Agarose Gel-Supported Culture of Cryopreserved Calf Testicular Tissues
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Cryopreservation, Thawing, and Culture of Calf Testicular Tissues
2.3. Histological Analysis
2.4. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
2.5. Immunohistochemical Staining
2.6. TUNEL Staining
2.7. Testosterone Detection
2.8. Statistical Analysis
3. Results
3.1. Morphological Changes in Calf Testicular Tissues
3.2. Agarose-Supported Culture Decreases Apoptosis and Increases Proliferation
3.3. Gene Expressions in the Testicular Tissues Cultured with Two Methods
3.4. Effect of Two Culture Methods on Testicular Cell Differentiation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silva, A.M.D.; Pereira, A.F.; Comizzoli, P.; Silva, A.R. Cryopreservation and culture of testicular tissues: An essential tool for biodiversity preservation. Biopreserv. Biobank. 2020, 18, 235–243. [Google Scholar] [CrossRef]
- Saulnier, J.; Soirey, M.; Kébir, N.; Delessard, M.; Rives-Feraille, A.; Moutard, L.; Dumont, L.; Rives, N.; Rondanino, C. Complete meiosis in rat prepubertal testicular tissue under in vitro sequential culture conditions. Andrology 2023, 11, 167–176. [Google Scholar] [CrossRef]
- Medrano, J.V.; Vilanova-Pérez, T.; Fornés-Ferrer, V.; Navarro-Gomezlechon, A.; Martínez-Triguero, M.L.; García, S.; Gómez-Chacón, J.; Povo, I.; Pellicer, A.; Andrés, M.M.; et al. Influence of temperature, serum, and gonadotropin supplementation in short- and long-term organotypic culture of human immature testicular tissue. Fertil. Steril. 2018, 110, 1045–1057.e3. [Google Scholar] [CrossRef]
- Reda, A.; Hou, M.; Winton, T.R.; Chapin, R.E.; Söder, O.; Stukenborg, J.B. In vitro differentiation of rat spermatogonia into round spermatids in tissue culture. Mol. Hum. Reprod. 2016, 22, 601–612. [Google Scholar] [CrossRef]
- Sato, T.; Katagiri, K.; Gohbara, A.; Inoue, K.; Ogonuki, N.; Ogura, A.; Kubota, Y.; Ogawa, T. In vitro production of functional sperm in cultured neonatal mouse testes. Nature 2011, 471, 504–507. [Google Scholar] [CrossRef]
- Amirkhani, Z.; Movahedin, M.; Baheiraei, N.; Ghiaseddin, A. Mini bioreactor can support in vitro spermatogenesis of mouse testicular tissue. Cell J. 2022, 24, 277–284. [Google Scholar]
- Tang, S.; Jones, C.; Davies, J.; Lane, S.; Coward, K. A comparative analysis of vitrification and two slow freezing methods for gonocyte-containing neonatal calf testicular tissue and subsequent in vitro culture. In Vitro Models 2025, 4, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Di Filippo, F.; Brevini, T.A.L.; Pennarossa, G.; Gandolfi, F. Generation of bovine decellularized testicular bio-scaffolds as a 3D platform for testis bioengineering. Front. Bioeng. Biotechnol. 2024, 12, 1532107. [Google Scholar] [CrossRef] [PubMed]
- de Michele, F.; Poels, J.; Vermeulen, M.; Ambroise, J.; Gruson, D.; Guiot, Y.; Wyns, C. Haploid germ cells generated in organotypic culture of testicular tissue from prepubertal boys. Front. Physiol. 2018, 9, 1413. [Google Scholar] [CrossRef] [PubMed]
- Sakib, S.; Goldsmith, T.; Voigt, A.; Dobrinski, I. Testicular organoids to study cell-cell interactions in the mammalian testis. Andrology 2020, 8, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Savvulidi, F.; Ptacek, M.; Savvulidi Vargova, K.; Stadnik, L. Manipulation of spermatogonial stem cells in livestock species. J. Anim. Sci. Biotechnol. 2019, 10, 46. [Google Scholar] [CrossRef]
- Kojima, K.; Nakamura, H.; Komeya, M.; Yamanaka, H.; Makino, Y.; Okada, Y.; Akiyama, H.; Torikai, N.; Sato, T.; Fujii, T.; et al. Neonatal testis growth recreated in vitro by two-dimensional organ spreading. Biotechnol. Bioeng. 2018, 115, 3030–3041. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.Q.; Cai, N.N.; Jiang, Y.; Yang, R.; Shi, J.Z.; Zhu, C.L.; Zhang, B.Y.; Tang, B.; Zhang, X.M. Survivable potential of germ cells after trehalose cryopreservation of bovine testicular tissues. Cryobiology 2021, 101, 105–114. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, W.; Yang, R.; Zhang, B.; Tang, B.; Zhang, X. Xenotransplantation of cryopreserved calf testicular tissues. Vet. Sci. 2025, 12, 247. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, B.; Zhu, W.; Zhu, C.; Chen, L.; Zhao, Y.; Wang, Y.; Zhang, Y.; Riaz, A.; Tang, B.; et al. Expression of phospholipase D family member 6 in bovine testes and its molecular characteristics. Int. J. Mol. Sci. 2023, 24, 12172. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, B.; Wang, Y.; Zhang, Y.; Zhao, Y.; Jiang, D.; Chen, L.; Tang, B.; Zhang, X. H3K9me3 levels affect the proliferation of bovine spermatogonial stem cells. Int. J. Mol. Sci. 2024, 25, 9215. [Google Scholar] [CrossRef]
- Jiang, Y.; An, X.L.; Yu, H.; Cai, N.N.; Zhai, Y.H.; Li, Q.; Cheng, H.; Zhang, S.; Tang, B.; Li, Z.Y.; et al. Transcriptome profile of bovine iPSCs derived from Sertoli Cells. Theriogenology 2020, 146, 120–132. [Google Scholar] [CrossRef]
- Jiang, Y.; Cai, N.N.; Zhao, X.X.; Zhu, W.Q.; Zhang, J.; Yang, R.; Tang, B.; Li, Z.Y.; Zhang, X.M. Decreased abundance of GDNF mRNA transcript in the immature Sertoli cells of cattle in response to protein kinase inhibitor staurosporine. Anim. Reprod. Sci. 2020, 214, 106303. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hilderink, J.; Groothuis, T.A.; Otto, C.; van Blitterswijk, C.A.; de Boer, J. Monitoring nutrient transport in tissue-engineered grafts. J. Tissue Eng. Regen. Med. 2015, 9, 952–960. [Google Scholar] [CrossRef] [PubMed]
- Komeya, M.; Kimura, H.; Nakamura, H.; Yokonishi, T.; Sato, T.; Kojima, K.; Hayashi, K.; Katagiri, K.; Yamanaka, H.; Sanjo, H.; et al. Long-term ex vivo maintenance of testis tissues producing fertile sperm in a microfluidic device. Sci. Rep. 2016, 6, 21472. [Google Scholar] [CrossRef]
- Tang, S.; Jones, C.; Mecca, R.; Davies, J.; Lane, S.; Coward, K. Anin vitrothree-dimensional (3D) testicular organoid culture system for efficient gonocyte maintenance and propagation using frozen/thawed neonatal bovine testicular tissues. Biomed. Mater. 2024, 19, 025040. [Google Scholar] [CrossRef]
- Tang, S.; Jones, C.; Dye, J.; Coward, K. Dissociation, enrichment, and the in vitro formation of gonocyte colonies from cryopreserved neonatal bovine testicular tissues. Theriogenology 2023, 210, 143–153. [Google Scholar] [CrossRef]
- Rahmoun, M.; Lavery, R.; Laurent-Chaballier, S.; Bellora, N.; Philip, G.K.; Rossitto, M.; Symon, A.; Pailhoux, E.; Cammas, F.; Chung, J.; et al. In mammalian foetal testes, SOX9 regulates expression of its target genes by binding to genomic regions with conserved signatures. Nucleic Acids Res. 2017, 45, 7191–7211. [Google Scholar] [CrossRef] [PubMed]
- Garza, S.; Papadopoulos, V. Cops5 in peritubular myoid cells influences reproductive development and hormone production. Endocrinology 2023, 164, bqad092. [Google Scholar] [CrossRef] [PubMed]
- Mishra, J.; Gautam, M.; Dadhich, R.; Kowtharapu, B.S.; Majumdar, S.S. Peritubular cells may modulate Leydig cell-mediated testosterone production through a nonclassic pathway. Fertil. Steril. 2012, 98, 1308–1317.e1. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kim, H.J.; Lee, C.H.; Choi, H.S.; Lee, K. Leydig cell-specific DAX1-deleted mice has higher testosterone level in the testis during pubertal development. Reprod. Sci. 2022, 29, 955–962. [Google Scholar] [CrossRef]
- de Michele, F.; Poels, J.; Weerens, L.; Petit, C.; Evrard, Z.; Ambroise, J.; Gruson, D.; Wyns, C. Preserved seminiferous tubule integrity with spermatogonial survival and induction of Sertoli and Leydig cell maturation after long-term organotypic culture of prepubertal human testicular tissue. Hum. Reprod. 2017, 32, 32–45. [Google Scholar] [CrossRef]
Gene | Forward Primer | Reverse Primer | Gene ID |
GAPDH | CGGCACAGTCAAGGCAGAGAAC | GCACCAGCATCACCCCACTTG | 281181 |
CRISP1 | ACAGAACTGGAGGCTGTCCAA | ATGTTGCTGGCTGGTGGAGA | 616774 |
SOX9 | AGGAGAGCGAGGAGGACAAGTTC | ACCAGCGTCCAGTCGTAGCC | 100336535 |
ACTA2 | GATGGTGGGAATGGGACAGAAAGAC | GGTGATGATGCCGTGCTCTATCG | 515610 |
STAR | AAGACCCTCTCTACAGCGACCAAG | GGATCACTTTACTCAGCACCTCGTC | 281507 |
GFRA-1 | TGGCCCTGCTTGTTTTCCTCT | ACAGGTATGCACGCTTGTGT | 534801 |
UCHL1 | GATGTTCTGGGACTGGAGGAGGAG | ATGATGGAACCGAGATGCTGCTTC | 514394 |
C-KIT | TGTCTGCACTGCTCAGCGAATC | TTGATGGCTGCCCGCACTTTC | 280832 |
SYCP3 | CCGGGAAGTTGGCAAAACCA | GGCATCCTCCTCTGAACCACT | 615896 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, D.; Zhu, W.; Yang, R.; Zhang, B.; Pan, Y.; Mao, Y.; Wang, Y.; Zhang, Y.; Tang, B.; Zhang, X. Agarose Gel-Supported Culture of Cryopreserved Calf Testicular Tissues. Vet. Sci. 2025, 12, 1005. https://doi.org/10.3390/vetsci12101005
Jiang D, Zhu W, Yang R, Zhang B, Pan Y, Mao Y, Wang Y, Zhang Y, Tang B, Zhang X. Agarose Gel-Supported Culture of Cryopreserved Calf Testicular Tissues. Veterinary Sciences. 2025; 12(10):1005. https://doi.org/10.3390/vetsci12101005
Chicago/Turabian StyleJiang, Daozhen, Wenqian Zhu, Rui Yang, Boyang Zhang, Yingshu Pan, Yifei Mao, Yueqi Wang, Yan Zhang, Bo Tang, and Xueming Zhang. 2025. "Agarose Gel-Supported Culture of Cryopreserved Calf Testicular Tissues" Veterinary Sciences 12, no. 10: 1005. https://doi.org/10.3390/vetsci12101005
APA StyleJiang, D., Zhu, W., Yang, R., Zhang, B., Pan, Y., Mao, Y., Wang, Y., Zhang, Y., Tang, B., & Zhang, X. (2025). Agarose Gel-Supported Culture of Cryopreserved Calf Testicular Tissues. Veterinary Sciences, 12(10), 1005. https://doi.org/10.3390/vetsci12101005