Longitudinal Baboon (Papio anubis) Neutrophil to Lymphocyte Ratio (NLR), and Correlations with Monthly Sedation Rate and Within-Group Sedation Order
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Data Collection
2.3. Data Analysis
2.3.1. Longitudinal NLR
2.3.2. Sedation Rate Per Month
2.3.3. Sedation Order
2.3.4. Health-Related Parameters
3. Results
3.1. Longitudinal NLR
3.2. Sedation Rate Per Month
3.3. Sedation Order
3.4. Health-Related Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oppler, S.H.; Palmer, S.D.; Phu, S.N.; Graham, M.L. The role of behavioral management in enhancing clinical care and efficiency, minimizing social disruption, and promoting welfare in captive primates. Vet. Sci. 2024, 11, 401. [Google Scholar] [CrossRef]
- Novak, M.A.; Hamel, A.F.; Ryan, A.M.; Menard, M.T.; Meyer, J.S. The role of stress in abnormal behavior and other abnormal conditions such as hair loss. In Handbook of Primate Behavioral Management; CRC Press: Boca Raton, FL, USA, 2017; pp. 75–94. [Google Scholar]
- Hwang, S.Y.; Shin, T.G.; Jo, I.J.; Jeon, K.; Suh, G.Y.; Lee, T.R.; Yoon, H.; Cha, W.C.; Sim, M.S. Neutrophil-to-lymphocyte ratio as a prognostic marker in critically-ill septic patients. Am. J. Emerg. Med. 2017, 35, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Zahorec, R. Neutrophil-to-lymphocyte ratio, past, present and future perspectives. Bratisl Lek Listy 2021, 122, 474–488. [Google Scholar] [CrossRef] [PubMed]
- Zahorec, R. Ratio of neutrophil to lymphocyte counts-rapid and simple parameter of systemic inflammation and stress in critically ill. Ponte Int. Sci. Res. J. 2001, 102, 5–14. [Google Scholar] [CrossRef]
- Bou Khalil, R.; Risch, N.; Sleilaty, G.; Richa, S.; Seneque, M.; Lefebvre, P.; Sultan, A.; Avignon, A.; Maimoun, L.; Renard, E.; et al. Neutrophil-to-lymphocyte ratio (NLR) variations in relationship with childhood maltreatment in patients with anorexia nervosa: A retrospective cohort study. Eat. Weight Disord. 2022, 27, 2201–2212. [Google Scholar] [CrossRef]
- Becher, A.; Suchodolski, J.S.; Steiner, J.M.; Heilmann, R.M. Blood neutrophil-to-lymphocyte ratio (NLR) as a diagnostic marker in dogs with chronic enteropathy. J. Vet. Diagn. Investig. 2021, 33, 516–527. [Google Scholar] [CrossRef]
- Neumann, S. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios in dogs and cats with acute pancreatitis. Vet. Clin. Pathol. 2021, 50, 45–51. [Google Scholar] [CrossRef]
- Samuels, A.N.; Kamr, A.M.; Reed, S.M.; Slovis, N.M.; Hostnik, L.D.; Burns, T.A.; Toribio, R.E. Association of the neutrophil-lymphocyte ratio with outcome in sick hospitalized neonatal foals. J. Vet. Intern. Med. 2024, 38, 1196–1206. [Google Scholar] [CrossRef]
- Uzenbaeva, L.B.; Vinogradova, I.A.; Kizhina, A.G.; Prokopenko, O.A.; Malkiel, A.I.; Goranskii, A.I.; Lapinski, S.; Ilyukha, V.A. Influence of melatonin on neutrophil-to-lymphocyte ratio in mammalian blood depending on age of the animal. Adv. Gerontol. 2013, 3, 61–66. [Google Scholar] [CrossRef]
- Neal Webb, S.J.; Schapiro, S.J.; Sherwood, C.C.; Raghanti, M.A.; Hopkins, W.D. Neutrophil to Lymphocyte Ratio (NLR) in captive chimpanzees (Pan troglodytes): The effects of sex, age, and rearing. PLoS ONE 2020, 15, e0244092. [Google Scholar] [CrossRef]
- Neal, S.J.; Achorn, A.M.; Schapiro, S.J.; Hopkins, W.D.; Simmons, J.H. Neutrophil to lymphocyte ratio in captive olive baboons (Papio anubis): The effects of age, sex, rearing, stress, and pregnancy. Am. J. Primatol. 2024, 86, e23619. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, L.; Lenart, A.; Tan, Q.; Vaupel, J.W.; Aviv, A.; McGue, M.; Christensen, K. DNA methylation age is associated with mortality in a longitudinal Danish twin study. Aging Cell 2016, 15, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Obanda, V.; Omondi, G.P.; Chiyo, P.I. The influence of body mass index, age and sex on inflammatory disease risk in semi-captive Chimpanzees. PLoS ONE 2014, 9, e104602. [Google Scholar] [CrossRef] [PubMed]
- Capitanio, J.P.; Del Rosso, L.A.; Spinner, A. Variation in infant rhesus monkeys’ (Macaca mulatta) neutrophil-to-lymphocyte ratio is associated with environmental conditions, emotionality, and cortisol concentrations, and predicts disease-related outcomes. Brain Behav. Immun. 2023, 109, 105–116. [Google Scholar] [CrossRef]
- Neal, S.J.; Schapiro, S.J.; Magden, E.R. Nursery- vs. mother-reared baboons: Reproductive success and health parameters. Vet. Sci. 2024. this issue. [Google Scholar] [CrossRef]
- Kim, C.Y.; Han, J.S.; Suzuki, T.; Han, S.S. Indirect indicator of transport stress in hematological values in newly acquired cynomolgus monkeys. J. Med. Primatol. 2005, 34, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.I.; Shin, J.S.; Lee, J.E.; Jung, W.Y.; Lee, G.; Kim, M.S.; Park, C.G.; Kim, S.J. Changes of N/L ratio and cortisol levels associated with experimental training in untrained rhesus macaques. J. Med. Primatol. 2012, 42, 10–14. [Google Scholar] [CrossRef]
- Amaral, W.Z.; Lubach, G.R.; Bennett, A.J.; Coe, C.L. Inflammatory vulnerability associated with the rh5-HTTLPR genotype in juvenile rhesus monkeys: Inflammation, emotionality and rh5-HTTLPR. Genes Brain Behav. 2013, 12, 353–360. [Google Scholar] [CrossRef]
- de Sousa, R.B.N.; Alves, L.H.; Carmo, V.C.; Manso, C.d.S.; Alves, F.M.; Alves, A.G.P.; Pinheiro, D.d.S.; de Camargo, N.C.; de Camargo, L.C.; Segatti, H.d.N.; et al. Applicability of the Neutrophil/Lymphocyte Ratio in Behavioral Studies. Int. J. Blood Res. Disord. 2022, 9, 75. [Google Scholar] [CrossRef]
- Hickman, D.L. Evaluation of the neutrophil:lymphocyte ratio as an indicator of chronic distress in the laboratory mouse. Lab. Anim. 2017, 46, 303–307. [Google Scholar] [CrossRef]
- Novak, M.A.; Hamel, A.F.; Kelly, B.J.; Dettmer, A.M.; Meyer, J.S. Stress, the HPA axis, and nonhuman primate well-being: A review. Appl. Anim. Behav. Sci. 2013, 143, 135–149. [Google Scholar] [CrossRef]
- Pulley, A.C.; Roberts, J.A.; Lerche, N.W. Four preanesthetic oral sedation protocols for rhesus macaques (Macaca mulatta). J. Zoo Wildl. Med. 2004, 35, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Lugo-Roman, L.A.; Rico, P.J.; Sturdivant, R.; Burks, R.; Settle, T.L. Effects of serial anesthesia using ketamine or ketamine/medetomidine on hematology and serum biochemistry values in rhesus macaques (Macaca mulatta). J. Med. Primatol. 2010, 39, 41–49. [Google Scholar] [CrossRef]
- BS, J.B.; Gossett, K.; McCarthy, M.; Simpson, E. Effects of ketamine hydrochloride on serum biochemical and hematologic variables in rhesus monkeys (Macaca mulatta). Vet. Clin. Pathol. 1992, 21, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.Y.; Lee, H.S.; Han, S.C.; Heo, J.D.; Kwon, M.S.; Ha, C.S.; Han, S.S. Hematological and serum biochemical values in cynomolgus monkeys anesthetized with ketamine hydrochloride. J. Med. Primatol. 2005, 34, 96–100. [Google Scholar] [CrossRef]
- Koo, B.S.; Lee, D.H.; Kang, P.; Jeong, K.J.; Lee, S.; Kim, K.; Lee, Y.; Huh, J.W.; Kim, Y.H.; Park, S.J.; et al. Reference values of hematological and biochemical parameters in young-adult cynomolgus monkey (Macaca fascicularis) and rhesus monkey (Macaca mulatta) anesthetized with ketamine hydrochloride. Lab. Anim. Res. 2019, 35, 7. [Google Scholar] [CrossRef]
- Venkatesan, R.; Nagarajan, P.; Rajaretnam, R.S.; Majumdar, S.S. Hematologic and serum biochemical values in aged female bonnet macaques (Macaca radiata) anesthetized with ketamine hydrochloride. J. Am. Assoc. Lab. Anim. Sci. 2006, 45, 45–48. [Google Scholar]
- Wall, H.S.; Worthman, C.; Else, J.G. Effects of ketamine anaesthesia, stress and repeated bleeding on the haematology of vervet monkeys. Lab. Anim. 1985, 19, 138–144. [Google Scholar] [CrossRef]
- Graham, M.L. Positive reinforcement training and research. In Handbook of Primate Behavioral Management; CRC Press: Boca Raton, FL, USA, 2017; pp. 187–200. [Google Scholar]
- Neal, S.J.; Whitney, S.W.; Hopkins, W.D.; Yi, S.; Jeong, H.H.; Simmons, J.H. Epigenetic and accelerated age in captive olive baboons (Papio anubis), and relationships with walking speed and fine motor performance. Aging under review.
- Paule, M.G.; Li, M.; Allen, R.R.; Liu, F.; Zou, X.; Hotchkiss, C.; Hanig, J.P.; Patterson, T.A.; Slikker, W., Jr.; Wang, C. Ketamine anesthesia during the first week of life can cause long-lasting cognitive deficits in rhesus monkeys. Neurotoxicol. Teratol. 2011, 33, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Springer, D.A.; Baker, K.C. Effect of ketamine anesthesia on daily food intake in Macaca mulatta and Cercopithecus aethiops. Am. J. Primatol. 2007, 69, 1080–1092. [Google Scholar] [CrossRef]
- Taffe, M.A.; Davis, S.A.; Gutierrez, T.; Gold, L.H. Ketamine impairs multiple cognitive domains in rhesus monkeys. Drug Alcohol Depend. 2002, 68, 175–187. [Google Scholar] [CrossRef]
- Yu, H.; Li, Q.; Wang, D.; Shi, L.; Lu, G.; Sun, L.; Wang, L.; Zhu, W.; Mak, Y.T.; Wong, N.; et al. Mapping the central effects of chronic ketamine administration in an adolescent primate model by functional magnetic resonance imaging (fMRI). Neurotoxicology 2012, 33, 70–77. [Google Scholar] [CrossRef]
- Bertrand, H.G.; Ellen, Y.C.; O’Keefe, S.; Flecknell, P.A. Comparison of the effects of ketamine and fentanyl-midazolam-medetomidine for sedation of rhesus macaques (Macaca mulatta). BMC Vet. Res. 2016, 12, 93. [Google Scholar] [CrossRef]
- Crockett, C.M.; Shimoji, M.; Bowden, D.M. Behavior, appetite, and urinary cortisol responses by adult female pigtailed macaques to cage size, cage level, room change, and ketamine sedation. Am. J. Primatol. 2000, 52, 63–80. [Google Scholar] [CrossRef]
- Gottlieb, D.H.; Capitanio, J.P. Latent Variables Affecting Behavioral Response to the Human Intruder Test in Infant Rhesus Macaques (Macaca mulatta): Latent Variables in Rhesus Intruder Test. Am. J. Primatol. 2013, 75, 314–323. [Google Scholar] [CrossRef]
- Rennie, A.; Buchanan-Smith, H. Refinement of the use of non-human primates in scientific research. Part I: The influence of humans. Anim. Welf. 2006, 15, 203–213. [Google Scholar] [CrossRef]
- Lambeth, S.P.; Hau, J.; Perlman, J.E.; Martino, M.; Schapiro, S.J. Positive reinforcement training affects hematologic and serum chemistry values in captive chimpanzees (Pan troglodytes). Am. J. Primatol. 2006, 68, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Graham, M.L.; Rieke, E.F.; Mutch, L.A.; Zolondek, E.K.; Faig, A.W.; DuFour, T.A.; Munson, J.W.; Kittredge, J.A.; Schuurman, H.J. Successful implementation of cooperative handling eliminates the need for restraint in a complex non-human primate disease model. J. Med. Primatol. 2012, 41, 89–106. [Google Scholar] [CrossRef]
- Schapiro, S.J.; Lambeth, S.P.; Jacobsen, K.R.; Williams, L.E.; Nehete, B.N.; Nehete, P.N. Physiological and welfare consequences of transport, relocation, and acclimatization of chimpanzees (Pan troglodytes). Appl. Anim. Behav. Sci. 2012, 137, 183–193. [Google Scholar] [CrossRef]
- Coleman, K.; Pranger, L.; Maier, A.; Lambeth, S.P.; Perlman, J.E.; Thiele, E.; Schapiro, S.J. Training rhesus macaques for venipuncture using positive reinforcement techniques: A comparison with chimpanzees. J. Am. Assoc. Lab. Anim. Sci. 2008, 47, 37–41. [Google Scholar] [PubMed]
- Coe, C.L.; Lubach, G.R.; Schneider, M.L.; Dierschke, D.J.; Ershler, W.B. Early rearing conditions alter immune responses in the developing infant primate. Pediatrics 1992, 90, 505–509. [Google Scholar] [CrossRef]
- Capitanio, J.; Mason, W.A.; Mendoza, S.P.; DelRosso, L.; Roberts, J.A. Nursery Rearing and Biobehavioral Organization. In Nursery Rearing of Nonhuman Primates in the 21st Century; Sackett, G.P., Ruppenthal, G.C., Elias, K., Eds.; Springer: New York, NY, USA, 2006; pp. 191–214. [Google Scholar]
- Capitanio, J.P.; Mendoza, S.P.; Mason, W.A.; Maninger, N. Rearing environment and hypothalamic-pituitary-adrenal regulation in young rhesus monkeys (Macaca mulatta). Dev. Psychobiol. 2005, 46, 318–330. [Google Scholar] [CrossRef] [PubMed]
- Clarke, A.S. Social rearing effects on HPA axis activity over early development and in response to stress in rhesus monkeys. Dev. Psychobiol. 1993, 26, 433–446. [Google Scholar] [CrossRef]
- Shannon, C.; Champoux, M.; Suomi, S.J. Rearing condition and plasma cortisol in rhesus monkey infants. Am. J. Primatol. 1998, 46, 311–321. [Google Scholar] [CrossRef]
- Dettmer, A.M.; Novak, M.A.; Suomi, S.J.; Meyer, J.S. Physiological and behavioral adaptation to relocation stress in differentially reared rhesus monkeys: Hair cortisol as a biomarker for anxiety-related responses. Psychoneuroendocrinology 2012, 37, 191–199. [Google Scholar] [CrossRef]
- Champoux, M.; Coe, C.L.; Schanberg, S.M.; Kuhn, C.M.; Suomi, S.J. Hormonal effects of early rearing conditions in the infant rhesus monkey. Am. J. Primatol. 1989, 19, 111–117. [Google Scholar] [CrossRef]
Citation | Species | Age | Sex | Findings |
---|---|---|---|---|
[17] | Macaca fascicularis | 3–4 years | 5 males | Increased NLR (as well as cortisol) following 15 h of air and truck transport from China to Korea. Returned to baseline 1 week after arrival. |
[18] | Macaca mulatta | 3–4 years | 10 females | Increased NLR (as well as cortisol) following chair-restraint training. Returned to baseline after 3 weeks. |
[19] | Macaca mulatta | mean age = 1.9 years | 27 males | Higher NLR following relocation to a new housing area. Higher NLR in monkeys with a short-version serotonin allele (higher emotionality monkeys) compared to a long-version allele (normal emotionality monkeys). |
[14] | Pan troglodytes | 3–31 years | 19 males, 20 females = 30 | Higher NLR with higher BMI and older age. |
[11] | Pan troglodytes | 2–58 years | 185 males, 225 females = 410 | Longitudinal data: no change within individuals over a 10-year timespan. |
Cross-sectional data: NLR highest in middle-aged individuals. Higher NLR in males and mother-reared individuals. | ||||
Mortality data: individuals with higher NLRs died at younger ages. | ||||
[15] | Macaca mulatta | 88–134 days | 2071 males, 2506 females = 4557 | Lower NLRs in indoor-reared, SPF, and male individuals. |
Lower NLR was associated with higher stress values, emotionality, later risk for airway hyperresponsiveness, and diarrhea. | ||||
[12] | Papio anubis | 0–19 years | 159 males, 228 females = 387 | Higher NLR in females, mother-reared individuals, and young adult individuals. |
NLR was higher during pregnancy and following transport to a new facility. | ||||
Transport stress NLR was heritable, while routine NLR was not heritable. | ||||
Current study | Papio anubis | 0–21 years | 284 females, 233 males = 517 | Longitudinal data: no significant change within individuals in NLR over a 5-year timespan. However, females, juveniles, and young adults show an increase in NLR over time. |
Cross-sectional data: significant positive correlation between sedation order and NLR. Baboons with higher sedation rates per month exhibited lower NLRs. |
Dataset/Study | Age Category | Sex | Mother-Reared | Nursery-Reared | ||||
---|---|---|---|---|---|---|---|---|
Mean NLR | SD | N | Mean NLR | SD | N | |||
1: Longitudinal NLR and sedation rate (N = 532) | Juvenile (0–4 years) | Male | 3.42 | 2.95 | 122 | 1.49 | 1.05 | 90 |
Female | 4.94 | 3.74 | 72 | 1.80 | 1.35 | 89 | ||
Total | 3.99 | 3.33 | 194 | 1.65 | 1.21 | 179 | ||
Young Adult (5–9 years) | Male | 2.68 | 0.67 | 5 | 2.48 | 1.16 | 7 | |
Female | 4.37 | 1.61 | 32 | 3.59 | 1.81 | 20 | ||
Total | 4.14 | 1.62 | 37 | 3.30 | 1.71 | 27 | ||
Older Adult (10–14 years) | Male | 4.34 | 1.06 | 4 | 3.12 | 0.65 | 4 | |
Female | 3.82 | 1.88 | 18 | 3.92 | 1.49 | 28 | ||
Total | 3.91 | 1.75 | 22 | 3.82 | 1.43 | 32 | ||
Geriatric (≥15 years) | Male | n/a | n/a | n/a | 5.22 | 0.08 | 2 | |
Female | 5.04 | 3.31 | 3 | 4.24 | 2.27 | 36 | ||
Total | 5.04 | 3.31 | 3 | 4.29 | 2.22 | 38 | ||
2: NLR at physical exam, sedation order, and health (N = 231) | Juvenile (0–4 years) | Male | 5.29 | 4.16 | 45 | 3.06 | 2.03 | 9 |
Female | 6.46 | 4.37 | 42 | 4.63 | 3.70 | 32 | ||
Total | 5.85 | 4.28 | 87 | 4.28 | 3.44 | 41 | ||
Young Adult (5–9 years) | Male | 4.72 | 4.02 | 3 | 5.22 | 3.65 | 4 | |
Female | 9.88 | 6.62 | 32 | 5.98 | 5.36 | 26 | ||
Total | 9.31 | 6.55 | 35 | 5.82 | 5.00 | 30 | ||
Older Adult & Geriatric (≥10 years) | Male | 3.29 | 0.58 | 3 | 4.39 | 2.68 | 2 | |
Female | 7.18 | 4.50 | 18 | 4.75 | 3.24 | 15 | ||
Total | 6.48 | 4.33 | 21 | 4.71 | 3.11 | 17 |
Dataset 1: Longitudinal NLR and Sedation Rate | ||||||
---|---|---|---|---|---|---|
Analysis Description | Statistical Test | Sample | Independent Variable(s) | Dependent Variable | Covariate(s) | Result(s) |
1a. Longitudinal NLR | Repeated Measures ANCOVA | Non-study baboons with NLR years 1 through 5, N = 174 | Sex, rearing | lg10NLR years 1–5 | Most recent age | Significant effect of time; pairwise comparisons: no differences between years |
1b. Cross-sectional age and NLR | Curve estimation | Non-study baboons, N = 472 | Most recent age | Most recent lg10NLR | Significant quadratic and linear relationship | |
2a. NLR and assignment to study, sedation rate | Linear regression | The entire sample (including study baboons), N = 532 | Sex, rearing, and age at the most recent NLR on the first block | Most recent lg10NLR | Age and rearing significant predictors—see Table 3 for coefficients | |
Assignment to study on the second block | n.s. | |||||
Sedation rate on the last block | Significant negative relationship | |||||
2b. NLR and sedation rate using a matched sample | Linear regression | Baboons matched with study baboons on age, sex, and rearing, N = 131 (66 study and 65 non-study) | Sex and rearing on the first block | Most recent lg10NLR | Replicated result 2a | |
Assignment to study on the second block | Replicated result 2a | |||||
Sedation rate on the last block | Replicated result 2a | |||||
2c. NLR change over time as a function of sedation rate | Linear regression | Non-study baboons with a minimum of 24 months between timepoints, N = 237 | Sex, rearing, and most recent age on the first block | Change score (normally distributed) | Sex and age were significant predictors of NLR change scores. | |
Sedation rate on the last block | n.s. | |||||
Dataset 2: NLR and Sedation Order, Health Parameters | ||||||
3. NLR and sedation order | Linear regression | Entire sample, N = 231 | Sex, rearing, and age on the first block | lg10NLR | Sex and rearing were significant predictors | |
Sedation order on the second block | Sedation order was a significant predictor | |||||
4. NLR and injury | Univariate ANCOVA | Entire sample, N = 231 | Sex, rearing | lg10NLR | Age | The main effects of sex and rearing were significant |
Injury (y/n) | Injury n.s., but trending injury by sex interaction | |||||
5. NLR, pregnancy, dependent infant | Univariate ANCOVA | Adult females only, N = 112 | Rearing | lg10NLR | Age | The main effect of rearing was significant |
Pregnancy (y/n) | n.s. | |||||
Dependent infant (present/absent) | Trending infant by rearing interaction |
B Value | Standard Error | Beta | t Value | p Value | |
---|---|---|---|---|---|
Intercept | 0.534 | 0.121 | 4.396 | 0.000 | |
Age * | 0.074 | 0.029 | 0.256 | 2.585 | 0.011 |
Sex | −0.109 | 0.060 | −0.128 | −1.802 | 0.074 |
Rearing * | −0.226 | 0.099 | −0.169 | −2.283 | 0.024 |
Study assignment | 0.084 | 0.089 | 0.099 | 0.950 | 0.344 |
Sedation rate * | −0.416 | 0.092 | −0.486 | −4.502 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neal, S.J.; Schapiro, S.J.; Magden, E.R. Longitudinal Baboon (Papio anubis) Neutrophil to Lymphocyte Ratio (NLR), and Correlations with Monthly Sedation Rate and Within-Group Sedation Order. Vet. Sci. 2024, 11, 423. https://doi.org/10.3390/vetsci11090423
Neal SJ, Schapiro SJ, Magden ER. Longitudinal Baboon (Papio anubis) Neutrophil to Lymphocyte Ratio (NLR), and Correlations with Monthly Sedation Rate and Within-Group Sedation Order. Veterinary Sciences. 2024; 11(9):423. https://doi.org/10.3390/vetsci11090423
Chicago/Turabian StyleNeal, Sarah J., Steven J. Schapiro, and Elizabeth R. Magden. 2024. "Longitudinal Baboon (Papio anubis) Neutrophil to Lymphocyte Ratio (NLR), and Correlations with Monthly Sedation Rate and Within-Group Sedation Order" Veterinary Sciences 11, no. 9: 423. https://doi.org/10.3390/vetsci11090423
APA StyleNeal, S. J., Schapiro, S. J., & Magden, E. R. (2024). Longitudinal Baboon (Papio anubis) Neutrophil to Lymphocyte Ratio (NLR), and Correlations with Monthly Sedation Rate and Within-Group Sedation Order. Veterinary Sciences, 11(9), 423. https://doi.org/10.3390/vetsci11090423