in Pig Farms. Vet. Sci. 2025, 12, 1011. https://doi.org/10.3390/vetsci12101011
Lamas A, Garrido-Maestu A, López-Lorenzo G. Environmental and Serological Monitoring of Porcine Circovirus by Loop-Mediated Isothermal Amplification in Pig Farms. Veterinary Sciences. 2025; 12(10):1011. https://doi.org/10.3390/vetsci12101011
Chicago/Turabian StyleLamas, Alexandre, Alejandro Garrido-Maestu, and Gonzalo López-Lorenzo. 2025. "Environmental and Serological Monitoring of Porcine Circovirus by Loop-Mediated Isothermal Amplification in Pig Farms" Veterinary Sciences 12, no. 10: 1011. https://doi.org/10.3390/vetsci12101011
APA StyleLamas, A., Garrido-Maestu, A., & López-Lorenzo, G. (2025). Environmental and Serological Monitoring of Porcine Circovirus by Loop-Mediated Isothermal Amplification in Pig Farms. Veterinary Sciences, 12(10), 1011. https://doi.org/10.3390/vetsci12101011