Growing Tibetan Pigs Adapt to High-Fiber Diets by Enhancing Fiber Degradation Capacity
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Diet, and Animal Housing
2.2. Growth Performance Evaluation
2.3. Sample Collection
2.4. Apparent Total Tract Nutrient Digestibility Analysis
2.5. Blood Parameter Analysis
2.6. Serum Parameter Analysis
2.7. Enzyme Activity Analysis
2.8. Analysis of Fecal Short-Chain Fatty Acids
2.9. Fecal Microbiota Diversity Analysis
2.10. Statistical Analysis
3. Results
3.1. Influence of High-Fiber Diet on Growth Performance of Tibetan Pigs
3.2. Influence of High-Fiber Diet on Apparent Nutrient Digestibility of Tibetan Pigs
3.3. Influence of High-Fiber Diet on Blood Parameters of Tibetan Pigs
3.4. Influence of High-Fiber Diet on Serum Parameters of Tibetan Pigs
3.5. Influence of High-Fiber Diet on Enzyme Activity of Tibetan Pigs
3.6. Influence of High-Fiber Diet on SCFAs of Tibetan Pigs
3.7. Influence of High-Fiber Diet on Fecal Microbiota of Tibetan Pigs
4. Discussion
4.1. Effects of High-Fiber Diets on the Growth Performance and Health Status of Tibetan Pigs
4.2. Response Mechanisms of Bacterial Flora, Enzyme Activities, and Metabolites Under High Fiber Regulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Yuan, H.; Yang, Q.; Cai, Y.; Ren, Y.; Li, Y.; Gao, C.; Zhao, S. Post-Transcriptional Regulation through Alternative Splicing in the Lungs of Tibetan Pigs under Hypoxia. Gene 2022, 819, 146268. [Google Scholar] [CrossRef]
- Zhou, S.; Luo, R.; Gong, G.; Wang, Y.; Gesang, Z.; Wang, K.; Xu, Z.; Suolang, S. Characterization of Metagenome-Assembled Genomes and Carbohydrate-Degrading Genes in the Gut Microbiota of Tibetan Pig. Front. Microbiol. 2020, 11, 595066. [Google Scholar] [CrossRef]
- Tan, Z.K.; Chi, F.M.; Shang, Z.D.; Shang, P.; Liu, S.Z.; QiangBa, Y. Fungal Community in the Feces of Grazing Tibetan Pigs, Captive Tibetan Pigs, and Commercial Pigs and Its Interaction with Dietary Fiber Digestion. Acta Microbiol. Sin. 2022, 62, 259–274. [Google Scholar] [CrossRef]
- Pu, G.; Hou, L.; Du, T.; Wang, B.; Liu, H.; Li, K.; Niu, P.; Zhou, W.; Huang, R.; Li, P. Effects of Short-Term Feeding with High Fiber Diets on Growth, Utilization of Dietary Fiber, and Microbiota in Pigs. Front. Microbiol. 2022, 13, 963917. [Google Scholar] [CrossRef]
- Liu, J.; Luo, Y.; Kong, X.; Yu, B.; Zheng, P.; Huang, Z.; Mao, X.; Yu, J.; Luo, J.; Yan, H.; et al. Effects of Dietary Fiber on Growth Performance, Nutrient Digestibility and Intestinal Health in Different Pig Breeds. Animals 2022, 12, 3298. [Google Scholar] [CrossRef]
- Ferreira, R.G.; Azzoni, A.R.; Freitas, S. On the Production Cost of Lignocellulose-degrading Enzymes. Biofuels Bioprod. Biorefining 2021, 15, 85–99. [Google Scholar] [CrossRef]
- Lee, G.I.; Nielsen, T.S.; Lærke, H.N.; Bach Knudsen, K.E. The Ileal and Total Tract Digestibility Fibre and Nutrients in Pigs Fed High-Fibre Cereal-Based Diets Provided without and with a Carbohydrase Complex. Animal 2023, 17, 100872. [Google Scholar] [CrossRef]
- Li, B.; Ren, S.; Fu, Y.; Tu, F.; Fang, X.; Wang, X. Effects of Different Dietary Crude Fiber Levels on the Growth Performance of Finishing Su-Shan Pigs. Int. J. Anim. Vet. Sci. 2018, 12, 145–148. [Google Scholar]
- Khan, J.; Gul, P.; Rashid, M.T.; Li, Q.; Liu, K. Composition of Whole Grain Dietary Fiber and Phenolics and Their Impact on Markers of Inflammation. Nutrients 2024, 16, 1047. [Google Scholar] [CrossRef]
- Li, T.; Chen, C.; Brozena, A.H.; Zhu, J.Y.; Xu, L.; Driemeier, C.; Dai, J.; Rojas, O.J.; Isogai, A.; Wågberg, L.; et al. Developing Fibrillated Cellulose as a Sustainable Technological Material. Nature 2021, 590, 47–56. [Google Scholar] [CrossRef]
- Verstegen, M.W.A.; Williams, B.A. Alternatives to the Use of Antibiotics as Growth Promoters for Monogastric Animals. Anim. Biotechnol. 2002, 13, 113–127. [Google Scholar] [CrossRef]
- Tan, Z.K.; Liu, Y.; Liu, S.Z.; Shang, P.; Qiang Ba, Y.Z. Study on the Correlation between Intestinal Factors and Apparent Digestibility of Dietary Crude Fiber in Tibetan Pigs. J. Plateau Agric. 2021, 5, 465–471. [Google Scholar] [CrossRef]
- Yang, L.; Yao, B.; Zhang, S.; Yang, Y.; Wang, G.; Pan, H.; Zeng, X.; Qiao, S. Division Mechanism of Labor in Diqing Tibetan Pigs Gut Microbiota for Dietary Fiber Efficiently Utilization. Microbiol. Res. 2025, 290, 127977. [Google Scholar] [CrossRef]
- Yang, L.; Yao, B.; Zhang, S.; Yang, Y.; Pan, H.; Zeng, X.; Qiao, S. Study on the Difference of Gut Microbiota in DLY and Diqing Tibetan Pigs Induce by High Fiber Diet. J. Anim. Physiol. Anim. Nutr. 2025, 109, 233–242. [Google Scholar] [CrossRef]
- Che, L.; Feng, D.; Wu, D.; Fang, Z.; Lin, Y.; Yan, T. Effect of Dietary Fibre on Reproductive Performance of Sows during the First Two Parities. Reprod. Domest. Anim. 2011, 46, 1061–1066. [Google Scholar] [CrossRef]
- Loisel, F.; Farmer, C.; Ramaekers, P.; Quesnel, H. Effects of High Fiber Intake during Late Pregnancy on Sow Physiology, Colostrum Production, and Piglet Performance. J. Anim. Sci. 2013, 91, 5269–5279. [Google Scholar] [CrossRef]
- Williams, B.A.; Verstegen, M.W.A.; Tamminga, S. Fermentation in the Large Intestine of Single-Stomached Animals and Its Relationship to Animal Health. Nutr. Res. Rev. 2001, 14, 207. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yin, J.; Tan, B.; Chen, J.; Zhang, H.; Li, Z.; Ma, X. Physiological Function and Application of Dietary Fiber in Pig Nutrition: A Review. Anim. Nutr. 2021, 7, 259–267. [Google Scholar] [CrossRef]
- Ye, S.; Shah, B.R.; Li, J.; Liang, H.; Zhan, F.; Geng, F.; Li, B. A Critical Review on Interplay between Dietary Fibers and Gut Microbiota. Trends Food Sci. Technol. 2022, 124, 237–249. [Google Scholar] [CrossRef]
- Guo, Q.; Li, F.; Duan, Y.; Wen, C.; Wang, W.; Zhang, L.; Huang, R.; Yin, Y. Oxidative Stress, Nutritional Antioxidants and Beyond. Sci. China Life Sci. 2020, 63, 866–874. [Google Scholar] [CrossRef]
- Wei, X.; Dong, Z.; Cheng, F.; Shi, H.; Zhou, X.; Li, B.; Wang, L.; Wang, W.; Zhang, J. Seasonal Diets Supersede Host Species in Shaping the Distal Gut Microbiota of Yaks and Tibetan Sheep. Sci. Rep. 2021, 11, 22626. [Google Scholar] [CrossRef]
- Bai, X.; Gu, Y.; Li, D.; Li, M. Gut Metagenome Reveals the Microbiome Signatures in Tibetan and Black Pigs. Animals 2025, 15, 753. [Google Scholar] [CrossRef]
- Shah, B.R.; Li, B.; Al Sabbah, H.; Xu, W.; Mráz, J. Effects of Prebiotic Dietary Fibers and Probiotics on Human Health: With Special Focus on Recent Advancement in Their Encapsulated Formulations. Trends Food Sci. Technol. 2020, 102, 178–192. [Google Scholar] [CrossRef]
- Chi, Z.; Zhang, M.; Fu, B.; Wang, X.; Yang, H.; Fang, X.; Li, Z.; Teng, T.; Shi, B. Branched Short-Chain Fatty Acid-Rich Fermented Protein Food Improves the Growth and Intestinal Health by Regulating Gut Microbiota and Metabolites in Young Pigs. J. Agric. Food Chem. 2024, 72, 21594–21609. [Google Scholar] [CrossRef]
- Erinle, T.J.; Babatunde, O.O.; Htoo, J.K.; Mendoza, M.; Columbus, D.A. PSII-27 Dietary Fiber Fractions Supplementation Modulates pro-Inflammatory Cytokines, Hindgut Ammonia-Nitrogen Concentration, and Diarrhea Severity of Nursery Pigs. J. Anim. Sci. 2024, 102, 700. [Google Scholar] [CrossRef]
- Upadhaya, S.D.; Kim, I.H. Maintenance of Gut Microbiome Stability for Optimum Intestinal Health in Pigs—A Review. J. Anim. Sci. Biotechnol. 2022, 13, 140. [Google Scholar] [CrossRef]
- Hu, J.; Chen, J.; Ma, L.; Hou, Q.; Zhang, Y.; Kong, X.; Huang, X.; Tang, Z.; Wei, H.; Wang, X.; et al. Characterizing Core Microbiota and Regulatory Functions of the Pig Gut Microbiome. ISME J. 2024, 18, wrad037. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, J.; Song, X.; Yang, M.; Wang, H.; Wu, Y. Feeding Dietary Fermentable Fiber Improved Fecal Microbial Composition and Increased Acetic Acid Production in a Nursery Pig Model. J. Anim. Sci. 2023, 101, skad260. [Google Scholar] [CrossRef]
- Woyengo, T.A.; Beltranena, E.; Zijlstra, R.T. Nonruminant Nutrition Symposium: Controlling Feed Cost by Including Alternative Ingredients into Pig Diets: A Review. J. Anim. Sci. 2014, 92, 1293–1305. [Google Scholar] [CrossRef]
- Agyekum, A.K.; Nyachoti, C.M. Nutritional and Metabolic Consequences of Feeding High-Fiber Diets to Swine: A Review. Engineering 2017, 3, 716–725. [Google Scholar] [CrossRef]
- Pitts, G.C. Cellular Aspects of Growth and Catch-up Growth in the Rat: A Reevaluation. Growth 1986, 50, 419–436. [Google Scholar]
- Latimer, G.W.J. Official Methods of Analysis of AOAC International, 20th ed.; AOAC International: Rockville, MD, USA, 2016; ISBN 978-0-935584-87-5. [Google Scholar]
- Nogal, A.; Valdes, A.M.; Menni, C. The Role of Short-Chain Fatty Acids in the Interplay between Gut Microbiota and Diet in Cardio-Metabolic Health. Gut Microbes 2021, 13, 1897212. [Google Scholar] [CrossRef]
- Den Besten, G.; Van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.-J.; Bakker, B.M. The Role of Short-Chain Fatty Acids in the Interplay between Diet, Gut Microbiota, and Host Energy Metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef]
- Holscher, H.D. Dietary Fiber and Prebiotics and the Gastrointestinal Microbiota. Gut Microbes 2017, 8, 172–184. [Google Scholar] [CrossRef]
- Bai, K.; Jiang, L.; Li, Q.; Zhang, J.; Zhang, L.; Wang, T. Dietary Dimethylglycine Sodium Salt Supplementation Alleviates Redox Status Imbalance and Intestinal Dysfunction in Weaned Piglets with Intrauterine Growth Restriction. Anim. Nutr. 2022, 10, 188–197. [Google Scholar] [CrossRef]
- GB/T 39235-2020; Nutrient Requirements of Swine. Standards Press of China: Beijing, China, 2020.
- Tokach, M.D.; Pettigrew, J.E.; Johnston, L.J.; Overland, M.; Rust, J.W.; Cornelius, S.G. Effect of Adding Fat and(or) Milk Products to the Weanling Pig Diet on Performance in the Nursery and Subsequent Grow-Finish Stages. J. Anim. Sci. 1995, 73, 3358–3368. [Google Scholar] [CrossRef]
- Vargas, J.E.; Andrés, S.; López-Ferreras, L.; Snelling, T.J.; Yáñez-Ruíz, D.R.; García-Estrada, C.; López, S. Dietary Supplemental Plant Oils Reduce Methanogenesis from Anaerobic Microbial Fermentation in the Rumen. Sci. Rep. 2020, 10, 1613. [Google Scholar] [CrossRef]
- Moore, W.-E.; Moore, L.-V.; Cato, E.-P.; Wilkins, T.-D.; Kornegay, E.-T. Effect of High-Fiber and High-Oil Diets on the Fecal Flora of Swine. Appl. Environ. Microbiol. 1987, 53, 1638–1644. [Google Scholar] [CrossRef]
- Hong, J.; Halbur, J.; Petry, A.-L.; Doung, T.; Llamas-Moya, S.; Kitt, S.; Bertram, M.; Weaver, E. Effects of a Fiber-Degrading Enzyme on Ileal Digestibility of Amino Acids and Fiber and Total Tract Digestibility of Energy and Fiber in Growing Pigs Fed Diets with High Level of Corn Distillers Grains with Solubles. J. Anim. Sci. 2025, 103, skaf076. [Google Scholar] [CrossRef]
- Park, S.; Choe, J.; Cho, J.H.; Jang, K.B.; Kyoung, H.; Park, K.I.; Kim, Y.; Ahn, J.; Kim, H.B.; Song, M. Determination of Optimal Energy System and Level for Growing Pigs. J. Anim. Sci. Technol. 2024, 66, 514–522. [Google Scholar] [CrossRef]
- Lv, Z.; Zhang, Z.; Wang, F.; Guo, J.; Zhao, X.; Zhao, J. Effects of Dietary Fiber Type on Growth Performance, Serum Parameters and Fecal Microbiota Composition in Weaned and Growing-Finishing Pigs. Animals 2022, 12, 1579. [Google Scholar] [CrossRef]
- Pu, G.; Hou, L.; Du, T.; Zhou, W.; Liu, C.; Niu, P.; Wu, C.; Bao, W.; Huang, R.; Li, P. Increased Proportion of Fiber-Degrading microbiota and Enhanced Cecum Development Jointly Promote Host to Digest Appropriate High-Fiber Diets. mSystems 2023, 8, e00937-22. [Google Scholar] [CrossRef]
- Wang, J.; Qin, C.; He, T.; Qiu, K.; Sun, W.; Zhang, X.; Jiao, N.; Zhu, W.; Yin, J. Alfalfa-Containing Diets Alter Luminal Microbiota Structure and Short Chain Fatty Acid Sensing in the Caecal Mucosa of Pigs. J. Anim. Sci. Biotechnol. 2018, 9, 11. [Google Scholar] [CrossRef]
- Du, T.; Li, P.; Niu, Q.; Pu, G.; Wang, B.; Liu, G.; Li, P.; Niu, P.; Zhang, Z.; Wu, C.; et al. Effects of Varying Levels of Wheat Bran Dietary Fiber on Growth Performance, Fiber Digestibility and Gut Microbiota in Erhualian and Large White Pigs. Microorganisms 2023, 11, 2474. [Google Scholar] [CrossRef]
- Patil, Y.; Gooneratne, R.; Ju, X.-H. Interactions between Host and Gut Microbiota in Domestic Pigs: A Review. Gut Microbes 2020, 11, 310–334. [Google Scholar] [CrossRef]
- Huang, C.; Li, P.; Ma, X.; Jaworski, N.W.; Stein, H.-H.; Lai, C.; Zhao, J.; Zhang, S. Methodology Effects on Determining the Energy Concentration and the Apparent Total Tract Digestibility of Components in Diets Fed to Growing Pigs. Asian-Australas. J. Anim. Sci. 2018, 31, 1315–1324. [Google Scholar] [CrossRef]
- Navarro, D.M.D.L.; Bruininx, E.M.A.M.; De Jong, L.; Stein, H.H. Effects of Inclusion Rate of High Fiber Dietary Ingredients on Apparent Ileal, Hindgut, and Total Tract Digestibility of Dry Matter and Nutrients in Ingredients Fed to Growing Pigs. Anim. Feed Sci. Technol. 2019, 248, 1–9. [Google Scholar] [CrossRef]
- Graugnard, D.E.; Bionaz, M.; Trevisi, E.; Moyes, K.M.; Salak-Johnson, J.L.; Wallace, R.L.; Drackley, J.K.; Bertoni, G.; Loor, J.J. Blood Immunometabolic Indices and Polymorphonuclear Neutrophil Function in Peripartum Dairy Cows Are Altered by Level of Dietary Energy Prepartum. J. Dairy Sci. 2012, 95, 1749–1758. [Google Scholar] [CrossRef]
- Lynd, L.R.; Wyman, C.E.; Gerngross, T.U. Biocommodity Engineering. Biotechnol. Prog. 1999, 15, 777–793. [Google Scholar] [CrossRef]
- Pistollato, F.; Sumalla Cano, S.; Elio, I.; Masias Vergara, M.; Giampieri, F.; Battino, M. Role of Gut Microbiota and Nutrients in Amyloid Formation and Pathogenesis of Alzheimer Disease. Nutr. Rev. 2016, 74, 624–634. [Google Scholar] [CrossRef]
- Sonnenburg, E.D.; Sonnenburg, J.L. Starving Our Microbial Self: The Deleterious Consequences of a Diet Deficient in Microbiota-Accessible Carbohydrates. Cell Metab. 2014, 20, 779–786. [Google Scholar] [CrossRef]
- O’Grady, J.; O’Connor, E.M.; Shanahan, F. Review Article: Dietary Fibre in the Era of Microbiome Science. Aliment. Pharmacol. Ther. 2019, 49, 506–515. [Google Scholar] [CrossRef]
- Trujillo, M.E.; Riesco, R.; Benito, P.; Carro, L. Endophytic Actinobacteria and the Interaction of Micromonospora and Nitrogen Fixing Plants. Front. Microbiol. 2015, 6, 1341. [Google Scholar] [CrossRef] [PubMed]
- Bayer, E.A.; Belaich, J.-P.; Shoham, Y.; Lamed, R. The Cellulosomes: Multienzyme Machines for Degradation of Plant Cell Wall Polysaccharides. Annu. Rev. Microbiol. 2004, 58, 521–554. [Google Scholar] [CrossRef] [PubMed]
- Anguita, M.; Gasa, J.; Nofrarias, M.; Martín-Orúe, S.M.; Pérez, J.F. Effect of Coarse Ground Corn, Sugar Beet Pulp and Wheat Bran on the Voluntary Intake and Physicochemical Characteristics of Digesta of Growing Pigs. Livest. Sci. 2007, 107, 182–191. [Google Scholar] [CrossRef]
- Qiang Ba, Y.Z.; Zhang, H.; Bai Ma, Y.Z.; Liu, J.F.; Shang, P.; Dan Zeng, W.J. Determination of Blood Physiological Parameters in Tibet Pig at High Altitude. Southwest China J. Agric. Sci. 2011, 24, 2382–2384. [Google Scholar] [CrossRef]
- Weng, R.-C. Dietary Supplementation with Different Types of Fiber in Gestation and Lactation: Effects on Sow Serum Biochemical Values and Performance. Asian-Australas. J. Anim. Sci. 2020, 33, 1323–1331. [Google Scholar] [CrossRef]
- Feng, L.; Luo, Z.; Wang, J.; Wu, K.; Wang, W.; Li, J.; Ma, X.; Tan, B.E. Fermentation Characteristics of Different Sources of Dietary Fiber in Vitro and Impacts on Growth Performance, Nutrient Digestibility and Blood Parameters of Piglets. J. Funct. Foods 2023, 108, 105761. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, C.; Niu, J.; Cui, Z.; Zhao, X.; Li, W.; Zhang, Y.; Yang, Y.; Gao, P.; Guo, X.; et al. Impacts of Dietary Fiber Level on Growth Performance, Apparent Digestibility, Intestinal Development, and Colonic Microbiota and Metabolome of Pigs. J. Anim. Sci. 2023, 101, skad174. [Google Scholar] [CrossRef]
- Zhu, Y.; Sun, G.; Cidan, Y.; Shi, B.; Tan, Z.; Zhang, J.; Basang, W. Comprehensive Multi-Omic Evaluation of the Microbiota and Metabolites in the Colons of Diverse Swine Breeds. Animals 2024, 14, 1221. [Google Scholar] [CrossRef]
- Kalala, G.; Kambashi, B.; Everaert, N.; Beckers, Y.; Richel, A.; Pachikian, B.; Neyrinck, A.M.; Delzenne, N.M.; Bindelle, J. Characterization of Fructans and Dietary Fibre Profiles in Raw and Steamed Vegetables. Int. J. Food Sci. Nutr. 2018, 69, 682–689. [Google Scholar] [CrossRef]
- Singh, N.; Gurav, A.; Sivaprakasam, S.; Brady, E.; Padia, R.; Shi, H.; Thangaraju, M.; Prasad, P.D.; Manicassamy, S.; Munn, D.H.; et al. Activation of Gpr109a, Receptor for Niacin and the Commensal Metabolite Butyrate, Suppresses Colonic Inflammation and Carcinogenesis. Immunity 2014, 40, 128–139. [Google Scholar] [CrossRef]
- Akhtar, M.; Chen, Y.; Ma, Z.; Zhang, X.; Shi, D.; Khan, J.A.; Liu, H. Gut Microbiota-Derived Short Chain Fatty Acids Are Potential Mediators in Gut Inflammation. Anim. Nutr. 2022, 8, 350–360. [Google Scholar] [CrossRef]
- Abdul Rahman, N.; Parks, D.H.; Vanwonterghem, I.; Morrison, M.; Tyson, G.W.; Hugenholtz, P. A Phylogenomic Analysis of the Bacterial Phylum Fibrobacteres. Front. Microbiol. 2016, 6, 1469. [Google Scholar] [CrossRef]
- Ransom-Jones, E.; Jones, D.L.; McCarthy, A.J.; McDonald, J.E. The Fibrobacteres: An Important Phylum of Cellulose-Degrading Bacteria. Microb. Ecol. 2012, 63, 267–281. [Google Scholar] [CrossRef]
- Mann, E.R.; Lam, Y.K.; Uhlig, H.H. Short-Chain Fatty Acids: Linking Diet, the Microbiome and Immunity. Nat. Rev. Immunol. 2024, 24, 577–595. [Google Scholar] [CrossRef] [PubMed]
- Tazoe, H.; Otomo, Y.; Kaji, I.; Tanaka, R.; Karaki, S.-I.; Kuwahara, A. Roles of Short-Chain Fatty Acids Receptors, GPR41 and GPR43 on Colonic Functions. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2008, 59, 251–262. [Google Scholar]
- Macia, L.; Tan, J.; Vieira, A.T.; Leach, K.; Stanley, D.; Luong, S.; Maruya, M.; Ian McKenzie, C.; Hijikata, A.; Wong, C.; et al. Metabolite-Sensing Receptors GPR43 and GPR109A Facilitate Dietary Fibre-Induced Gut Homeostasis through Regulation of the Inflammasome. Nat. Commun. 2015, 6, 6734. [Google Scholar] [CrossRef] [PubMed]
- Bermingham, E.N.; Maclean, P.; Thomas, D.G.; Cave, N.J.; Young, W. Key Bacterial Families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae) Are Related to the Digestion of Protein and Energy in Dogs. PeerJ 2017, 5, e3019. [Google Scholar] [CrossRef]
- Liu, S.; Li, E.; Sun, Z.; Fu, D.; Duan, G.; Jiang, M.; Yu, Y.; Mei, L.; Yang, P.; Tang, Y.; et al. Altered Gut Microbiota and Short Chain Fatty Acids in Chinese Children with Autism Spectrum Disorder. Sci. Rep. 2019, 9, 287. [Google Scholar] [CrossRef]
- Singh, R.P. Glycan Utilisation System in Bacteroides and Bifidobacteria and Their Roles in Gut Stability and Health. Appl. Microbiol. Biotechnol. 2019, 103, 7287–7315. [Google Scholar] [CrossRef]
- Kau, A.L.; Ahern, P.P.; Griffin, N.W.; Goodman, A.L.; Gordon, J.I. Human Nutrition, the Gut Microbiome and the Immune System. Nature 2011, 474, 327–336. [Google Scholar] [CrossRef]
- Shi, Z.; Wei, X.; Wei, Y.; Zhang, Z.; Wan, S.; Gao, H.; Qin, Z. Biochemical Properties and Application of a Multi-Domain β-1,3-1,4-GlUcanase from Fibrobacter sp. Int. J. Biol. Macromol. 2024, 273, 133026. [Google Scholar] [CrossRef]
- Shinkai, T.; Ueki, T.; Kobayashi, Y. Detection and Identification of Rumen Bacteria Constituting a Fibrolytic Consortium Dominated by Fibrobacter succinogenes. Anim. Sci. J. 2010, 81, 72–79. [Google Scholar] [CrossRef]
- Song, X.; Sun, J.; Yue, Y.; Li, D.; Chen, F. Microbiota-Derived Succinic Acid Mediates Attenuating Effect of Dietary Tomato Juice Supplementation on Steatohepatitis through Enhancing Intestinal Barrier. Food Res. Int. 2024, 196, 115123. [Google Scholar] [CrossRef] [PubMed]
- Grant, E.T.; Parrish, A.; Boudaud, M.; Hunewald, O.; Hirayama, A.; Ollert, M.; Fukuda, S.; Desai, M.S. Dietary Fibers Boost Gut Microbiota-Produced B Vitamin Pool and Alter Host Immune Landscape. Microbiome 2024, 12, 179. [Google Scholar] [CrossRef] [PubMed]
- El-Saadony, M.T.; Umar, M.; Hassan, F.; Alagawany, M.; Arif, M.; Taha, A.E.; Elnesr, S.S.; El-Tarabily, K.A.; Abd El-Hack, M.E. Applications of Butyric Acid in Poultry Production: The Dynamics of Gut Health, Performance, Nutrient Utilization, Egg Quality, and Osteoporosis. Anim. Health Res. Rev. 2022, 23, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.-Y.; Li, Y.; Xue, C.-X.; Lidbury, I.D.E.A.; Todd, J.D.; Lea-Smith, D.J.; Tian, J.; Zhang, X.-H.; Liu, J. Deep-Sea Bacteroidetes from the Mariana Trench Specialize in Hemicellulose and Pectin Degradation Typically Associated with Terrestrial Systems. Microbiome 2023, 11, 175. [Google Scholar] [CrossRef]
- Ke, S.; Fang, S.; He, M.; Huang, X.; Yang, H.; Yang, B.; Chen, C.; Huang, L. Age-Based Dynamic Changes of Phylogenetic Composition and Interaction Networks of Health Pig Gut Microbiome Feeding in a Uniformed Condition. BMC Vet. Res. 2019, 15, 172. [Google Scholar] [CrossRef]
- McGovern, E.; McGee, M.; Byrne, C.J.; Kenny, D.A.; Kelly, A.K.; Waters, S.M. Investigation into the Effect of Divergent Feed Efficiency Phenotype on the Bovine Rumen Microbiota across Diet and Breed. Sci. Rep. 2020, 10, 15317. [Google Scholar] [CrossRef]
- Jiao, J.; Wu, J.; Zhou, C.; Tang, S.; Wang, M.; Tan, Z. Composition of Ileal Bacterial Community in Grazing Goats Varies across Non-Rumination, Transition and Rumination Stages of Life. Front. Microbiol. 2016, 7, 1469. [Google Scholar] [CrossRef]
- Zhang, T.; Mu, Y.; Zhang, D.; Lin, X.; Wang, Z.; Hou, Q.; Wang, Y.; Hu, Z. Determination of Microbiological Characteristics in the Digestive Tract of Different Ruminant Species. MicrobiologyOpen 2019, 8, e00769. [Google Scholar] [CrossRef]
- Berni Canani, R.; Di Costanzo, M.; Leone, L. The Epigenetic Effects of Butyrate: Potential Therapeutic Implications for Clinical Practice. Clin. Epigenetics 2012, 4, 4. [Google Scholar] [CrossRef]
- Li, R.; Li, L.; Hong, P.; Lang, W.; Hui, J.; Yang, Y.; Zheng, X. β-Carotene Prevents Weaning-Induced Intestinal Inflammation by Modulating Gut Microbiota in Piglets. Anim. Biosci. 2021, 34, 1221–1234. [Google Scholar] [CrossRef]
- Van Den Abbeele, P.; Moens, F.; Pignataro, G.; Schnurr, J.; Ribecco, C.; Gramenzi, A.; Marzorati, M. Yeast-Derived Formulations Are Differentially Fermented by the Canine and Feline Microbiome as Assessed in a Novel in Vitro Colonic Fermentation Model. J. Agric. Food Chem. 2020, 68, 13102–13110. [Google Scholar] [CrossRef]
- Fan, M.; Cheng, L.E.; Wang, M.; Chen, J.; Fan, W.; Jashari, F.; Wang, W. Monomodular and Multifunctional Processive Endocellulases: Implications for Swine Nutrition and Gut Microbiome. Animal Microbiome 2024, 6, 4. [Google Scholar] [CrossRef]
- Cox, L.M.; Cho, I.; Young, S.A.; Anderson, W.H.K.; Waters, B.J.; Hung, S.; Gao, Z.; Mahana, D.; Bihan, M.; Alekseyenko, A.V.; et al. The Nonfermentable Dietary Fiber Hydroxypropyl Methylcellulose Modulates Intestinal Microbiota. FASEB J. 2013, 27, 692–702. [Google Scholar] [CrossRef]
Item | CON | HF |
---|---|---|
Ingredients (%) | - | - |
Corn | 67.22 | 52.35 |
Wheat Middling | 9.000 | 9.000 |
Soybean Oil | - | 4.900 |
Wood Cellulose | - | 8.200 |
Soybean Meal | 10.00 | 10.00 |
Soybean Protein Concentrate | 5.000 | 6.900 |
Soybean Hulls | 6.000 | 6.000 |
CaCO3 | 0.850 | 0.880 |
CaHPO4 | 0.360 | 0.350 |
L-Lysine hydrochloride | 0.245 | 0.150 |
DL-Threonine | 0.075 | 0.040 |
Tryptophan | 0.020 | - |
Salt | 0.200 | 0.200 |
Choline | 0.100 | 0.100 |
Premix 1 | 0.130 | 0.130 |
Diatomite | 0.800 | 0.800 |
Chemical Components 3 | - | - |
Digestible Energy (MJ/kg) | 13.89 | 13.89 |
Crude Protein | 15.00 | 15.00 |
Crude Fiber | 5.000 | 10.00 |
Calcium | 0.600 | 0.600 |
Available Phosphorus | 0.380 | 0.360 |
L-Lysine | 0.750 | 0.750 |
Methionine + Cysteine | 0.430 | 0.430 |
Threonine | 0.500 | 0.500 |
Tryptophan | 0.140 | 0.140 |
Acid-insoluble ash | 0.963 | 1.109 |
Item | CON | HF | SEM | p-Value |
---|---|---|---|---|
1–2 weeks | ||||
IBW (kg) | 21.52 | 20.48 | 0.590 | 0.390 |
FBW (kg) | 27.32 | 26.10 | 0.650 | 0.350 |
ADG (g/d) | 386.8 | 374.7 | 10.47 | 0.570 |
ADFI (g/d) | 1296 | 1178 | 38.63 | 0.130 |
F:G | 3.350 | 3.240 | 0.100 | 0.600 |
3–4 weeks | ||||
FBW (kg) | 32.88 | 31.64 | 0.73 | 0.410 |
ADG (g/d) | 397.3 | 381.1 | 25.92 | 0.770 |
ADFI (g/d) | 1539 | 1440 | 46.35 | 0.290 |
F:G | 3.940 | 3.820 | 0.450 | 0.350 |
1–4 weeks | ||||
ADG (g/d) | 392.1 | 393.9 | 12.10 | 0.950 |
ADFI (g/d) | 1418 | 1309 | 40.70 | 0.190 |
F:G | 3.630 | 3.490 | 0.130 | 0.620 |
Item | CON | HF | SEM | p-Value |
---|---|---|---|---|
CP (%) | 78.53 | 78.69 | 0.39 | 0.84 |
EE (%) | 84.92 | 85.38 | 0.38 | 0.56 |
CF (%) | 63.28 | 63.40 | 0.87 | 0.95 |
Item | CON | HF | SEM | p-Value |
---|---|---|---|---|
WBC (109/L) | 21.84 | 21.86 | 0.960 | 0.992 |
RBC (1012/L) | 9.210 | 8.880 | 0.150 | 0.291 |
HGB (g/L) | 161.8 | 156.3 | 3.140 | 0.395 |
HCT (%) | 50.04 | 47.80 | 1.060 | 0.305 |
MCV (fL) | 54.30 | 53.93 | 0.600 | 0.767 |
MCH (g/L) | 17.51 | 17.56 | 0.190 | 0.899 |
MCHC (g/L) | 323.5 | 326.6 | 1.200 | 0.206 |
RDW (%) | 17.14 | 16.84 | 0.34 | 0.667 |
PLT (109/L) | 429.4 | 393.4 | 10.15 | 0.075 |
MPV (fL) | 7.010 | 7.310 | 0.130 | 0.260 |
PDW (%) | 16.31 | 16.42 | 0.070 | 0.452 |
PCT (%) | 0.310 | 0.270 | 0.010 | 0.087 |
Item | CON | HF | SEM | p-Value |
---|---|---|---|---|
ALT (U/L) | 46.46 | 47.64 | 2.260 | 0.801 |
AST (U/L) | 35.12 | 34.16 | 1.760 | 0.794 |
AST/ALT | 1.080 | 0.720 | 0.160 | 0.261 |
TP (g/L) | 72.88 | 70.05 | 1.150 | 0.228 |
ALB (g/L) | 39.76 | 36.79 | 0.880 | 0.092 |
GLO (g/L) | 33.11 | 33.26 | 0.910 | 0.937 |
A/G | 1.220 | 1.140 | 0.040 | 0.318 |
ALP (U/L) | 207.0 | 176.8 | 14.68 | 0.317 |
UREA (mmol/L) | 5.060 | 5.080 | 0.340 | 0.987 |
CREA (μmol/L) | 65.13 | 61.20 | 2.860 | 0.506 |
TC (mmol/L) | 2.790 | 2.580 | 0.110 | 0.373 |
GlU (mmol/L) | 4.880 | 4.960 | 0.160 | 0.806 |
Item | CON | HF | SEM | p-Value |
---|---|---|---|---|
Cellulase (IU/L) | 311.1 | 341.5 | 7.630 | 0.040 |
Hemicellulase (IU/L) | 295.3 | 348.7 | 10.16 | 0.030 |
Item | CON | HF | SEM | p-Value |
---|---|---|---|---|
Acetic acid (mg/g) | 2156 | 3068 | 153.0 | 0.020 |
Formic acid (mg/g) | 1360 | 1418 | 97.13 | 0.770 |
Propionic acid (mg/g) | 100.6 | 147.5 | 15.06 | 0.040 |
Isobutyric acid (mg/g) | 473.7 | 482.6 | 20.46 | 0.840 |
Butyric acid (mg/g) | 110.2 | 194.5 | 23.92 | 0.020 |
Isovaleric acid (mg/g) | 133.0 | 129.0 | 7.330 | 0.800 |
Valeric acid (mg/g) | 36.02 | 37.54 | 1.860 | 0.700 |
Item | CON | HF | SEM | p-Value |
---|---|---|---|---|
Prevotella | 7.690 | 5.920 | 0.570 | 0.130 |
Phascolarctobacterium | 4.390 | 3.110 | 0.400 | 0.120 |
Coprococcus | 0.820 | 0.580 | 0.130 | 0.400 |
Fibrobacter | 0.180 | 0.990 | 0.160 | 0.020 |
p-75-a5 | 0.230 | 0.790 | 0.100 | 0.020 |
Roseburia | 0.250 | 0.240 | 0.050 | 0.960 |
Lachnospira | 0.510 | 0.370 | 0.910 | 0.480 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamu, Z.; Hao, S.; Li, B.; Yang, S.; Shang, Z.; Shang, P.; Liu, S.; Lin, Y.; Tan, Z. Growing Tibetan Pigs Adapt to High-Fiber Diets by Enhancing Fiber Degradation Capacity. Vet. Sci. 2025, 12, 1010. https://doi.org/10.3390/vetsci12101010
Lamu Z, Hao S, Li B, Yang S, Shang Z, Shang P, Liu S, Lin Y, Tan Z. Growing Tibetan Pigs Adapt to High-Fiber Diets by Enhancing Fiber Degradation Capacity. Veterinary Sciences. 2025; 12(10):1010. https://doi.org/10.3390/vetsci12101010
Chicago/Turabian StyleLamu, Zhima, Shuyu Hao, Boxuan Li, Sichen Yang, Zhenda Shang, Peng Shang, Suozhu Liu, Yan Lin, and Zhankun Tan. 2025. "Growing Tibetan Pigs Adapt to High-Fiber Diets by Enhancing Fiber Degradation Capacity" Veterinary Sciences 12, no. 10: 1010. https://doi.org/10.3390/vetsci12101010
APA StyleLamu, Z., Hao, S., Li, B., Yang, S., Shang, Z., Shang, P., Liu, S., Lin, Y., & Tan, Z. (2025). Growing Tibetan Pigs Adapt to High-Fiber Diets by Enhancing Fiber Degradation Capacity. Veterinary Sciences, 12(10), 1010. https://doi.org/10.3390/vetsci12101010