Multimodal Blockade of the Renin–Angiotensin System in the Treatment of Cancer in Dogs Has Mild Adverse Effects in Some Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Animals
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fyhrquist, F.; Saijonmaa, O. Renin-Angiotensin System Revisited. J. Int. Med. 2008, 264, 224–236. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Sun, Y.; Luo, R.; Lu, X.; Yang, B.; Yang, T. COX-2-Independent Activation of Renal (pro)Renin Receptor Contributes to DOCA-Salt Hypertension in Rats. Am. J. Physiol. Ren. Physiol. 2020, 319, F647–F653. [Google Scholar] [CrossRef] [PubMed]
- Neves, F.A.R.; Duncan, K.G.; Baxter, J.D. Cathepsin B Is a Prorenin Processing Enzyme. Hypertens 1996, 27, 514–517. [Google Scholar] [CrossRef] [PubMed]
- Marsh, A.C.; Gibson, K.J.; Wu, J.; Owens, P.C.; Owens, J.A.; Lumbers, E.R. Insulin-like Growth Factor I Alters Renal Function and Stimulates Renin Secretion in Late Gestation Fetal Sheep. J. Physiol. 2001, 530, 253. [Google Scholar] [CrossRef] [PubMed]
- Kilmister, E.J.; Tan, S.T. The Role of the Renin–Angiotensin System in the Cancer Stem Cell Niche. J. Histochem. Cytochem. 2021, 69, 835–847. [Google Scholar] [CrossRef] [PubMed]
- Sipahi, I.; Debanne, S.M.; Rowland, D.Y.; Simon, D.I.; Fang, J.C. Angiotensin-Receptor Blockade and Risk of Cancer: Meta-Analysis of Randomised Controlled Trials. Lancet Oncol. 2010, 11, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Hirata, A.; Ishikane, S.; Takahashi-Yanaga, F.; Arioka, M.; Okui, T.; Nojiri, C.; Sasaguri, T.; Nakashima, N. Increased Risk of Metastasis in Patients with Incidental Use of Renin-Angiotensin System Inhibitors: A Retrospective Analysis for Multiple Types of Cancer Based on Electronic Medical Records. Hypertens. Res. 2022, 45, 1869–1881. [Google Scholar] [CrossRef] [PubMed]
- Renziehausen, A.; Wang, H.; Rao, B.; Weir, L.; Nigro, C.L.; Lattanzio, L.; Merlano, M.; Vega-Rioja, A.; del Carmen Fernandez-Carranco, M.; Hajji, N.; et al. The Renin Angiotensin System (RAS) Mediates Bifunctional Growth Regulation in Melanoma and Is a Novel Target for Therapeutic Intervention. Oncogene 2018, 38, 2320–2336. [Google Scholar] [CrossRef] [PubMed]
- Drobni, Z.D.; Michielin, O.; Quinaglia, T.; Zlotoff, D.A.; Zubiri, L.; Gilman, H.K.; Supraja, S.; Merkely, B.; Muller, V.; Sullivan, R.J.; et al. Renin–Angiotensin–Aldosterone System Inhibitors and Survival in Patients with Hypertension Treated with Immune Checkpoint Inhibitors. Eur. J. Cancer 2022, 163, 108–118. [Google Scholar] [CrossRef]
- Almutlaq, M.; Alamro, A.A.; Alamri, H.S.; Alghamdi, A.A.; Barhoumi, T. The Effect of Local Renin Angiotensin System in the Common Types of Cancer. Front. Endocrinol. 2021, 12, 736361. [Google Scholar] [CrossRef]
- O’Rawe, M.; Wickremesekera, A.C.; Pandey, R.; Young, D.; Sim, D.; FitzJohn, T.; Burgess, C.; Kaye, A.H.; Tan, S.T. Treatment of Glioblastoma with Re-Purposed Renin-Angiotensin System Modulators: Results of a Phase I Clinical Trial. J. Clin. Neurosci. 2022, 95, 48–54. [Google Scholar] [CrossRef]
- Balansard, P.; Chabrillat, Y.; Paulin, R.; Libes, M.; Gerard, R. Effect of Atenolol, a New Cardioselective Beta-Blocker, on Plasma Renin Activity in Treatment of Hypertension. Available online: https://pubmed.ncbi.nlm.nih.gov/304291/ (accessed on 6 March 2024).
- Winer, N.; Mason, W.D.; Carter, C.H.; Willoughby, T.L.; Kochak, G.M.; Cohen, I.; Bell, R.M.S. Effects of Atenolol on Blood Pressure, Heart Rate, Renin, and Norepinephrine during Exercise. Clin. Pharm. Thera 1979, 26, 315–325. [Google Scholar] [CrossRef]
- Schattenkirchner, M. Meloxicam: A Selective COX-2 Inhibitor Non-Steroidal Anti-Inflammatory Drug. Expert. Opin. Investig. Drugs 1997, 6, 321–334. [Google Scholar] [CrossRef] [PubMed]
- Ravish, I.; Raghav, N. Curcumin as Inhibitor of Mammalian Cathepsin B, Cathepsin H, Acid Phosphatase and Alkaline Phosphatase: A Correlation with Pharmacological Activities. Med. Chem. Res. 2014, 23, 2847–2855. [Google Scholar]
- Tosca, L.; Ramé, C.; Chabrolle, C.; Tesseraud, S.; Dupont, J. Metformin Decreases IGF1-Induced Cell Proliferation and Protein Synthesis through AMP-Activated Protein Kinase in Cultured Bovine Granulosa Cells. Reproduction 2010, 139, 409–418. [Google Scholar] [CrossRef]
- Sarfstein, R.; Friedman, Y.; Attias-Geva, Z.; Fishman, A.; Bruchim, I.; Werner, H. Metformin Downregulates the Insulin/IGF-I Signaling Pathway and Inhibits Different Uterine Serous Carcinoma (USC) Cells Proliferation and Migration in P53-Dependent or -Independent Manners. PLoS ONE 2013, 8, e61537. [Google Scholar] [CrossRef]
- Bell, J. Benazepril: A New ACE Inhibitor. ANNA J. 1993, 20, 187–188. [Google Scholar]
- Öner-İyidoğan, Y.; Seyithanoğlu, M.; Tanrıkulu-Küçük, S.; Koçak, H.; Beyhan-Özdaş, Ş.; Koçak-Toker, N. The Effect of Dietary Curcumin on Hepatic Chymase Activity and Serum Fetuin-A Levels in Rats Fed on a High-Fat Diet. J. Food Biochem. 2017, 41, e12347. [Google Scholar] [CrossRef]
- Giuliano, A.; Horta, R.S.; Vieira, R.A.M.; Hume, K.R.; Dobson, J. Repurposing Drugs in Small Animal Oncology. Animals 2023, 13, 139. [Google Scholar] [CrossRef] [PubMed]
- Regan, D.P.; Chow, L.; Das, S.; Haines, L.; Palmer, E.; Kurihara, J.N.; Coy, J.W.; Mathias, A.; Thamm, D.H.; Gustafson, D.L.; et al. Losartan Blocks Osteosarcoma-Elicited Monocyte Recruitment, and Combined with the Kinase Inhibitor Toceranib, Exerts Significant Clinical Benefit in Canine Metastatic Osteosarcoma. Clin. Cancer Res. 2022, 28, 662–676. [Google Scholar]
- Klose, K.; Packeiser, E.M.; Müller, P.; Granados-Soler, J.L.; Schille, J.T.; Goericke-Pesch, S.; Kietzmann, M.; Escobar, H.M.; Nolte, I. Metformin and Sodium Dichloroacetate Effects on Proliferation, Apoptosis, and Metabolic Activity Tested Alone and in Combination in a Canine Prostate and a Bladder Cancer Cell Line. PLoS ONE 2021, 16, e0257403. [Google Scholar] [CrossRef]
- Saeki, K.; Watanabe, M.; Tsuboi, M.; Sugano, S.; Yoshitake, R.; Tanaka, Y.; Ong, S.M.; Saito, T.; Matsumoto, K.; Fujita, N.; et al. Anti-Tumour Effect of Metformin in Canine Mammary Gland Tumour Cells. Vet. J. 2015, 205, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Knapp, D.W.; Richardson, R.C.; Bottoms, G.D.; Teclaw, R.; Chan, T.C.K. Phase I Trial of Piroxicam in 62 Dogs Bearing Naturally Occurring Tumors. Cancer Chemother. Pharmacol. 1992, 29, 214–218. [Google Scholar]
- Knapp, D.W.; Richardson, R.C.; Chan, T.C.K.; Bottoms, G.D.; Widmer, W.R.; DeNicola, D.B.; Teclaw, R.; Bonney, P.L.; Kuczek, T. Piroxicam Therapy in 34 Dogs with Transitional Cell Carcinoma of the Urinary Bladder. J. Vet. Int. Med. 1994, 8, 273–278. [Google Scholar] [CrossRef] [PubMed]
- McMillan, S.K.; Boria, P.; Moore, G.E.; Widmer, W.R.; Bonney, P.L.; Knapp, D.W. Antitumor Effects of Deracoxib Treatment in 26 Dogs with Transitional Cell Carcinoma of the Urinary Bladder. J. Am. Vet. Med. Assoc. 2011, 239, 1084–1089. [Google Scholar] [CrossRef]
- Gedon, J.; Kehl, A.; Aupperle-Lellbach, H.; von Bomhard, W.; Schmidt, J.M. BRAF Mutation Status and Its Prognostic Significance in 79 Canine Urothelial Carcinomas: A Retrospective Study (2006–2019). Vet. Comp. Oncol. 2022, 20, 449–457. [Google Scholar] [CrossRef]
- Knapp, D.W.; Henry, C.J.; Widmer, W.R.; Tan, K.M.; Moore, G.E.; Ramos-Vara, J.A.; Lucroy, M.D.; Greenberg, C.B.; Greene, S.N.; Abbo, A.H.; et al. Randomized Trial of Cisplatin versus Firocoxib versus Cisplatin/Firocoxib in Dogs with Transitional Cell Carcinoma of the Urinary Bladder. J. Vet. Int. Med. 2013, 27, 126–133. [Google Scholar] [CrossRef] [PubMed]
- la Ciriano Cerdà, E.; Zajc, A.L.; Finotello, R.; Macdonald, K.; Lyseight, F.; Van Den Steen, N.; Sanchez Gonzalez, K.; Marrington, M.; Grant, J. Meloxicam in Combination with Mitoxantrone or Vinblastine as First-Line Treatment for Non-Resectable Urothelial Cell Carcinoma in Dogs. Vet. Sci. 2023, 10, 529. [Google Scholar]
- London, C.A.; Gardner, H.L.; Mathie, T.; Stingle, N.; Portela, R.; Pennell, M.L.; Clifford, C.A.; Rosenberg, M.P.; Vail, D.M.; Williams, L.E.; et al. Impact of Toceranib/Piroxicam/Cyclophosphamide Maintenance Therapy on Outcome of Dogs with Appendicular Osteosarcoma Following Amputation and Carboplatin Chemotherapy: A Multi-Institutional Study. PLoS ONE 2015, 10, e0124889. [Google Scholar] [CrossRef]
- Schmidt, B.R.; Glickman, N.W.; DeNicola, D.B.; De Gortari, A.E.; Knapp, D.W. Evaluation of Piroxicam for the Treatment of Oral Squamous Cell Carcinoma in Dogs. J. Am. Vet. Med. Assoc. 2001, 218, 1783–1786. [Google Scholar] [CrossRef]
- Lana, S.; U’ren, L.; Plaza, S.; Elmslie, R.; Gustafson, D.; Morley, P.; Dow, S. Continuous Low-Dose Oral Chemotherapy for Adjuvant Therapy of Splenic Hemangiosarcoma in Dogs. J. Vet. Int. Med. 2007, 21, 764–769. [Google Scholar] [CrossRef]
- Elmslie, R.E.; Glawe, P.; Dow, S.W. Metronomic Therapy with Cyclophosphamide and Piroxicam Effectively Delays Tumor Recurrence in Dogs with Incompletely Resected Soft Tissue Sarcomas. J. Vet. Int. Med. 2008, 22, 1373–1379. [Google Scholar] [CrossRef] [PubMed]
- Mutsaers, A.J.; Glickman, N.W.; DeNicola, D.B.; Widmer, W.R.; Bonney, P.L.; Hahn, K.A.; Knapp, D.W. Evaluation of Treatment with Doxorubicin and Piroxicam or Doxorubicin Alone for Multicentric Lymphoma in Dogs. J. Am. Vet. Med. Assoc. 2002, 220, 1813–1817. [Google Scholar] [CrossRef]
- Boria, P.A.; Murry, D.J.; Bennett, P.F.; Glickman, N.W.; Snyder, P.W.; Merkel, B.L.; Schlittler, D.L.; Mutsaers, A.J.; Thomas, R.M.; Knapp, D.W. Evaluation of Cisplatin Combined with Piroxicam for the Treatment of Oral Malignant Melanoma and Oral Squamous Cell Carcinoma in Dogs. J. Am. Vet. Med. Assoc. 2004, 224, 388–394. [Google Scholar] [CrossRef]
- Withers, S.S.; York, D.; Johnson, E.; Al-Nadaf, S.; Skorupski, K.A.; Rodriguez, C.O.; Burton, J.H.; Guerrero, T.; Sein, K.; Wittenburg, L.; et al. In Vitro and in Vivo Activity of Liposome Encapsulated Curcumin for Naturally Occurring Canine Cancers. Vet. Comp. Oncol. 2018, 16, 571. [Google Scholar] [CrossRef]
- Levine, C.B.; Bayle, J.; Biourge, V.; Wakshlag, J.J. Cellular Effects of a Turmeric Root and Rosemary Leaf Extract on Canine Neoplastic Cell Lines. BMC Vet. Res. 2017, 13, 388. [Google Scholar] [CrossRef]
- Munday, J.S.; Odom, T.; Dittmer, K.E.; Wetzel, S.; Hillmer, K.; Tan, S.T. Multimodal Blockade of the Renin-Angiotensin System Is Safe and Is a Potential Cancer Treatment for Cats. Vet. Sci. 2022, 2022, 411. [Google Scholar] [CrossRef] [PubMed]
- Miceli, D.D.; Vidal, P.N.; Batter, M.F.C.; Pignataro, O.; Castillo, V.A. Metformin Reduces Insulin Resistance and the Tendency toward Hyperglycaemia and Dyslipidaemia in Dogs with Hyperadrenocorticism. Open Vet. J. 2018, 8, 193. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, A.K.; Atherton, M.; Bentley, R.T.; Boudreau, C.E.; Burton, J.H.; Curran, K.M.; Dow, S.; Giuffrida, M.A.; Kellihan, H.B.; Mason, N.J.; et al. Veterinary Cooperative Oncology Group—Common Terminology Criteria for Adverse Events (VCOG-CTCAE v2) Following Investigational Therapy in Dogs and Cats. Vet. Comp. Oncol. 2021, 19, 311–352. [Google Scholar] [CrossRef]
- Spangler, W.L.; Kass, P.H. The Histologic and Epidemiologic Bases for Prognostic Considerations in Canine Melanocytic Neoplasia. Vet. Pathol. 2006, 43, 136–149. [Google Scholar] [CrossRef]
- Loukopoulos, P.; Robinson, W.F. Clinicopathological Relevance of Tumour Grading in Canine Osteosarcoma. J. Comp. Pathol. 2007, 136, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Kirpensteijn, J.; Kik, M.; Rutteman, G.R.; Teske, E. Prognostic Significance of a New Histologic Grading System for Canine Osteosarcoma. Vet. Pathol. 2002, 39, 240–246. [Google Scholar] [CrossRef]
- Acierno, M.J.; Brown, S.; Coleman, A.E.; Jepson, R.E.; Papich, M.; Stepien, R.L.; Syme, H.M. ACVIM Consensus Statement: Guidelines for the Identification, Evaluation, and Management of Systemic Hypertension in Dogs and Cats. J. Vet. Intern. Med. 2018, 32, 1803–1822. [Google Scholar] [CrossRef] [PubMed]
- Surman, S.; Couto, C.G.; Dibartola, S.P.; Chew, D.J. Arterial Blood Pressure, Proteinuria, and Renal Histopathology in Clinically Healthy Retired Racing Greyhounds. J. Vet. Intern. Med. 2012, 26, 1320–1329. [Google Scholar] [CrossRef]
- Bodey, A.R.; Michell, A.R. Epidemiological Study of Blood Pressure in Domestic Dogs. J. Small Anim. Pract. 1996, 37, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.L.; Prowle, J.; Licari, E.; Uchino, S.; Bellomo, R. Changes in Blood Pressure before the Development of Nosocomial Acute Kidney Injury. Nephrol. Dial. Transplant. 2009, 24, 504–511. [Google Scholar] [CrossRef]
- Kirchheim, H.R.; Ehmke, H.; Hackenthal, E.; Löwe, W.; Persson, P. Autoregulation of Renal Blood Flow, Glomerular Filtration Rate and Renin Release in Conscious Dogs. Pflug. Arch. Eur. 1987, 410, 441–449. [Google Scholar] [CrossRef]
- Liffman, R.; Johnstone, T.; Tennent-Brown, B.; Hepworth, G.; Courtman, N. Establishment of Reference Intervals for Serum Symmetric Dimethylarginine in Adult Nonracing Greyhounds. Vet. Clin. Pathol. 2018, 47, 458–463. [Google Scholar] [CrossRef]
- Couto, C.G.; Murphy, R.; Coyne, M.; Drake, C. Serum Symmetric Dimethylarginine Concentration in Greyhound Pups and Adults. Top. Companion Anim. Med. 2021, 45, 100558. [Google Scholar] [CrossRef]
- Coyne, M.J.; Drake, C.; McCrann, D.J.; Kincaid, D. The Association between Symmetric Dimethylarginine Concentrations and Various Neoplasms in Dogs and Cats. Vet. Comp. Oncol. 2022, 20, 846–853. [Google Scholar] [CrossRef]
- Holtz, A.G.; Lowe, T.L.; Aoki, Y.; Kubota, Y.; Hoffman, R.M.; Clarke, S.G. Asymmetric and Symmetric Protein Arginine Methylation in Methionine-Addicted Human Cancer Cells. PLoS ONE 2023, 18, e0296291. [Google Scholar] [CrossRef] [PubMed]
- Johnston, C.A.; MacDonald Dickinson, V.S.; Alcorn, J.; Gaunt, M.C. Pharmacokinetics and Oral Bioavailability of Metformin Hydrochloride in Healthy Mixed-Breed Dogs. Am. J. Vet. Res. 2017, 78, 1193–1199. [Google Scholar] [CrossRef] [PubMed]
- Bowles, D.B.; Robson, M.C.; Galloway, P.E.; Walker, L. Owner’s Perception of Carboplatin in Conjunction with Other Palliative Treatments for Cancer Therapy. J. Small Anim. Pract. 2010, 51, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Saam, D.E.; Liptak, J.M.; Stalker, M.J.; Chun, R. Predictors of Outcome in Dogs Treated with Adjuvant Carboplatin for Appendicular Osteosarcoma: 65 Cases (1996–2006). J. Am. Vet. Med. Assoc. 2011, 238, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Spodnick, G.J.; Berg, J.; Rand, W.M.; Schelling, S.H.; Couto, G.; Harvey, H.J.; Henderson, R.A.; MacEwen, G.; Mauldin, N.; McCaw, D.L.; et al. Prognosis for Dogs with Appendicular Osteosarcoma Treated by Amputation Alone: 162 Cases (1978–1988). J. Am. Vet. Med. Assoc. 1992, 200, 995–999. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Zhang, G.; Hou, Y.; Chen, J.; Yin, Y. Elemene Inhibits Osteosarcoma Growth by Suppressing the Renin-angiotensin System Signaling Pathway. Mol. Med. Rep. 2018, 17, 1022–1030. [Google Scholar] [CrossRef]
- Barter, L.S.; Maddison, J.E.; Watson, A.D.J. Comparison of Methods to Assess Dog Owners’ Therapeutic Compliance. Aust. Vet. J. 1996, 74, 443–446. [Google Scholar] [CrossRef]
Week | Meloxicam | Curcumin | Metformin | Atenolol | Benazepril |
---|---|---|---|---|---|
0 | 0.1 mg/kg q 24 h | Half label for wgt q 12 h | 2.5 mg/kg q 12 h | 0.125 mg/kg q 12 h | Not given |
1 | 0.1 mg/kg q 24 h | Full label for wgt q 12 h | 5 mg/kg q 12 h | 0.25 mg/kg q 12 h | 0.125 mg/kg q 24 h |
2 | 0.1 mg/kg q 24 h | Full label for wgt q 12 h | 7.5 mg/kg q 12 h | 0.25 mg/kg q 12 h | 0.25 mg/kg q 24 h |
3+ | 0.1 mg/kg q 24 h | Full label for wgt q 12 h | 10 mg/kg q 12 h | 0.25 mg/kg q 12 h | 0.25 mg/kg q 24 h |
Week | Physical Exam | Blood Pressure | CBC/Biochem 1 |
---|---|---|---|
0 | X | X | X |
1 | X | X | X |
2 | X | X | n.d. |
3 | X | X | X |
6 | X | X | X |
9 | X | X | X |
12 | X | X | X |
3 monthly thereafter | X | X | X |
Case | Age, Sex, Breed | Weight | Diagnosis | Surgery | Other Medications | Weeks | Outcome |
---|---|---|---|---|---|---|---|
1 | 11 yo FS Greyhound | 25 kg | Osteosarcoma femur | Hind quarter amputation | None administered | 10 | Euthanized |
2 | 12 yo MN Terrier cross | 10 kg | Osteosarcoma scapula | Fore quarter amputation | None administered | 3 | Euthanized |
3 | 5 yo MN Greyhound | 32 kg | Osteosarcoma radius | Fore quarter amputation | Gabapentin, amoxicillin–clavulanic acid (week 0–4) | 17 | Euthanized |
4 | 5 yo MN Rottweiler | 38 kg | Osteosarcoma radius | Fore quarter amputation | Carboplatin, gabapentin, acetaminophen, famotidine, sucralfate | 64 | Still alive at end of trial |
5 | 8 yo F Heading dog | 21 kg | Oral malignant melanoma | None | Gabapentin, amantadine | 26 | Euthanized |
Case | Results of Postmortem Examination |
---|---|
1 | Fractured humerus due to osteosarcoma, tumor recurrence at hind limb amputation site |
2 | Tumor recurrence at amputation site, invasion into spinal column and thoracic cavity, hemothorax, lung metastases |
3 | Tumor recurrence at amputation site and metastases to lung, liver, brain, heart, endocardiosis |
5 | Extensive invasion through palate into nasal cavity, metastases to mandibular, retropharyngeal, popliteal, inguinal, and mediastinal lymph nodes, and kidney, liver, bone, and lung |
Case | Week | Mean SP/DP (MAP) | HCT | Creat | SDMA | ALT | ALP |
---|---|---|---|---|---|---|---|
1 | 0 | 200/98 (153) | 0.6 | 129 | 11 | 49 | 45 |
1 | 137/81 (128) | 0.59 | 109 | 11 | 63 | 42 | |
2 | 178/113 (134) | n.d. | n.d. | n.d. | n.d. | n.d. | |
3 | 208/138 (166) | 0.61 | 117 | 9 | 27 | 29 | |
6 | 173/135 (135) | 0.62 | 115 | 10 | 38 | 48 | |
9 | 167/116 (136) | 0.63 | 121 | 11 | 46 | 61 | |
2 | 0 | 207/121 (151) | 0.40 | 62 | 15 | 101 H | 256 H |
1 | 168/84 (112) | 0.38 | 50 | 8 | 79 H | 336 H | |
2 | 138/75 (95) | n.d. | n.d. | n.d. | n.d. | n.d. | |
3 | 150/81 (103) | n.d. | n.d. | n.d. | n.d. | n.d. | |
3 | 0 | n.d. | 0.53 | 117 | 9 | 30 | 42 |
1 | 121 (SP) | 0.58 | 109 | 10 | 35 | 26 | |
2 | 120 (SP) | 0.57 | 95 | 21 H | 33 | 30 | |
3 | n.d. | 0.55 | 134 | 11 | 30 | 41 | |
6 | 173 (SP) | 0.54 | 121 | 12 | 26 L | 37 | |
9 | 186 (SP) | 0.56 | 118 | 13 | 27 L | 40 | |
12 | 150 (SP) | 0.53 | 126 | 16 H | 35 | 57 | |
4 | 0 | 138/70 (97) | 0.44 | 86 | 6 | 22 | 30 |
1 | 142/75 (102) | 0.46 | 84 | 5 | 31 | 39 | |
2 | 127/68 (92) | n.d. | n.d. | n.d. | n.d. | n.d. | |
3 | 130/76 (97) | 0.45 | 102 | 13 | 22 | 46 | |
6 | 130/79 (100) | 0.5 | 99 | 6 | 32 | 48 | |
9 | 126/66 (86) | 0.48 | 80 | 9 | 32 | 44 | |
12 | 127/80 (96) | 0.42 | 96 | 9 | 16 | 41 | |
5 | 0 | 227/122 (156) | 0.41 | 66 | 12 | 46 | 34 |
1 | 200/115 (143) | 0.45 | 68 | 10 | 45 | 41 | |
2 | 206/126 (154) | n.d. | n.d. | n.d. | n.d. | n.d. | |
3 | 247/109 (160) | n.d. | n.d. | n.d. | n.d. | n.d. | |
6 | 189/122 (144) | 0.42 | 58 | 10 | 45 | 51 | |
9 | 141/105 (119) | 0.39 | 59 | 9 | 32 | 71 | |
12 | 192/138 (156) | 0.34 | 52 L | 9 | 37 | 54 |
Case | Pre/Post Trial | Tumor Subtype | Grade A 1 | Grade B 2 | Mitoses in 2.37 mm2 |
---|---|---|---|---|---|
1 | Pre | Osteoblastic productive | n.d. | n.d. | 46 |
Postmortem | Osteoblastic productive | I | I | 11 | |
2 | Pre | Osteoblastic productive | III | II | 36 |
Postmortem | Osteoblastic productive | III | II | 36 | |
3 | Pre | Osteoblastic productive | II | II | 21 |
Postmortem | Osteoblastic productive | II | II | 12 | |
4 | Pre | Osteoblastic productive | n.d. | n.d. | 26 |
5 | Pre | Epitheloid malignant melanoma | n.a. | n.a. | 28 |
Postmortem | Epitheloid malignant melanoma | n.a. | n.a. | 42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dittmer, K.E.; Wetzel, S.; Odom, T.; Munday, J.S.; Flatt, E.A.; Wilson, I.J.; Hughes, C.; Tan, S.T. Multimodal Blockade of the Renin–Angiotensin System in the Treatment of Cancer in Dogs Has Mild Adverse Effects in Some Dogs. Vet. Sci. 2024, 11, 275. https://doi.org/10.3390/vetsci11060275
Dittmer KE, Wetzel S, Odom T, Munday JS, Flatt EA, Wilson IJ, Hughes C, Tan ST. Multimodal Blockade of the Renin–Angiotensin System in the Treatment of Cancer in Dogs Has Mild Adverse Effects in Some Dogs. Veterinary Sciences. 2024; 11(6):275. https://doi.org/10.3390/vetsci11060275
Chicago/Turabian StyleDittmer, Keren E., Sarah Wetzel, Thomas Odom, John S. Munday, Elizabeth A. Flatt, Ingrid J. Wilson, Catherine Hughes, and Swee T. Tan. 2024. "Multimodal Blockade of the Renin–Angiotensin System in the Treatment of Cancer in Dogs Has Mild Adverse Effects in Some Dogs" Veterinary Sciences 11, no. 6: 275. https://doi.org/10.3390/vetsci11060275
APA StyleDittmer, K. E., Wetzel, S., Odom, T., Munday, J. S., Flatt, E. A., Wilson, I. J., Hughes, C., & Tan, S. T. (2024). Multimodal Blockade of the Renin–Angiotensin System in the Treatment of Cancer in Dogs Has Mild Adverse Effects in Some Dogs. Veterinary Sciences, 11(6), 275. https://doi.org/10.3390/vetsci11060275