Longitudinal Baboon (Papio anubis) Neutrophil to Lymphocyte Ratio (NLR), and Correlations with Monthly Sedation Rate and Within-Group Sedation Order
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Data Collection
2.3. Data Analysis
2.3.1. Longitudinal NLR
2.3.2. Sedation Rate Per Month
2.3.3. Sedation Order
2.3.4. Health-Related Parameters
3. Results
3.1. Longitudinal NLR
3.2. Sedation Rate Per Month
3.3. Sedation Order
3.4. Health-Related Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oppler, S.H.; Palmer, S.D.; Phu, S.N.; Graham, M.L. The role of behavioral management in enhancing clinical care and efficiency, minimizing social disruption, and promoting welfare in captive primates. Vet. Sci. 2024, 11, 401. [Google Scholar] [CrossRef]
- Novak, M.A.; Hamel, A.F.; Ryan, A.M.; Menard, M.T.; Meyer, J.S. The role of stress in abnormal behavior and other abnormal conditions such as hair loss. In Handbook of Primate Behavioral Management; CRC Press: Boca Raton, FL, USA, 2017; pp. 75–94. [Google Scholar]
- Hwang, S.Y.; Shin, T.G.; Jo, I.J.; Jeon, K.; Suh, G.Y.; Lee, T.R.; Yoon, H.; Cha, W.C.; Sim, M.S. Neutrophil-to-lymphocyte ratio as a prognostic marker in critically-ill septic patients. Am. J. Emerg. Med. 2017, 35, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Zahorec, R. Neutrophil-to-lymphocyte ratio, past, present and future perspectives. Bratisl Lek Listy 2021, 122, 474–488. [Google Scholar] [CrossRef] [PubMed]
- Zahorec, R. Ratio of neutrophil to lymphocyte counts-rapid and simple parameter of systemic inflammation and stress in critically ill. Ponte Int. Sci. Res. J. 2001, 102, 5–14. [Google Scholar] [CrossRef]
- Bou Khalil, R.; Risch, N.; Sleilaty, G.; Richa, S.; Seneque, M.; Lefebvre, P.; Sultan, A.; Avignon, A.; Maimoun, L.; Renard, E.; et al. Neutrophil-to-lymphocyte ratio (NLR) variations in relationship with childhood maltreatment in patients with anorexia nervosa: A retrospective cohort study. Eat. Weight Disord. 2022, 27, 2201–2212. [Google Scholar] [CrossRef]
- Becher, A.; Suchodolski, J.S.; Steiner, J.M.; Heilmann, R.M. Blood neutrophil-to-lymphocyte ratio (NLR) as a diagnostic marker in dogs with chronic enteropathy. J. Vet. Diagn. Investig. 2021, 33, 516–527. [Google Scholar] [CrossRef]
- Neumann, S. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios in dogs and cats with acute pancreatitis. Vet. Clin. Pathol. 2021, 50, 45–51. [Google Scholar] [CrossRef]
- Samuels, A.N.; Kamr, A.M.; Reed, S.M.; Slovis, N.M.; Hostnik, L.D.; Burns, T.A.; Toribio, R.E. Association of the neutrophil-lymphocyte ratio with outcome in sick hospitalized neonatal foals. J. Vet. Intern. Med. 2024, 38, 1196–1206. [Google Scholar] [CrossRef]
- Uzenbaeva, L.B.; Vinogradova, I.A.; Kizhina, A.G.; Prokopenko, O.A.; Malkiel, A.I.; Goranskii, A.I.; Lapinski, S.; Ilyukha, V.A. Influence of melatonin on neutrophil-to-lymphocyte ratio in mammalian blood depending on age of the animal. Adv. Gerontol. 2013, 3, 61–66. [Google Scholar] [CrossRef]
- Neal Webb, S.J.; Schapiro, S.J.; Sherwood, C.C.; Raghanti, M.A.; Hopkins, W.D. Neutrophil to Lymphocyte Ratio (NLR) in captive chimpanzees (Pan troglodytes): The effects of sex, age, and rearing. PLoS ONE 2020, 15, e0244092. [Google Scholar] [CrossRef]
- Neal, S.J.; Achorn, A.M.; Schapiro, S.J.; Hopkins, W.D.; Simmons, J.H. Neutrophil to lymphocyte ratio in captive olive baboons (Papio anubis): The effects of age, sex, rearing, stress, and pregnancy. Am. J. Primatol. 2024, 86, e23619. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, L.; Lenart, A.; Tan, Q.; Vaupel, J.W.; Aviv, A.; McGue, M.; Christensen, K. DNA methylation age is associated with mortality in a longitudinal Danish twin study. Aging Cell 2016, 15, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Obanda, V.; Omondi, G.P.; Chiyo, P.I. The influence of body mass index, age and sex on inflammatory disease risk in semi-captive Chimpanzees. PLoS ONE 2014, 9, e104602. [Google Scholar] [CrossRef] [PubMed]
- Capitanio, J.P.; Del Rosso, L.A.; Spinner, A. Variation in infant rhesus monkeys’ (Macaca mulatta) neutrophil-to-lymphocyte ratio is associated with environmental conditions, emotionality, and cortisol concentrations, and predicts disease-related outcomes. Brain Behav. Immun. 2023, 109, 105–116. [Google Scholar] [CrossRef]
- Neal, S.J.; Schapiro, S.J.; Magden, E.R. Nursery- vs. mother-reared baboons: Reproductive success and health parameters. Vet. Sci. 2024. this issue. [Google Scholar] [CrossRef]
- Kim, C.Y.; Han, J.S.; Suzuki, T.; Han, S.S. Indirect indicator of transport stress in hematological values in newly acquired cynomolgus monkeys. J. Med. Primatol. 2005, 34, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.I.; Shin, J.S.; Lee, J.E.; Jung, W.Y.; Lee, G.; Kim, M.S.; Park, C.G.; Kim, S.J. Changes of N/L ratio and cortisol levels associated with experimental training in untrained rhesus macaques. J. Med. Primatol. 2012, 42, 10–14. [Google Scholar] [CrossRef]
- Amaral, W.Z.; Lubach, G.R.; Bennett, A.J.; Coe, C.L. Inflammatory vulnerability associated with the rh5-HTTLPR genotype in juvenile rhesus monkeys: Inflammation, emotionality and rh5-HTTLPR. Genes Brain Behav. 2013, 12, 353–360. [Google Scholar] [CrossRef]
- de Sousa, R.B.N.; Alves, L.H.; Carmo, V.C.; Manso, C.d.S.; Alves, F.M.; Alves, A.G.P.; Pinheiro, D.d.S.; de Camargo, N.C.; de Camargo, L.C.; Segatti, H.d.N.; et al. Applicability of the Neutrophil/Lymphocyte Ratio in Behavioral Studies. Int. J. Blood Res. Disord. 2022, 9, 75. [Google Scholar] [CrossRef]
- Hickman, D.L. Evaluation of the neutrophil:lymphocyte ratio as an indicator of chronic distress in the laboratory mouse. Lab. Anim. 2017, 46, 303–307. [Google Scholar] [CrossRef]
- Novak, M.A.; Hamel, A.F.; Kelly, B.J.; Dettmer, A.M.; Meyer, J.S. Stress, the HPA axis, and nonhuman primate well-being: A review. Appl. Anim. Behav. Sci. 2013, 143, 135–149. [Google Scholar] [CrossRef]
- Pulley, A.C.; Roberts, J.A.; Lerche, N.W. Four preanesthetic oral sedation protocols for rhesus macaques (Macaca mulatta). J. Zoo Wildl. Med. 2004, 35, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Lugo-Roman, L.A.; Rico, P.J.; Sturdivant, R.; Burks, R.; Settle, T.L. Effects of serial anesthesia using ketamine or ketamine/medetomidine on hematology and serum biochemistry values in rhesus macaques (Macaca mulatta). J. Med. Primatol. 2010, 39, 41–49. [Google Scholar] [CrossRef]
- BS, J.B.; Gossett, K.; McCarthy, M.; Simpson, E. Effects of ketamine hydrochloride on serum biochemical and hematologic variables in rhesus monkeys (Macaca mulatta). Vet. Clin. Pathol. 1992, 21, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.Y.; Lee, H.S.; Han, S.C.; Heo, J.D.; Kwon, M.S.; Ha, C.S.; Han, S.S. Hematological and serum biochemical values in cynomolgus monkeys anesthetized with ketamine hydrochloride. J. Med. Primatol. 2005, 34, 96–100. [Google Scholar] [CrossRef]
- Koo, B.S.; Lee, D.H.; Kang, P.; Jeong, K.J.; Lee, S.; Kim, K.; Lee, Y.; Huh, J.W.; Kim, Y.H.; Park, S.J.; et al. Reference values of hematological and biochemical parameters in young-adult cynomolgus monkey (Macaca fascicularis) and rhesus monkey (Macaca mulatta) anesthetized with ketamine hydrochloride. Lab. Anim. Res. 2019, 35, 7. [Google Scholar] [CrossRef]
- Venkatesan, R.; Nagarajan, P.; Rajaretnam, R.S.; Majumdar, S.S. Hematologic and serum biochemical values in aged female bonnet macaques (Macaca radiata) anesthetized with ketamine hydrochloride. J. Am. Assoc. Lab. Anim. Sci. 2006, 45, 45–48. [Google Scholar]
- Wall, H.S.; Worthman, C.; Else, J.G. Effects of ketamine anaesthesia, stress and repeated bleeding on the haematology of vervet monkeys. Lab. Anim. 1985, 19, 138–144. [Google Scholar] [CrossRef]
- Graham, M.L. Positive reinforcement training and research. In Handbook of Primate Behavioral Management; CRC Press: Boca Raton, FL, USA, 2017; pp. 187–200. [Google Scholar]
- Neal, S.J.; Whitney, S.W.; Hopkins, W.D.; Yi, S.; Jeong, H.H.; Simmons, J.H. Epigenetic and accelerated age in captive olive baboons (Papio anubis), and relationships with walking speed and fine motor performance. Aging under review.
- Paule, M.G.; Li, M.; Allen, R.R.; Liu, F.; Zou, X.; Hotchkiss, C.; Hanig, J.P.; Patterson, T.A.; Slikker, W., Jr.; Wang, C. Ketamine anesthesia during the first week of life can cause long-lasting cognitive deficits in rhesus monkeys. Neurotoxicol. Teratol. 2011, 33, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Springer, D.A.; Baker, K.C. Effect of ketamine anesthesia on daily food intake in Macaca mulatta and Cercopithecus aethiops. Am. J. Primatol. 2007, 69, 1080–1092. [Google Scholar] [CrossRef]
- Taffe, M.A.; Davis, S.A.; Gutierrez, T.; Gold, L.H. Ketamine impairs multiple cognitive domains in rhesus monkeys. Drug Alcohol Depend. 2002, 68, 175–187. [Google Scholar] [CrossRef]
- Yu, H.; Li, Q.; Wang, D.; Shi, L.; Lu, G.; Sun, L.; Wang, L.; Zhu, W.; Mak, Y.T.; Wong, N.; et al. Mapping the central effects of chronic ketamine administration in an adolescent primate model by functional magnetic resonance imaging (fMRI). Neurotoxicology 2012, 33, 70–77. [Google Scholar] [CrossRef]
- Bertrand, H.G.; Ellen, Y.C.; O’Keefe, S.; Flecknell, P.A. Comparison of the effects of ketamine and fentanyl-midazolam-medetomidine for sedation of rhesus macaques (Macaca mulatta). BMC Vet. Res. 2016, 12, 93. [Google Scholar] [CrossRef]
- Crockett, C.M.; Shimoji, M.; Bowden, D.M. Behavior, appetite, and urinary cortisol responses by adult female pigtailed macaques to cage size, cage level, room change, and ketamine sedation. Am. J. Primatol. 2000, 52, 63–80. [Google Scholar] [CrossRef]
- Gottlieb, D.H.; Capitanio, J.P. Latent Variables Affecting Behavioral Response to the Human Intruder Test in Infant Rhesus Macaques (Macaca mulatta): Latent Variables in Rhesus Intruder Test. Am. J. Primatol. 2013, 75, 314–323. [Google Scholar] [CrossRef]
- Rennie, A.; Buchanan-Smith, H. Refinement of the use of non-human primates in scientific research. Part I: The influence of humans. Anim. Welf. 2006, 15, 203–213. [Google Scholar] [CrossRef]
- Lambeth, S.P.; Hau, J.; Perlman, J.E.; Martino, M.; Schapiro, S.J. Positive reinforcement training affects hematologic and serum chemistry values in captive chimpanzees (Pan troglodytes). Am. J. Primatol. 2006, 68, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Graham, M.L.; Rieke, E.F.; Mutch, L.A.; Zolondek, E.K.; Faig, A.W.; DuFour, T.A.; Munson, J.W.; Kittredge, J.A.; Schuurman, H.J. Successful implementation of cooperative handling eliminates the need for restraint in a complex non-human primate disease model. J. Med. Primatol. 2012, 41, 89–106. [Google Scholar] [CrossRef]
- Schapiro, S.J.; Lambeth, S.P.; Jacobsen, K.R.; Williams, L.E.; Nehete, B.N.; Nehete, P.N. Physiological and welfare consequences of transport, relocation, and acclimatization of chimpanzees (Pan troglodytes). Appl. Anim. Behav. Sci. 2012, 137, 183–193. [Google Scholar] [CrossRef]
- Coleman, K.; Pranger, L.; Maier, A.; Lambeth, S.P.; Perlman, J.E.; Thiele, E.; Schapiro, S.J. Training rhesus macaques for venipuncture using positive reinforcement techniques: A comparison with chimpanzees. J. Am. Assoc. Lab. Anim. Sci. 2008, 47, 37–41. [Google Scholar] [PubMed]
- Coe, C.L.; Lubach, G.R.; Schneider, M.L.; Dierschke, D.J.; Ershler, W.B. Early rearing conditions alter immune responses in the developing infant primate. Pediatrics 1992, 90, 505–509. [Google Scholar] [CrossRef]
- Capitanio, J.; Mason, W.A.; Mendoza, S.P.; DelRosso, L.; Roberts, J.A. Nursery Rearing and Biobehavioral Organization. In Nursery Rearing of Nonhuman Primates in the 21st Century; Sackett, G.P., Ruppenthal, G.C., Elias, K., Eds.; Springer: New York, NY, USA, 2006; pp. 191–214. [Google Scholar]
- Capitanio, J.P.; Mendoza, S.P.; Mason, W.A.; Maninger, N. Rearing environment and hypothalamic-pituitary-adrenal regulation in young rhesus monkeys (Macaca mulatta). Dev. Psychobiol. 2005, 46, 318–330. [Google Scholar] [CrossRef] [PubMed]
- Clarke, A.S. Social rearing effects on HPA axis activity over early development and in response to stress in rhesus monkeys. Dev. Psychobiol. 1993, 26, 433–446. [Google Scholar] [CrossRef]
- Shannon, C.; Champoux, M.; Suomi, S.J. Rearing condition and plasma cortisol in rhesus monkey infants. Am. J. Primatol. 1998, 46, 311–321. [Google Scholar] [CrossRef]
- Dettmer, A.M.; Novak, M.A.; Suomi, S.J.; Meyer, J.S. Physiological and behavioral adaptation to relocation stress in differentially reared rhesus monkeys: Hair cortisol as a biomarker for anxiety-related responses. Psychoneuroendocrinology 2012, 37, 191–199. [Google Scholar] [CrossRef]
- Champoux, M.; Coe, C.L.; Schanberg, S.M.; Kuhn, C.M.; Suomi, S.J. Hormonal effects of early rearing conditions in the infant rhesus monkey. Am. J. Primatol. 1989, 19, 111–117. [Google Scholar] [CrossRef]
Citation | Species | Age | Sex | Findings |
---|---|---|---|---|
[17] | Macaca fascicularis | 3–4 years | 5 males | Increased NLR (as well as cortisol) following 15 h of air and truck transport from China to Korea. Returned to baseline 1 week after arrival. |
[18] | Macaca mulatta | 3–4 years | 10 females | Increased NLR (as well as cortisol) following chair-restraint training. Returned to baseline after 3 weeks. |
[19] | Macaca mulatta | mean age = 1.9 years | 27 males | Higher NLR following relocation to a new housing area. Higher NLR in monkeys with a short-version serotonin allele (higher emotionality monkeys) compared to a long-version allele (normal emotionality monkeys). |
[14] | Pan troglodytes | 3–31 years | 19 males, 20 females = 30 | Higher NLR with higher BMI and older age. |
[11] | Pan troglodytes | 2–58 years | 185 males, 225 females = 410 | Longitudinal data: no change within individuals over a 10-year timespan. |
Cross-sectional data: NLR highest in middle-aged individuals. Higher NLR in males and mother-reared individuals. | ||||
Mortality data: individuals with higher NLRs died at younger ages. | ||||
[15] | Macaca mulatta | 88–134 days | 2071 males, 2506 females = 4557 | Lower NLRs in indoor-reared, SPF, and male individuals. |
Lower NLR was associated with higher stress values, emotionality, later risk for airway hyperresponsiveness, and diarrhea. | ||||
[12] | Papio anubis | 0–19 years | 159 males, 228 females = 387 | Higher NLR in females, mother-reared individuals, and young adult individuals. |
NLR was higher during pregnancy and following transport to a new facility. | ||||
Transport stress NLR was heritable, while routine NLR was not heritable. | ||||
Current study | Papio anubis | 0–21 years | 284 females, 233 males = 517 | Longitudinal data: no significant change within individuals in NLR over a 5-year timespan. However, females, juveniles, and young adults show an increase in NLR over time. |
Cross-sectional data: significant positive correlation between sedation order and NLR. Baboons with higher sedation rates per month exhibited lower NLRs. |
Dataset/Study | Age Category | Sex | Mother-Reared | Nursery-Reared | ||||
---|---|---|---|---|---|---|---|---|
Mean NLR | SD | N | Mean NLR | SD | N | |||
1: Longitudinal NLR and sedation rate (N = 532) | Juvenile (0–4 years) | Male | 3.42 | 2.95 | 122 | 1.49 | 1.05 | 90 |
Female | 4.94 | 3.74 | 72 | 1.80 | 1.35 | 89 | ||
Total | 3.99 | 3.33 | 194 | 1.65 | 1.21 | 179 | ||
Young Adult (5–9 years) | Male | 2.68 | 0.67 | 5 | 2.48 | 1.16 | 7 | |
Female | 4.37 | 1.61 | 32 | 3.59 | 1.81 | 20 | ||
Total | 4.14 | 1.62 | 37 | 3.30 | 1.71 | 27 | ||
Older Adult (10–14 years) | Male | 4.34 | 1.06 | 4 | 3.12 | 0.65 | 4 | |
Female | 3.82 | 1.88 | 18 | 3.92 | 1.49 | 28 | ||
Total | 3.91 | 1.75 | 22 | 3.82 | 1.43 | 32 | ||
Geriatric (≥15 years) | Male | n/a | n/a | n/a | 5.22 | 0.08 | 2 | |
Female | 5.04 | 3.31 | 3 | 4.24 | 2.27 | 36 | ||
Total | 5.04 | 3.31 | 3 | 4.29 | 2.22 | 38 | ||
2: NLR at physical exam, sedation order, and health (N = 231) | Juvenile (0–4 years) | Male | 5.29 | 4.16 | 45 | 3.06 | 2.03 | 9 |
Female | 6.46 | 4.37 | 42 | 4.63 | 3.70 | 32 | ||
Total | 5.85 | 4.28 | 87 | 4.28 | 3.44 | 41 | ||
Young Adult (5–9 years) | Male | 4.72 | 4.02 | 3 | 5.22 | 3.65 | 4 | |
Female | 9.88 | 6.62 | 32 | 5.98 | 5.36 | 26 | ||
Total | 9.31 | 6.55 | 35 | 5.82 | 5.00 | 30 | ||
Older Adult & Geriatric (≥10 years) | Male | 3.29 | 0.58 | 3 | 4.39 | 2.68 | 2 | |
Female | 7.18 | 4.50 | 18 | 4.75 | 3.24 | 15 | ||
Total | 6.48 | 4.33 | 21 | 4.71 | 3.11 | 17 |
Dataset 1: Longitudinal NLR and Sedation Rate | ||||||
---|---|---|---|---|---|---|
Analysis Description | Statistical Test | Sample | Independent Variable(s) | Dependent Variable | Covariate(s) | Result(s) |
1a. Longitudinal NLR | Repeated Measures ANCOVA | Non-study baboons with NLR years 1 through 5, N = 174 | Sex, rearing | lg10NLR years 1–5 | Most recent age | Significant effect of time; pairwise comparisons: no differences between years |
1b. Cross-sectional age and NLR | Curve estimation | Non-study baboons, N = 472 | Most recent age | Most recent lg10NLR | Significant quadratic and linear relationship | |
2a. NLR and assignment to study, sedation rate | Linear regression | The entire sample (including study baboons), N = 532 | Sex, rearing, and age at the most recent NLR on the first block | Most recent lg10NLR | Age and rearing significant predictors—see Table 3 for coefficients | |
Assignment to study on the second block | n.s. | |||||
Sedation rate on the last block | Significant negative relationship | |||||
2b. NLR and sedation rate using a matched sample | Linear regression | Baboons matched with study baboons on age, sex, and rearing, N = 131 (66 study and 65 non-study) | Sex and rearing on the first block | Most recent lg10NLR | Replicated result 2a | |
Assignment to study on the second block | Replicated result 2a | |||||
Sedation rate on the last block | Replicated result 2a | |||||
2c. NLR change over time as a function of sedation rate | Linear regression | Non-study baboons with a minimum of 24 months between timepoints, N = 237 | Sex, rearing, and most recent age on the first block | Change score (normally distributed) | Sex and age were significant predictors of NLR change scores. | |
Sedation rate on the last block | n.s. | |||||
Dataset 2: NLR and Sedation Order, Health Parameters | ||||||
3. NLR and sedation order | Linear regression | Entire sample, N = 231 | Sex, rearing, and age on the first block | lg10NLR | Sex and rearing were significant predictors | |
Sedation order on the second block | Sedation order was a significant predictor | |||||
4. NLR and injury | Univariate ANCOVA | Entire sample, N = 231 | Sex, rearing | lg10NLR | Age | The main effects of sex and rearing were significant |
Injury (y/n) | Injury n.s., but trending injury by sex interaction | |||||
5. NLR, pregnancy, dependent infant | Univariate ANCOVA | Adult females only, N = 112 | Rearing | lg10NLR | Age | The main effect of rearing was significant |
Pregnancy (y/n) | n.s. | |||||
Dependent infant (present/absent) | Trending infant by rearing interaction |
B Value | Standard Error | Beta | t Value | p Value | |
---|---|---|---|---|---|
Intercept | 0.534 | 0.121 | 4.396 | 0.000 | |
Age * | 0.074 | 0.029 | 0.256 | 2.585 | 0.011 |
Sex | −0.109 | 0.060 | −0.128 | −1.802 | 0.074 |
Rearing * | −0.226 | 0.099 | −0.169 | −2.283 | 0.024 |
Study assignment | 0.084 | 0.089 | 0.099 | 0.950 | 0.344 |
Sedation rate * | −0.416 | 0.092 | −0.486 | −4.502 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neal, S.J.; Schapiro, S.J.; Magden, E.R. Longitudinal Baboon (Papio anubis) Neutrophil to Lymphocyte Ratio (NLR), and Correlations with Monthly Sedation Rate and Within-Group Sedation Order. Vet. Sci. 2024, 11, 423. https://doi.org/10.3390/vetsci11090423
Neal SJ, Schapiro SJ, Magden ER. Longitudinal Baboon (Papio anubis) Neutrophil to Lymphocyte Ratio (NLR), and Correlations with Monthly Sedation Rate and Within-Group Sedation Order. Veterinary Sciences. 2024; 11(9):423. https://doi.org/10.3390/vetsci11090423
Chicago/Turabian StyleNeal, Sarah J., Steven J. Schapiro, and Elizabeth R. Magden. 2024. "Longitudinal Baboon (Papio anubis) Neutrophil to Lymphocyte Ratio (NLR), and Correlations with Monthly Sedation Rate and Within-Group Sedation Order" Veterinary Sciences 11, no. 9: 423. https://doi.org/10.3390/vetsci11090423
APA StyleNeal, S. J., Schapiro, S. J., & Magden, E. R. (2024). Longitudinal Baboon (Papio anubis) Neutrophil to Lymphocyte Ratio (NLR), and Correlations with Monthly Sedation Rate and Within-Group Sedation Order. Veterinary Sciences, 11(9), 423. https://doi.org/10.3390/vetsci11090423