A One Health Perspective on Camel Meat Hygiene and Zoonoses: Insights from a Decade of Research in the Middle East
Abstract
:Simple Summary
Abstract
1. Introduction
2. Camel Meat Production and Supply Chain in the Middle East
3. Methodological Framework and Data Acquisition
4. Microbial Hazards of Camel Meat in the Middle Eastern Countries over the Past Decade
5. Chemical Hazards of Camel Meat in the Middle Eastern Countries over the Past Decade
6. Zoonoses in Camel Populations in the Middle Eastern Countries
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dorman, A.E. Aspects of the Husbandry and Management of the Genus Camelus. Br. Vet. J. 1984, 140, 616–633. [Google Scholar] [CrossRef] [PubMed]
- Skidmore, J.A. Reproduction in Dromedary Camels: An Update. Anim. Reprod. 2005, 2, 161–171. [Google Scholar]
- Ouajd, S.; Kamel, B. Physiological Particularities of Dromedary (Camelus dromedarius) and Experimental Implications. Scand. J. Lab. Anim. Sci. 2009, 36, 19–29. [Google Scholar]
- Faraz, A.; Tauqir, N.A.; Ishaq, H.M.; Hussain, S.M.; Akbar, M.A.; Mirza, R.H.; Sufyan, A.; Rashid, S. Camel Production Profile and Role in Food Security. Int. J. Agric. Biosci. 2023, 2, 216–220. [Google Scholar] [CrossRef]
- Kurtu, M.Y. An Assessment of the Productivity for Meat and the Carcase Yield of Camels (Camelus dromedarius) and of the Consumption of Camel Meat in the Eastern Region of Ethiopia. Trop. Anim. Health Prod. 2004, 36, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Kadim, I.T.; Mahgoub, O.; Al-Marzooqi, W.; Al-Zadjali, S.; Annamalai, K.; Mansour, M.H. Effects of Age on Composition and Quality of Muscle Longissimus Thoracis of the Omani Arabian Camel (Camelus dromedarius). Meat Sci. 2006, 73, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Kadim, I.T.; Al-Amri, I.S.; Al Kindi, A.Y.; Mbaga, M. Camel Meat Production and Quality: A Review. J. Camel Pract. Res. 2018, 25, 9. [Google Scholar] [CrossRef]
- Nelson, K.S.; Bwala, D.A.; Nuhu, E.J. The Dromedary Camel; a Review on the Aspects of History, Physical Description, Adaptations, Behavior/Lifecycle, Diet, Reproduction, Uses, Genetics and Diseases. Niger. Vet. J. 2015, 36, 1299–1317. [Google Scholar]
- Cuadrado, P.S.; Young, H.; Vance, A. Camel Racing: The Multi-Million Dollar Industry Mixing Modernity and Tradition. Available online: https://edition.cnn.com/2017/03/14/sport/camel-racing-robots-uae-thoroughbred-hussain-al-marzooqi/index.html (accessed on 13 June 2024).
- FAO (Food and Agriculture Organization of the United Nations). International Year of Camelids (IYC) 2024|Food and Agriculture Organization of the United Nations (Fao.Org). Available online: https://www.fao.org/camelids-2024/en (accessed on 13 June 2024).
- Kutty, C.I.; Yousuf, A.M. Management Practices and Production Performance of Camels under Organized Farming in Abu Dhabi Emirate, United Arab Emirates. Indian J. Anim. Sci. 2017, 87, 1269–1273. [Google Scholar] [CrossRef]
- Faye, B. The Production Potential and the Importance of Camel and Camelids in the World. In Proceedings of the WBC/ICAR 2008 Satellite Meeting on Camelid Reproduction, Budapest, Hungary, 12–13 July 2008; pp. 1–4. [Google Scholar]
- Kadim, I.T.; Mahgoub, O.; Purchas, R.W. A Review of the Growth, and of the Carcass and Meat Quality Characteristics of the One-Humped Camel (Camelus dromedaries). Meat Sci. 2008, 80, 555–569. [Google Scholar] [CrossRef]
- Baba, W.N.; Rasool, N.; Selvamuthukumara, M.; Maqsood, S. A Review on Nutritional Composition, Health Benefits, and Technological Interventions for Improving Consumer Acceptability of Camel Meat: An Ethnic Food of Middle East. J. Ethn. Foods 2021, 8, 18. [Google Scholar] [CrossRef]
- Kadim, I.T.; Al-Ani, M.R.; Al-Maqbaly, R.S.; Mansour, M.H.; Mahgoub, O.; Johnson, E.H. Proximate, Amino Acid, Fatty Acid and Mineral Composition of Raw and Cooked Camel (Camelus dromedarius) Meat. Br. Food J. 2011, 113, 482–493. [Google Scholar] [CrossRef]
- Raiymbek, G.; Kadim, I.; Konuspayeva, G.; Mahgoub, O.; Serikbayeva, A.; Faye, B. Discriminant Amino-Acid Components of Bactrian (Camelus bactrianus) and Dromedary (Camelus dromedarius) Meat. J. Food Compos. Anal. 2015, 41, 194–200. [Google Scholar] [CrossRef]
- Mohammed, H.H.H.; Jin, G.; Ma, M.; Khalifa, I.; Shukat, R.; Elkhedir, A.E.; Zeng, Q.; Noman, A.E. Comparative Characterization of Proximate Nutritional Compositions, Microbial Quality and Safety of Camel Meat in Relation to Mutton, Beef, and Chicken. LWT 2020, 118, 108714. [Google Scholar] [CrossRef]
- Ghazali, M.H.; Bakhsh, M.; Zainab, U.; Faraz, A.; Munir, M.U.; Channo, A.; Ahmad, M.; Rashid, S. Camel Meat Production, Consumption and Nutritive Value: Present Status and Future Prospects. Int. J. Camel Sci. 2023, 5, 123–136. [Google Scholar]
- Kadim, I.T.; Mahgoub, O.; Mbaga, M. Potential of Camel Meat as a Non-Traditional High Quality Source of Protein for Human Consumption. Anim. Front. 2014, 4, 13–17. [Google Scholar] [CrossRef]
- Sabahat, S.; Nadeem, A.; Maryam, J. Genetic and Genomic Prospects for Camel Meat Production. J. Anim. Plant Sci. 2020, 31, 635–649. [Google Scholar] [CrossRef]
- Yam, B.A.Z.; Khomeiri, M.; Akbarzadeh, A.; Heidari, Z.; Bashghareh, H.; Haghighi, N. Effect of Levels of Camel Meat on Physiochemichal and Sensory Properties of Hamburger. Basic Res. J. Microbiol. 2015, 2, 55–60. [Google Scholar]
- Salah, H.; Abdu, K.; Elasraag, Y. The Potential Contribution of Camel Meat Production to Achieve Food Security from Animal Protein in Egypt. Menoufia J. Agric. Econ. Soc. Sci. 2023, 8, 119–135. [Google Scholar] [CrossRef]
- Suliman, G.M. Camel Meat as a Future Promising Protein Source. Anim. Front. 2023, 13, 53–55. [Google Scholar] [CrossRef]
- Djenane, D.; Aider, M. The One-Humped Camel: The Animal of Future, Potential Alternative Red Meat, Technological Suitability and Future Perspectives. F1000Res 2024, 11, 1085. [Google Scholar] [CrossRef] [PubMed]
- Corrò, M.; Saleh-Mohamed-Lamin, S.; Jatri-Hamdi, S.; Slut-Ahmed, B.; Mohamed-Lejlifa, S.; Di Lello, S.; Rossi, D.; Broglia, A.; Vivas-Alegre, L. A Preliminary Microbiological Assessment of Process Hygiene of Traditional Outdoor Camel Slaughter in Sahrawi Refugee Camps. J. Food Prot. 2012, 75, 1859–1861. [Google Scholar] [CrossRef] [PubMed]
- Hassen, K.A.; Omer, S.A.; Hassen, N.A. Assessment of Hygienic Practice on Camel Meat Handlers, and Identification of Bacterial Contamination in Abattoir and Butcheries of Nagelle Town, Southern Oromia, Ethiopia. Int. Res. J. Sci. Technol. 2021, 2, 384–397. [Google Scholar] [CrossRef]
- Benyagoub, E.; Lali, M.A.; Lamari, N. Quality of Fresh Camel Meat (Camelus dromedarius) Sold at Retail Houses in Bechar City (Southwest of Algeria): Physicochemical and Hygienic Approaches. Asian J. Dairy Food Res. 2022, 41, 264–271. [Google Scholar] [CrossRef]
- Morshdy, A.E.M.A.; Mehrez, S.M.I.; Tharwat, A.E.; Abdallah, K.M.E.; Darwish, W.S.; Nabawy, E.E.; Ali, E.-S.M. Hygienic Status of the Carcass Surfaces of Cattle, Buffalo, Sheep, and Camel Carcasses and Their Contact Surfaces. J. Adv. Vet. Res. 2023, 13, 1294–1298. [Google Scholar]
- Chigbu, U.E.; Atiku, S.O.; Du Plessis, C.C. The Science of Literature Reviews: Searching, Identifying, Selecting, and Synthesising. Publications 2023, 11, 2. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- World Health Organization (WHO). WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Bur-Epidemiology Reference Group 2007–2015; World Health Organization: Geneva, Switzerland, 2015; ISBN 9789241565165. [Google Scholar]
- Osman, K.; Orabi, A.; Elbehiry, A.; Hanafy, M.H.; Ali, A.M. Pseudomonas Species Isolated from Camel Meat: Quorum Sensing-Dependent Virulence, Biofilm Formation and Antibiotic Resistance. Future Microbiol. 2019, 14, 609–622. [Google Scholar] [CrossRef]
- Al-Amery, K.; Elhariri, M.; Elsayed, A.; El-Moghazy, G.; Elhelw, R.; El-Mahallawy, H.; El Hariri, M.; Hamza, D. Vancomycin-Resistant Staphylococcus aureus Isolated from Camel Meat and Slaughterhouse Workers in Egypt. Antimicrob. Resist. Infect. Control 2019, 8, 129. [Google Scholar] [CrossRef]
- Sallam, K.I.; Abd-Elrazik, Y.; Raslan, M.T.; Imre, K.; Morar, A.; Herman, V.; Zaher, H.A. Cefotaxime-, Ciprofloxacin-, and Extensively Drug-Resistant Escherichia coli O157:H7 and O55:H7 in Camel Meat. Foods 2023, 12, 1443. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Elsohaby, I.; Elamin, A.M.; El-Ghafar, A.E.A.; Elsaid, G.A.; Elbarbary, M.; Mohsen, R.A.; El Feky, T.M.; El Bayomi, R.M. Extended-Spectrum β-Lactamase-Producing E. coli from Retail Meat and Workers: Genetic Diversity, Virulotyping, Pathotyping and the Antimicrobial Effect of Silver Nanoparticles. BMC Microbiol. 2023, 23, 212. [Google Scholar] [CrossRef]
- Alkhalaf, A.A.; El-Ghareeb, W.R.; Abdel Raheem, S.M.; Seliem, M.M.; Shosha, A.M.; Elzawahry, R.R. A Study on the Prevalence of Multidrug Resistant Food Poisoning Salmonella spp. in Camel Meat and Offal with a Reduction Trial Using Organic Acids. J. Adv. Vet. Res. 2024, 14, 526–530. [Google Scholar]
- Askari, N.; Momtaz, H.; Tajbakhsh, E. Acinetobacter Baumannii in Sheep, Goat, and Camel Raw Meat: Virulence and Antibiotic Resistance Pattern. AIMS Microbiol. 2019, 5, 272–284. [Google Scholar] [CrossRef]
- Baghbaderani, Z.T.; Shakerian, A.; Rahimi, E. Phenotypic and Genotypic Assessment of Antibiotic Resistance of Staphylococcus aureus Bacteria Isolated from Retail Meat. Infect. Drug Resist. 2020, 13, 1339–1349. [Google Scholar] [CrossRef]
- Azwai, S.; Alfallani, E.; Abolghait, S.; Garbaj, A.; Naas, H.; Moawad, A.; Gammoudi, F.; Rayes, H.; Barbieri, I.; Eldaghayes, I. Isolation and Molecular Identification of Vibrio spp. by Sequencing of 16S RDNA from Seafood, Meat and Meat Products in Libya. Open Vet. J. 2016, 6, 36. [Google Scholar] [CrossRef]
- Salman, M.B.; Zin Eldin, A.I.A.; Ata, N.S.; Abd Elfatah, E.B.; Eissa, N. Prevalence, Antimicrobial Resistance and Risk Factors of Zoonotic Foodborne Pathogens Isolated from Camel Meat. J. Curr. Vet. Res. 2024, 6, 272–284. [Google Scholar] [CrossRef]
- Elkady, S.; Darwish, W.; Tharwat, A.; Said, M.; ElAtriby, D.; Seliem, M.; Alfifi, A.; Ghareeb, W.; Gad, T. Prevalence and Antibiogram of Shigatoxin-Producing E. coli in Camel Meat and Offal. Open Vet. J. 2024, 14, 571. [Google Scholar] [CrossRef]
- Bosilevac, J.M.; Gassem, M.A.; Al Sheddy, I.A.; Almaiman, S.A.; Al-Mohizea, I.S.; Alowaimer, A.; Koohmaraie, M. Prevalence of Escherichia coli O157:H7 and Salmonella in Camels, Cattle, Goats, and Sheep Harvested for Meat in Riyadh. J. Food Prot. 2015, 78, 89–96. [Google Scholar] [CrossRef]
- Raji, M.A.; Garaween, G.; Ehricht, R.; Monecke, S.; Shibl, A.M.; Senok, A. Genetic Characterization of Staphylococcus aureus Isolated from Retail Meat in Riyadh, Saudi Arabia. Front. Microbiol. 2016, 7, 911. [Google Scholar] [CrossRef] [PubMed]
- Yehia, H.M.; Elkhadragy, M.F.; Aljahani, A.H.; Alarjani, K.M. Prevalence and Antibiotic Resistance of Listeria monocytogenes in Camel Meat. Biosci. Rep. 2020, 40, BSR20201062. [Google Scholar] [CrossRef]
- El-Ghareeb, W.R.; Abdel-Raheem, S.M.; Al-Marri, T.M.; Alaql, F.A.; Fayez, M.M. Isolation and Identification of Extended Spectrum β-Lactamases (ESBLs) Escherichia coli from Minced Camel Meat in Eastern Province, Saudi Arabia. Thai J. Vet. Med. 2020, 50, 155–161. [Google Scholar] [CrossRef]
- Fayez, M.; El-Ghareeb, W.R.; Elmoslemany, A.; Alsunaini, S.J.; Alkafafy, M.; Alzahrani, O.M.; Mahmoud, S.F.; Elsohaby, I. Genotyping and Antimicrobial Susceptibility of Clostridium perfringens and Clostridioides difficile in Camel Minced Meat. Pathogens 2021, 10, 1640. [Google Scholar] [CrossRef] [PubMed]
- Husain, F.M.; Perveen, K.; Qais, F.A.; Ahmad, I.; Alfarhan, A.H.; El-Sheikh, M.A. Naringin Inhibits the Biofilms of Metallo-β-Lactamases (MβLs) Producing Pseudomonas Species Isolated from Camel Meat. Saudi J. Biol. Sci. 2021, 28, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Al-Asmari, F.; Hamad, S.H.; Al Hashedi, S.A. Prevalence of Enterobacteriaceae in Camel, Cattle, and Sheep Carcasses at Slaughterhouses and Butcher Shops. Appl. Sci. 2023, 13, 11495. [Google Scholar] [CrossRef]
- Hembrom, S.; Singh, B.; Gupta, S.K.; Nema, A.K. A Comprehensive Evaluation of Heavy Metal Contamination in Foodstuff and Associated Human Health Risk: A Global Perspective. In Contemporary Environmental Issues and Challenges in Era of Climate Change; Springer: Singapore, 2020; pp. 33–63. [Google Scholar]
- Bala, A.; Junaidu, A.U.; Salihu, M.D.; Agaie, B.M.; Saulawa, M.A.; Musawa, A.I.; Ahmad, K.H. Determination of Heavy Metal Residues in Slaughtered Camels at Sokoto and Gusau Modern Abattoirs, Nigeria. J. Health Pollut. 2018, 8, 181204. [Google Scholar] [CrossRef] [PubMed]
- Abdou, A.; Mohamed, F. Estimation of Some Heavy Metals Residues in Blood Serum and Tissues of Camels. Assiut Vet. Med. J. 2015, 61, 221–229. [Google Scholar] [CrossRef]
- Morshdy, A.E.M.; Darwish, W.S.; El-Ghareeb, W.R.; Gouda, R. Antibiotic and Heavy Metal Residues in Camel Meat. In Proceedings of the 7th International Toxicology Symposium in Africa, Johannesburg, South Africa, 31 August 2015; pp. 38–39. [Google Scholar]
- El-Ghareeb, W.R.; Mulla, Z.S.; Meligy, A.M.A.; Darwish, W.S.; Edris, A.M. Antibiotic Residue Levels in Camel, Cattle and Sheep Tissues Using LC-MS/MS Method. J. Anim. Plant Sci. 2019, 29, 943–952. [Google Scholar]
- Asli, M.; Azizzadeh, M.; Moghaddamjafari, A.; Mohsenzadeh, M. Copper, Iron, Manganese, Zinc, Cobalt, Arsenic, Cadmium, Chrome, and Lead Concentrations in Liver and Muscle in Iranian Camel (Camelus dromedarius). Biol. Trace Elem. Res. 2020, 194, 390–400. [Google Scholar] [CrossRef]
- Al-perkhdri, A.S.A. Study of the Some Heavy Metals Residues in the Camel Meat in Different Regions of Kirkuk Governorate during the Spring and Summer Seasons. IOP Conf. Ser. Earth Environ. Sci. 2021, 735, 012080. [Google Scholar] [CrossRef]
- Jehad, A.-H.; Moawiya, H.; Mazen, A.; Sati, A.-D.; Khaled, A.-H. Banned Organochlorine Pesticides Residues in Camel Milk, Meat, and Liver: A Case Study from Jordan. Jordan. J. Eng. Chem. Ind. 2021, 4, 31–37. [Google Scholar]
- Elasough, J.; Elgerwi, A.; Eldaghayes, I.; El-Mahmoudy, A. Residual Evaluation of Oxytetracycline in Camel Edible Tissues in Tripoli Region, Libya. Curr. Res. Microbiol. Biotechnol. 2015, 3, 718–724. [Google Scholar]
- Abdelbasset, C.; Rabia, E.; Abdallah, B.; Boubker, N.; AbdelKhalid, E. Distribution of Trace Elements and Heavy Metals in Liver, Lung, Meat, Heart and Kidney of Cattle, Sheep, Camel and Equine Slaughtered in Casablanca City-Morocco. Int. J. Sci. Eng. Res. 2014, 5, 294–303. [Google Scholar]
- Osman, K.A. Human Health Risk of Dietary Intake of Some Organochlorine Pesticide Residues in Camels Slaughtered in the Districts of Al-Qassim Region, Saudi Arabia. J. AOAC Int. 2015, 98, 1199–1206. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, H.; Haris, P.; Brima, E. Estimated Dietary Intakes of Toxic Elements from Four Staple Foods in Najran City, Saudi Arabia. Int. J. Environ. Res. Public Health 2017, 14, 1575. [Google Scholar] [CrossRef]
- El-Ghareeb, W.R.; Darwish, W.S.; Meligy, A.M.A. Metal Contents in the Edible Tissues of Camel and Sheep: Human Dietary Intake and Risk Assessment in Saudi Arabia. Jpn. J. Vet. Res. 2019, 67, 5–14. [Google Scholar]
- Hussein, Y.A.; Meligy, A.M.A.; El-Ghareeb, W.R.; Al-Shokair, S.S.; Abdel-Raheem, S.M. Selected Heavy Metals and Their Risk Assessment in Camels (Camelus dromedarius). J. Camel Pract. Res. 2022, 29, 89–99. [Google Scholar] [CrossRef]
- Abdelrahman, M.M.; Alhidary, I.A.; Matar, A.M.; Alobre, M.M.; Ayadi, M.; Aljumaah, R.S. Heavy Metals Levels in Soil, Water and Feed and Relation to Slaughtered Camels’ Tissues (Camelus dromedarius) from Five Districts in Saudi Arabia during Spring. Life 2023, 13, 732. [Google Scholar] [CrossRef] [PubMed]
- Meligy, A.; Ghareeb, W.; Raheem, S.; Ismail, H.; Darwish, W.; Kandeel, M.; Alfifi, A.; Shokair, S.; Hussein, M. Assessment of Some Toxic Elements (Co, Cr, Mn, Se, and As) in Muscle, Offal, Hair and Blood of Camels (Camelus dromedaries) and Their Risk Assessment. Open Vet. J. 2024, 14, 154. [Google Scholar] [CrossRef]
- Khalafalla, A.I. Zoonotic Diseases Transmitted from the Camels. Front. Vet. Sci. 2023, 10, 1244833. [Google Scholar] [CrossRef]
- Kumar, V. Emerging Human Coronavirus Infections (SARS, MERS, and COVID-19): Where They Are Leading Us. Int. Rev. Immunol. 2021, 40, 5–53. [Google Scholar] [CrossRef]
- Aklilu, M.A.; WeldeMariam, D.T.; Shanta, S.A.; Islam, M.S.; Akter, A. Review on the Epidemiology and Public Health Importance of Camel Tuberculosis. Int. J. Agric. Vet. Sci. 2022, 5, 116–129. [Google Scholar] [CrossRef]
- Habib, I.; Mohamed, M.Y.I. Foodborne Infections in the Middle East. In Food Safety in the Middle East; Elsevier: Amsterdam, The Netherlands, 2022; pp. 71–107. ISBN 9780128224175. [Google Scholar]
- Mohamed, M.-Y.I.; Habib, I.; Khalifa, H.O. Salmonella in the Food Chain within the Gulf Cooperation Council Countries. AIMS Microbiol. 2024, 10, 468–488. [Google Scholar] [CrossRef]
- Adel, M. Brucella Transmission from Domestic and Wild Animals to Dromedary Camel: Diagnostic Methods and Zoonotic Threats—A Review. Open Vet. Sci. 2022, 3, 1–12. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAOUN MERS-CoV Situation Update. Available online: https://www.fao.org/animal-health/situation-updates/mers-coronavirus (accessed on 18 May 2024).
- Aly, M.; Elrobh, M.; Alzayer, M.; Aljuhani, S.; Balkhy, H. Occurrence of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) across the Gulf Corporation Council Countries: Four Years Update. PLoS ONE 2017, 12, e0183850. [Google Scholar] [CrossRef]
- Sobhy, H.M.; Barghash, S.M.; Behour, T.S.; Razin, E.A. Seasonal Fluctuation of Trypanosomiasis in Camels in North-West Egypt and Effect of Age, Sex, Location, Health Status and Vector Abundance on the Prevalence. Beni Suef Univ. J. Basic Appl. Sci. 2017, 6, 64–68. [Google Scholar] [CrossRef]
- Garcell, H.G.; Garcia, E.G.; Pueyo, P.V.; Martín, I.R.; Arias, A.V.; Alfonso Serrano, R.N. Outbreaks of Brucellosis Related to the Consumption of Unpasteurized Camel Milk. J. Infect. Public Health 2016, 9, 523–527. [Google Scholar] [CrossRef]
- ECDPC. Geographical Distribution of Cases of MERS-CoV in Saudi Arabia; ECDPC: Solna, Sweden, 2024. [Google Scholar]
- Newey, S. Mers Outbreak in Saudi Arabia Puts Health Experts on High Alert. Available online: https://www.telegraph.co.uk/global-health/science-and-disease/mers-outbreak-saudi-arabia-middle-east-respiratory-syndrome/ (accessed on 13 June 2024).
- WHO. Middle East Respiratory Syndrome Coronavirus—Saudi Arabia. Available online: https://www.who.int/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-cov) (accessed on 13 June 2024).
- Aleanizy, F.S.; Mohmed, N.; Alqahtani, F.Y.; El Hadi Mohamed, R.A. Outbreak of Middle East Respiratory Syndrome Coronavirus in Saudi Arabia: A Retrospective Study. BMC Infect. Dis. 2017, 17, 23. [Google Scholar] [CrossRef]
- Lee, G.-H.; Tan, B.-H.; Chi-Yuan Teo, E.; Lim, S.-G.; Dan, Y.-Y.; Wee, A.; Kim Aw, P.P.; Zhu, Y.; Hibberd, M.L.; Tan, C.-K.; et al. Chronic Infection with Camelid Hepatitis e Virus in a Liver Transplant Recipient Who Regularly Consumes Camel Meat and Milk. Gastroenterology 2016, 150, 355–357.e3. [Google Scholar] [CrossRef] [PubMed]
Country | Year | Pathogen(s) | Source(s) | Sample Size | Prevalence (%) | Detection Method | Reference |
---|---|---|---|---|---|---|---|
Egypt | 2019 | Pseudomonas aeruginosa | Meat | 100 | 8.0 | Biochemical identification by VITEK 2 and PCR confirmation | [32] |
Pseudomonas fluorescens | 2.0 | ||||||
Egypt | 2019 | Vancomycin-resistant Staphylococcus aureus (VRSA) | Meat | 200 | 14.5 | Culture-based detection, biochemical identification, and PCR confirmation | [33] |
Egypt | 2023 | Escherichia coli O157:H7 | Meat | 110 | 9.1 | Culture-based detection, biochemical and serological identification, and PCR confirmation | [34] |
Escherichia coli O55:H7 | 32.0 | ||||||
Egypt | 2023 | Extended Spectrum β-lactamase (ESBL) producing Escherichia coli | Meat | 50 | 8.0 | Culture-based detection, biochemical identification, and PCR confirmation. Double-Disc Synergy Test (DDST) for ESBL characterization | [35] |
Egypt | 2024 | Salmonella Enteritidis Salmonella Typhimurium Salmonella Virchow Salmonella Apeyeme | Meat, liver, kidney | 60 | 20.0 | Culture-based detection, biochemical and serological identification, and PCR confirmation | [36] |
Iran | 2019 | Acinetobacter baumanii | Meat | 95 | 2.3 | Culture-based detection and PCR confirmation | [37] |
Iran | 2020 | Staphylococcus aureus | Meat | 100 | 4.0 | Culture-based detection, biochemical identification, and PCR confirmation | [38] |
Libya | 2016 | Vibrio parahaemolyticus | Meat | 9 | 33.3 | Culture-based detection, PCR confirmation | [39] |
Egypt | 2024 | Salmonella spp. | Meat | 100 | 8.0 | Culture-based detection, biochemical identification, and PCR confirmation | [40] |
Staphylococcus aureus | 24.0 | ||||||
Escherichia coli | 14.0 | ||||||
Egypt | 2024 | Escherichia coli strains O17:H18; O128:H2, O119: H6, O103:H4, O145, O121:H7 | Meat | 60 | 10.0 | Culture-based detection, serological identification, and PCR confirmation | [41] |
Liver | 30.0 | ||||||
Kidney | 5.0 | ||||||
Saudi Arabia | 2015 | Escherichia coli O157 | Feces | 206 | 2.4 | Culture-based detection, biochemical identification, and PCR confirmation | [42] |
Hides | 2.9 | ||||||
Salmonella spp. | Feces | 23.2 | |||||
Hides | 67.6 | ||||||
Saudi Arabia | 2016 | Methicillin-resistant Staphylococcus aureus (MRSA) | Meat | 24 | 20.0 | Culture-based detection, biochemical identification, molecular characterization by StaphyType DNA microarray technology | [43] |
Methicillin-susceptible Staphylococcus aureus (MSSA) | 28.0 | ||||||
Saudi Arabia | 2020 | Listeria monocytogenes | Meat | 50 | 16.0 | Culture-based detection, biochemical identification and PCR confirmation | [44] |
Listeria seeligeri | 6.0 | ||||||
Listeria innocua | 2.0 | ||||||
Listeria welshimeri | 2.0 | ||||||
Listeria grayi | 1.0 | ||||||
Saudi Arabia | 2020 | Extended Spectrum β-lactamases (ESBL) producing Escherichia coli | Minced meat | 150 | 11.3 | Culture-based detection, biochemical identification by VITEK 2, and PCR confirmation | [45] |
Saudi Arabia | 2021 | Clostridium perfringens | Minced meat | 100 | 14.0 | Culture-based detection, biochemical identification by VITEK 2 | [46] |
Clostridium difficile | 4.0 | ||||||
Saudi Arabia | 2021 | Metallo-β-lactamases (MβLs) producing Pseudomonas spp. | Meat | 45 | 55.0 | Culture-based detection, biochemical identification | [47] |
Saudi Arabia | 2023 | Escherichia coli | Carcass | 40 | 100.0 | Culture-based detection, biochemical identification, and PCR confirmation | [48] |
Meat cuts | 70.0 | ||||||
Salmonella spp. | Carcass | 40.0 | |||||
Meat cuts | 40.0 |
Country | Year | Heavy Metal(s) a | Pesticide /Drug Residue b | Source(s) | Detection Method c | Reference |
---|---|---|---|---|---|---|
Egypt | 2015 | Pb, Cd, Cu, Zn | - | Muscles, serum, lungs, liver, kidney | AAS | [51] |
Egypt | 2015 | Pb, Cd, Cu, Al | Oxytetracycline | Muscles, kidney, and liver | Antibiotic residue detected by four-plate method using nutrient agar seeded with Bacillus subtilis and HPLC; Heavy metal detected by AAS | [52] |
Egypt | 2018 | Pb, Cd, Hg | - | Muscles, kidney, and liver | AAS | [52] |
Egypt | 2019 | - | Enrofloxacin, ciprofloxacin, tylosin, erythromycin, tetracycline, oxytetracycline, chlortetracycline, sulfamethazine and sulfaquinoxaline | Muscles, kidney, and liver | LC MS/MS | [53] |
Iraq | 2020 | As, Cd, Pb, Cr, Cu, Fe, Mn, Zn, and Co | - | Muscles, kidney, and liver | ICP–OES | [54] |
Iraq | 2021 | Pb, Cd, Zn, Cu, Co | - | Muscles, kidney, and liver | - | [55] |
Jordan | 2021 | - | DDT and its metabolites, HCH and its isomers, Heptachlor and Heptachlor epoxide, Aldrin, Dieldrin, Endrin, and HCB | Meat, liver, milk | GC (HP 5890) equipped with Ni electron capture detector | [56] |
Libya | 2015 | - | Oxytetracycline | Muscles, kidney, liver, and fat | LC MS | [57] |
Morocco | 2014 | Cd, Pb | - | Liver, lung, meat, heart, and kidney | ICP–AES | [58] |
Saudi Arabia | 2015 | - | DDT, DDE, DDD, DDA, Lindane, Dicofol | Muscles and liver of camels | GC/MS | [59] |
Saudi Arabia | 2017 | As, Cd, Cr, Pb | - | Meat | Coupled plasma mass spectrometry | [60] |
Saudi Arabia | 2019 | Cd, Pb, As | - | Muscles, kidney, and liver | ICP–OES | [61] |
Saudi Arabia | 2022 | Zn, Fe, Cu, Pb, Cd | - | Tissues, muscles, kidney, and liver; serum and hair | AAS | [62] |
Saudi Arabia | 2023 | Pb, Cd, Co | - | Meat, liver, young camels’ carcass tissues | ICP–OES equipped with a Meinhard Nebulizer type A2 | [63] |
Saudi Arabia | 2024 | As, Cr | - | Muscles, kidney, and liver | AAS used in conjunction with a (GFAAS) | [64] |
Country | Year | Epidemiological Study | Camel-Origin Zoonotic Disease | No. of Human Cases | No. of Hospitalizations | No. of Deaths | Suspected Transmission Source(s) | Reference |
---|---|---|---|---|---|---|---|---|
Bahrain | 2016 | Outbreak investigations | MERS-CoV | 1 | 1 | ND | Direct contact | [71] |
Oman | 2017–2022 | Outbreak investigations | MERS-CoV | 18 | 18 | ND | Direct contact | [71] |
Qatar | 2017–2022 | Outbreak investigations | MERS-CoV | 12 | 12 | ND | Direct contact | [71] |
United Arab Emirates | 2017–2022 | Outbreak investigations | MERS-CoV | 14 | 14 | 0 | Direct contact | [71] |
Algeria | 2014 | Outbreak investigations | MERS-CoV | 2 | 2 | ND * | Direct contact | [72] |
Egypt | 2014 | Outbreak investigations | MERS-CoV | 1 | 1 | ND | Direct contact | [72] |
Kuwait | 2014–2015 | Outbreak investigations | MERS-CoV | 4 | 4 | ND | Direct contact | [72] |
Oman | 2014–2016 | Outbreak investigations | MERS-CoV | 8 | 8 | ND | Direct contact | [72] |
Qatar | 2014–2016 | Outbreak investigations | MERS-CoV | 16 | 16 | ND | Direct contact | [72] |
Saudi Aribia | 2016 | Outbreak investigations | MERS-CoV | 318 | 318 | ND | Direct contact | [72] |
2015 | Outbreak investigations | MERS-CoV | 448 | 448 | ND | Direct contact | ||
2014 | Outbreak investigations | MERS-CoV | 566 | 566 | ND | Direct contact | [72] | |
Egypt | 2014–2015 | Cross-sectional study | Trypanosomiasis | ND | ND | ND | Meat | [73] |
Qatar | 2015 | Outbreak investigations | Brucellosis | 14 | 14 | ND | Unpasteurized camel milk | [74] |
United Arab Emirates | 2023–2024 | Outbreak investigations | MERS-CoV | 1 | 1 | ND | Direct contact | [75] |
Saudi Aribia | 2023–2024 | Outbreak investigations | MERS-CoV | 5 | 5 | ND | Direct contact | [75] |
2024 | Outbreak investigations | MERS-CoV | 3 | 3 | 1 | Unknown | [76] | |
2022–2023 | Outbreak investigations | MERS-CoV | 3 | 3 | 2 | Direct contact | [77] | |
2014–2015 | Outbreak investigations | MERS-CoV | ND | 190 | 69 | Direct contact | [78] | |
United Arab Emirates | 2016 | Case study | Hepatitis E infection | ND | ND | ND | Meat | [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, M.-Y.I.; Lakshmi, G.B.; Sodagari, H.; Habib, I. A One Health Perspective on Camel Meat Hygiene and Zoonoses: Insights from a Decade of Research in the Middle East. Vet. Sci. 2024, 11, 344. https://doi.org/10.3390/vetsci11080344
Mohamed M-YI, Lakshmi GB, Sodagari H, Habib I. A One Health Perspective on Camel Meat Hygiene and Zoonoses: Insights from a Decade of Research in the Middle East. Veterinary Sciences. 2024; 11(8):344. https://doi.org/10.3390/vetsci11080344
Chicago/Turabian StyleMohamed, Mohamed-Yousif Ibrahim, Glindya Bhagya Lakshmi, Hamidreza Sodagari, and Ihab Habib. 2024. "A One Health Perspective on Camel Meat Hygiene and Zoonoses: Insights from a Decade of Research in the Middle East" Veterinary Sciences 11, no. 8: 344. https://doi.org/10.3390/vetsci11080344
APA StyleMohamed, M. -Y. I., Lakshmi, G. B., Sodagari, H., & Habib, I. (2024). A One Health Perspective on Camel Meat Hygiene and Zoonoses: Insights from a Decade of Research in the Middle East. Veterinary Sciences, 11(8), 344. https://doi.org/10.3390/vetsci11080344