A New Biosynthetic 6-Phytase Added at 500 Phytase Unit/kg Diet Improves Growth Performance, Bone Mineralization, and Nutrient Digestibility and Retention in Weaned Piglets and Growing–Finishing Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Housing, Experimental Design, and Sampling
2.1.1. Experiment 1—Weaned Piglets
2.1.2. Experiment 2—Growing–Finishing Pigs
2.2. Chemical Analysis
2.3. Calculations and Statistical Analysis
3. Results
3.1. Experimental Diets
3.2. Experiment 1—Nursery Piglets
3.3. Experiment 2—Growing–Finishing Pigs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vasudevan, U.M.; Jaiswal, A.K.; Krishna, S.; Pandey, A. Thermostable phytase in feed and fuel industries. Bioresour. Technol. 2019, 278, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Ahluwalia, O.; Tripathi, A.D.; Singh, G.; Arya, S.K. Phytases and their pharmaceutical applications: Mini-review. Biocatal. Agric. Biotechnol. 2020, 23, 101439. [Google Scholar] [CrossRef]
- Gessler, N.N.; Serdyuk, E.G.; Isakova, E.P.; Deryabina, Y.I. Phytases and the prospects for their application (Review). Appl. Biochem. Microbiol. 2018, 54, 352–360. [Google Scholar] [CrossRef]
- Li, Q.; Lu, J.; Zhang, G.; Liu, S.; Zhou, J.; Du, G.; Chen, J. Recent advances in the development of Aspergillus for protein production. Bioresour. Technol. 2022, 348, 126768. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.-Z.; Zhang, Y.-H.; Lu, W.-L.; Hu, M.-Q.; Wang, W.; Liang, A.-H. Phytases: Crystal structures, protein engineering and potential biotechnological applications. J. Appl. Microbiol. 2012, 112, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Handa, V.; Sharma, D.; Kaur, A.; Arya, S.K. Biotechnological applications of microbial phytase and phytic acid in food and feed industries. Biocatal. Agric. Biotechnol. 2020, 25, 101600. [Google Scholar] [CrossRef]
- Rizwanuddin, S.; Kumar, V.; Naik, B.; Singh, P.; Mishra, S.; Rustagi, S.; Kumar, V. Microbial phytase: Their sources, production, and role in the enhancement of nutritional aspects of food and feed additives. J. Agric. Food Res. 2023, 12, 100559. [Google Scholar] [CrossRef]
- Cosgrove, D.; Irving, C. Inositol Phosphates: Their Chemistry, Biochemistry and Physiology; Elsevier Scientific: Amsterdam, NL, USA, 1980. [Google Scholar]
- Kumar, V.; Sinha, A.K.; Makkar, H.P.S.; Becker, K. Dietary roles of phytate and phytase in human nutrition: A review. Food Chem. 2010, 120, 945–959. [Google Scholar] [CrossRef]
- Selle, P.H.; Marcelline, S.P.; Chrystal, P.V.; Liu, S.Y. The contribution of phytate-degrading enzymes to chicken-meat production. Animals 2023, 13, 603. [Google Scholar] [CrossRef]
- Cozannet, P.; Jlali, M.; Moore, D.; Archibeque, M.; Preynat, A. Evaluation of phytase dose effect on performance, bone mineralization, and prececal phosphorus digestibility in broilers fed diets with varying metabolizable energy, digestible amino acids, and available phosphorus concentration. Poult. Sci. 2023, 102, 102755. [Google Scholar] [CrossRef]
- Jlali, M.; Hincelin, C.; Gracia, M.I.; Khattak, F.; Francesch, M.; Rougier, T.; Cozannet, P.; Cano López, G.; Ceccantini, M.; Yavuz, B.; et al. A novel bacterial 6-phytase improves growth performance, tibia mineralization and precaecal digestibility of phosphorus in broilers: Data from four independent performance trials. Agriculture 2023, 13, 1507. [Google Scholar] [CrossRef]
- Jlali, M.; Kidd, M.T.; Cozannet, P.; Yavuz, B.; Preynat, A. Efficacy of a new biosynthetic 6-phytase in broilers on phosphorus balance and growth efficiency. Anim. Feed. Sci. Technol. 2024, 309, 115886. [Google Scholar] [CrossRef]
- FEDNA. Necesidades Nutricionales Para Ganado Porcino: Normas FEDNA; de Blas, C., Gasa, J., Mateos, G.G., Eds.; Fundación Española para el Desarrollo de la Nutrición Animal: Madrid, Spain, 2013. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 21st ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2019. [Google Scholar]
- Haug, W.; Lantzsch, H.-J. Sensitive method for the rapid determination of phytate in cereals and cereal products. J. Sci. Food Agric. 1983, 34, 1423–1426. [Google Scholar] [CrossRef]
- ISO Standard 300242; Animal Feeding Stuffs-Determination of phytase Activity. International Organization for Standardization: Geneva, Switzerland, 2009.
- Selle, P.H.; Ravindran, V. Microbial phytase in poultry nutrition. Anim. Feed. Sci. Technol. 2007, 135, 1–41. [Google Scholar] [CrossRef]
- Torrallardona, D.; Ader, P. Effects of a novel 6-phytase (EC 3.1. 3.26) on performance, phosphorus and calcium digestibility, and bone mineralization in weaned piglets. J. Anim. Sci. 2016, 94, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Dersjant-Li, Y.; Wealleans, A.L.; Barnard, L.P.; Lane, S. Effect of increasing Buttiauxella phytase dose on nutrient digestibility and performance in weaned piglets fed corn or wheat-based diets. Anim. Feed. Sci. Technol. 2017, 234, 101–109. [Google Scholar] [CrossRef]
- She, Y.; Yanhong, Y.; González-Vega, J.C.; Stein, H.H. Effects of graded levels of an Escherichia coli phytase on growth performance, apparent total tract digestibility of phosphorus, and on bone parameters of weanling pigs fed phosphorus-deficient corn-soybean meal-based diets. Anim. Feed. Sci. Technol. 2017, 232, 102–109. [Google Scholar] [CrossRef]
- Blavi, L.; Munoz, C.J.; Broomhead, J.N.; Stein, H.H. Effects of a novel corn-expressed E. Coli phytase on digestibility of calcium and phosphorous, growth performance, and bone ash in young growing pigs. J. Anim. Sci. 2019, 97, 3390–3398. [Google Scholar] [CrossRef]
- Lee, S.A.; Lagos, L.V.; Bedford, M.R.; Stein, H.H. Quantities of ash, Ca, and P in metacarpals, metatarsals, and tibia are better correlated with total body bone ash in growing pigs than ash, Ca, and P in other bones. J. Anim. Sci. 2021, 99, skab149. [Google Scholar] [CrossRef]
- Velayudhan, D.E.; Gracia, M.; Casabuena Rincón, O.; Marchal, L.; Dersjant-Li, Y. Effect of a novel consensus bacterial 6-phytase variant in grower pigs fed corn-soybean meal-based diets formulated with a full nutrient matrix and no added inorganic phosphorus. J. Anim. Sci. 2021, 99, skab176. [Google Scholar] [CrossRef]
- Babatunde, O.O.; Adeola, O. A time-series effect of phytase supplementation on phosphorus utilization in growing and finishing pigs fed a low-phosphorus diet. J. Anim. Sci. 2022, 100, skab350. [Google Scholar] [CrossRef] [PubMed]
- González-Vega, J.C.; Stein, H.H. Invited Review – Calcium digestibility and metabolism in pigs. Asian-Australas. J. Anim. Sci. 2014, 27, 1–9. [Google Scholar] [CrossRef]
- Lautrou, M.; Narcy, A.; Dourmad, J.-Y.; Pomar, C.; Schmidely, P.; Létourneau-Montminy, M.-P. Dietary phosphorus and calcium utilization in growing pigs: Requirements and improvements. Front. Vet. Sci. 2021, 8, 734365. [Google Scholar] [CrossRef] [PubMed]
- Zhai, H.; Adeola, O.; Liu, J. Phosphorus nutrition of growing pigs. Anim. Nutr. 2022, 9, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Woyengo, T.A.; Nørgaard, J.A.; van der Heide, M.E.; Nielsen, T.S. Calcium and phosphorus digestibility in rock- and bone-derived calcium phosphates for pigs and poultry: A review. Anim. Feed. Sci. Technol. 2022, 294, 115509. [Google Scholar] [CrossRef]
- Dersjant-Li, Y.; Plumstead, P.; Awati, A.; Remus, J. Productive performance of commercial growing and finishing pigs supplemented with a Buttiauxella phytase as a total replacement of inorganic phosphate. Anim. Nutr. 2018, 4, 351–357. [Google Scholar] [CrossRef]
- Dersjant-Li, Y.; Villca, B.; Sewalt, V.; Keij, A.; Marchal, L.; Velayudhan, D.E.; Sorg, R.A.; Christensen, T.; Mejldal, R.; Nikolaev, I.; et al. Functionality of a next generation biosynthetic bacterial 6-phytase in enhancing phosphorus availability to weaned piglets fed a corn-soybean meal-based diets without added inorganic phosphate. Anim. Nutr. 2020, 6, 24–30. [Google Scholar] [CrossRef] [PubMed]
- De Cuyper, C.; Nollet, L.; Aluwé, M.; De Boever, J.; Douidah, L.; Vanderbeke, E.; Outchkourov, N.; Petkov, S.; Millet, S. Effect of supplementing phytase on piglet performance, nutrient digestibility and bone mineralization. J. Appl. Anim. Nutr. 2020, 8, 3–10. [Google Scholar] [CrossRef]
- Kiarie, E.G.; Song, X.; Lee, J.; Zhu, C. Efficacy of enhanced Escherichia coli phytase on growth performance, bone quality, nutrient digestibility, and metabolism in nursery pigs fed corn-soybean meal diet low in calcium and digestible phosphorus. Transl. Anim. Sci. 2022, 6, txac020. [Google Scholar] [CrossRef]
- Zhai, H.; Bergstrom, J.; Zhang, J.; Dong, W.; Wang, Z.; Stamatopoulos, K.; Cowieson, A.J. The effects of concurrent increases in supplementation of calcium and phytase on growth performance, balance of Ca and P, and bone mineralization in nursery pigs. Transl. Anim. Sci. 2023, 7, txad122. [Google Scholar] [CrossRef]
- Adedokun, S.A.; Owusu-Asiedu, A.; Ragland, D.; Plumstead, P.; Adeola, O. The efficacy of a new 6-phytase obtained from Buttiauxella spp. expressed in Trichoderma reesei on digestibility of amino acids, energy, and nutrients in pigs fed a diet based on corn, soybean meal, wheat middlings, and corn distillers’ dried grains with solubles. J. Anim. Sci. 2015, 93, 168–175. [Google Scholar] [CrossRef]
- González-Vega, J.C.; Walk, C.L.; Stein, H.H. Effects of microbial phytase on apparent and standardized total tract digestibility of calcium in calcium supplements fed to growing pigs. J. Anim. Sci. 2015, 93, 2255–2264. [Google Scholar] [CrossRef] [PubMed]
- González-Vega, J.C.; Walk, C.L.; Stein, H.H. Effect of phytate, microbial phytase, fiber, and soybean oil on calculated values for apparent and standardized total tract digestibility of calcium and apparent total tract digestibility of phosphorus in fish meal fed to growing pigs. J. Anim. Sci. 2015, 93, 4808–4818. [Google Scholar] [CrossRef] [PubMed]
- Blavi, L.; Sola-Oriol, D.; Perez, J.F.; Stein, H.H. Effects of zinc oxide and microbial phytase on digestibility of calcium and phosphorus in maize-based diets fed to growing pigs. J. Anim. Sci. 2017, 95, 847–854. [Google Scholar] [CrossRef]
- Rutherfurd, S.M.; Chung, T.K.; Moughan, P.J. Effect of microbial phytase on phytate P degradation and apparent digestibility of total P and Ca throughout the gastrointestinal tract of the growing pig. J. Anim. Sci. 2014, 92, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Bournazel, M.; Lessire, M.; Duclos, M.; Magnin, M.; Même, M.; Peyronnet, C.; Recoules, E.; Quinsac, A.; Labussiere, E.; Narcy, A. Effects of rapeseed meal fiber content on phosphorus and calcium digestibility in growing pigs fed diets without or with microbial phytase. Animal 2017, 12, 34–42. [Google Scholar] [CrossRef]
- Grela, E.R.; Muszyński, S.; Czech, A.; Donaldson, J.; Stanisławski, P.; Kapica, M.; Brezvyn, O.; Muzyka, V.; Kotsyumbas, I.; Tomaszewska, E. Influence of phytase supplementation at increasing doses from 0 to 1500 FTU/kg on growth performance, nutrient digestibility, and bone status in grower–finisher pigs fed phosphorus-deficient diets. Animals 2020, 10, 847. [Google Scholar] [CrossRef] [PubMed]
- Lagos, L.V.; Bedford, M.R.; Stein, H.H. Amino acid and mineral digestibility, bone ash, and plasma inositol is increased by including microbial phytase in diets for growing pigs. J. Anim. Sci. Biotechnol. 2023, 14, 152. [Google Scholar] [CrossRef]
- Gerlinger, C.; Oster, M.; Reyer, H.; Polley, C.; Vollmar, B.; Muráni, E.; Wimmers, K.; Wolf, P. Effects of excessive or restricted phosphorus and calcium intake during early life on markers of bone architecture and composition in pigs. J. Anim. Physiol. Anim. Nutr. 2021, 105, 52–62. [Google Scholar] [CrossRef]
Phase 1 (Pre-Starter, 0 to 14 Day) | Phase 2 (Starter, 15 to 43 Day) | |||
---|---|---|---|---|
PC | NC | PC | NC | |
Composition, % | ||||
Corn | 52.67 | 52.67 | 65.16 | 65.77 |
Sweet milk whey | 10.97 | 10.97 | - | - |
Soybean meal, 48% crude protein | 17.00 | 17.00 | 20.00 | 20.00 |
Extruded soybeans | 5.98 | 5.98 | 6.94 | 6.79 |
Soy-protein concentrate | 5.00 | 5.00 | - | - |
Sugar-beet pulp | 3.00 | 3.80 | 2.03 | 2.19 |
Animal fat | 2.00 | 2.00 | 1.80 | 1.80 |
L-lysine | 0.50 | 0.50 | 0.56 | 0.56 |
L-threonine | 0.15 | 0.15 | 0.17 | 0.17 |
L-tryptophan | 0.03 | 0.03 | 0.04 | 0.04 |
DL-methionine | 0.20 | 0.20 | 0.17 | 0.17 |
L-valine | 0.04 | 0.04 | 0.05 | 0.05 |
Sodium chloride | 0.28 | 0.27 | 0.46 | 0.45 |
Calcium carbonate | 0.01 | 0.34 | - | 0.28 |
Dicalcium phosphate | 1.74 | 0.63 | 1.70 | 0.81 |
Titanium dioxide | - | - | 0.50 | 0.50 |
Premix 1 | 0.40 | 0.40 | 0.40 | 0.40 |
Noxyfeed 2 | 0.02 | 0.02 | 0.02 | 0.02 |
Calculated nutrients, % | ||||
NE, kcal/kg | 2544 | 2555 | 2497 | 2512 |
Crude protein | 19.64 | 19.72 | 17.70 | 17.71 |
Crude fat | 5.29 | 5.31 | 5.68 | 5.68 |
Crude fiber | 2.72 | 2.86 | 2.76 | 2.79 |
Ash | 5.64 | 4.89 | 5.33 | 4.73 |
Dig. Lysine | 1.35 | 1.35 | 1.23 | 1.23 |
Dig. Methionine | 0.47 | 0.47 | 0.42 | 0.42 |
Dig. Met + Cys | 0.74 | 0.74 | 0.68 | 0.68 |
Dig. Threonine | 0.80 | 0.80 | 0.73 | 0.73 |
Dig. Tryptophan | 0.22 | 0.22 | 0.20 | 0.20 |
Dig. Valine | 0.86 | 0.86 | 0.78 | 0.78 |
Calcium | 0.82 | 0.67 | 0.70 | 0.58 |
Total phosphorus | 0.70 | 0.51 | 0.63 | 0.41 |
Phytic phosphorus | 0.22 | 0.22 | 0.24 | 0.24 |
Dig. phosphorus | 0.40 | 0.25 | 0.33 | 0.21 |
Grower 1 | Grower 2 | Finisher Phase | ||||
---|---|---|---|---|---|---|
PC | NC | PC | NC | PC | NC | |
Composition, % | ||||||
Corn | 67.93 | 69.07 | 73.39 | 74.28 | 79.73 | 80.54 |
Soybean meal, 48% crude protein | 19.06 | 19.06 | 14.61 | 14.61 | 6.98 | 6.98 |
Sunflower meal | 7.23 | 7.23 | 8.08 | 8.08 | 10.24 | 10.24 |
Animal fat | 2.35 | 1.93 | 1.47 | 1.14 | 0.80 | 0.49 |
Calcium carbonate | 0.10 | 0.44 | 0.15 | 0.41 | 0.17 | 0.40 |
Dicalcium phosphate | 1.58 | 0.54 | 1.24 | 0.42 | 1.07 | 0.32 |
L-lysine | 0.35 | 0.34 | 0.23 | 0.23 | 0.22 | 0.22 |
L-threonine | 0.05 | 0.04 | - | - | - | - |
L-tryptophan | 0.01 | 0.01 | - | - | - | - |
DL-methionine | 0.02 | 0.01 | - | - | - | - |
Sodium chloride | 0.41 | 0.41 | 0.41 | 0.41 | 0.39 | 0.39 |
Premix 1 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 |
Noxyfeed 2 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
Titanium dioxide | 0.50 | 0.50 | - | - | - | - |
Calculated nutrients, % | ||||||
Net energy, kcal/kg | 2475 | 2475 | 2475 | 2475 | 2475 | 2475 |
Crude protein | 17.00 | 17.08 | 15.55 | 15.62 | 13.33 | 13.39 |
Crude fat | 5.11 | 4.73 | 4.36 | 4.06 | 3.81 | 3.54 |
Crude fiber | 3.40 | 3.42 | 3.45 | 3.47 | 3.60 | 3.62 |
Ash | 5.23 | 4.54 | 4.28 | 3.74 | 3.84 | 3.35 |
Dig. Lysine | 0.98 | 0.98 | 0.79 | 0.79 | 0.61 | 0.61 |
Dig. Methionine | 0.28 | 0.28 | 0.26 | 0.26 | 0.23 | 0.24 |
Dig. Met + Cys | 0.55 | 0.55 | 0.51 | 0.51 | 0.46 | 0.46 |
Dig. Threonine | 0.59 | 0.59 | 0.49 | 0.49 | 0.40 | 0.40 |
Dig. Tryptophan | 0.17 | 0.17 | 0.14 | 0.14 | 0.11 | 0.11 |
Calcium | 0.69 | 0.55 | 0.61 | 0.50 | 0.56 | 0.46 |
Total phosphorus | 0.64 | 0.46 | 0.57 | 0.43 | 0.53 | 0.40 |
Phytic phosphorus | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 |
Digestible phosphorus, % | 0.31 | 0.17 | 0.26 | 0.15 | 0.23 | 0.13 |
Item | Phase 1 (Pre-Starter, 0 to 14 d) | Phase 2 (Starter, 15 to 43 d) | ||||
---|---|---|---|---|---|---|
PC | NC | PHY | PC | NC | PHY | |
Dry matter, % | 89.30 | 88.90 | 89.20 | 88.60 | 89.00 | 88.90 |
Crude protein, % | 19.30 | 19.30 | 19.40 | 17.60 | 17.20 | 17.60 |
Crude fat, % | 5.50 | 5.50 | 5.50 | 5.70 | 5.80 | 5.80 |
Ash, % | 5.20 | 4.60 | 4.60 | 4.90 | 4.50 | 4.50 |
GE, kcal/kg | 4076 | 4086 | 4094 | 4046 | 4095 | 4096 |
Ca, % | 0.72 | 0.58 | 0.58 | 0.63 | 0.51 | 0.52 |
Total P, % | 0.64 | 0.47 | 0.46 | 0.6 | 0.46 | 0.46 |
Phytase activity, FTU/kg | 59 | 56 | 489 | 139 | 96 | 440 |
Grower 1 | Grower 2 | Finisher | |||||||
---|---|---|---|---|---|---|---|---|---|
PC | NC | PHY | PC | NC | PHY | PC | NC | PHY | |
Dry matter, % | 87.90 | 88.00 | 87.50 | 88.00 | 87.20 | 87.80 | 87.60 | 87.20 | 87.30 |
Crude protein, % | 16.70 | 16.90 | 16.60 | 15.10 | 15.00 | 15.10 | 12.60 | 12.70 | 12.70 |
Crude fat, % | 5.10 | 4.90 | 4.70 | 4.00 | 3.60 | 3.60 | 3.60 | 3.30 | 3.20 |
Ash, % | 4.90 | 4.40 | 4.40 | 4.00 | 3.50 | 3.60 | 3.40 | 3.10 | 3.20 |
GE, kcal/kg | 3946 | 3949 | 3943 | 3935 | 3886 | 3906 | 3859 | 3871 | 3879 |
Total P, % | 0.65 | 0.46 | 0.46 | 0.54 | 0.41 | 0.41 | 0.50 | 0.39 | 0.39 |
Ca, % | 0.70 | 0.51 | 0.53 | 0.56 | 0.44 | 0.46 | 0.52 | 0.43 | 0.41 |
Phytate-P, % | 0.24 | 0.22 | 0.23 | 0.23 | 0.25 | 0.23 | 0.21 | 0.20 | 0.20 |
Phytase, FTU/kg | 100 | 133 | 438 | 66 | 64 | 411 | 71 | 81 | 541 |
Item | Treatment | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
PC | NC | PHY | Sex | Treatment | PC vs. NC | PHY vs. NC | ||
Phase 1, 0–14 days | ||||||||
BW day 0, kg | 7.71 | 7.75 | 7.72 | 0.083 | 0.804 | 0.522 | 0.537 | 0.646 |
BW day 14, kg | 10.61 a | 9.99 b | 10.27 ab | 0.521 | 0.498 | 0.044 | 0.035 | 0.456 |
ADG 1–14 days, g/d | 207 a | 160 b | 182 ab | 38.10 | 0.482 | 0.036 | 0.028 | 0.395 |
ADFI 1–14 days, g/d | 254 | 231 | 237 | 38.30 | 0.576 | 0.397 | 0.388 | 0.931 |
G:F ratio 1–14 days | 0.806 a | 0.689 b | 0.766 a | 0.071 | 0.502 | 0.004 | 0.003 | 0.057 |
Phase 2, 15–43 days | ||||||||
BW day 43, kg | 23.63 a | 20.81 b | 22.41 ab | 1.516 | 0.624 | 0.002 | 0.001 | 0.067 |
ADG 14–43 days, g/d | 449 a | 373 b | 419 ab | 42.20 | 0.374 | 0.002 | 0.002 | 0.060 |
ADFI 14–43 days, g/d | 701 a | 632 b | 656 ab | 53.90 | 0.236 | 0.026 | 0.022 | 0.589 |
G:F ratio 14–43 days | 0.640 a | 0.591 b | 0.638 a | 0.040 | 0.917 | 0.017 | 0.030 | 0.036 |
Global period | ||||||||
ADG 1–43 days, g/d | 370 a | 304 b | 342 ab | 35.10 | 0.637 | 0.001 | 0.001 | 0.060 |
ADFI 1–43 days, g/d | 556 a | 501 b | 519 ab | 45.80 | 0.429 | 0.042 | 0.036 | 0.658 |
G:F ratio 1–43 days | 0.665 a | 0.606 b | 0.657 a | 0.033 | 0.694 | 0.001 | 0.002 | 0.006 |
Item | Treatment | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
PC | NC | PHY | Batch 1 | Sex | Treatment | PC vs. NC | PHY vs. PC | ||
Dry matter, % | 87.75 | 87.41 | 88.22 | 1.350 | 0.021 | 0.805 | 0.071 | 0.588 | 0.057 |
Crude protein, % | 82.91 | 81.43 | 82.95 | 3.030 | 0.001 | 0.495 | 0.094 | 0.148 | 0.138 |
Ca, % | 48.81 b | 49.81 b | 60.65 a | 5.800 | 0.010 | 0.024 | <0.001 | 0.782 | <0.001 |
P, % | 43.26 b | 35.53 c | 54.27 a | 4.860 | 0.128 | 0.829 | <0.001 | <0.001 | <0.001 |
Item | Treatment | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
PC | NC | PHY | Batch 1 | Sex | Treatment | PC vs. NC | PHY vs. NC | ||
P intake, g/d | 3.79 a | 2.86 b | 2.90 b | 0.218 | <0.001 | 0.059 | <0.001 | <0.001 | 0.801 |
P in faeces, g/d | 2.15 a | 1.84 b | 1.32 c | 0.193 | <0.001 | 0.220 | <0.001 | <0.001 | <0.001 |
P in urine, g/d | 0.089 a | 0.025 b | 0.040 b | 0.044 | 0.228 | 0.341 | <0.001 | <0.001 | 0.378 |
P retained, g/d | 1.55 a | 1.00 b | 1.54 a | 0.202 | <0.001 | 0.277 | <0.001 | <0.001 | <0.001 |
P retention, % | 40.72 b | 34.64 c | 52.84 a | 5.430 | 0.064 | 0.863 | <0.001 | <0.001 | <0.001 |
Ca intake, g/d | 3.99 a | 3.19 b | 3.23 b | 0.234 | <0.001 | 0.058 | <0.001 | <0.001 | 0.789 |
Ca in faeces, g/d | 2.04 a | 1.59 b | 1.26 c | 0.233 | <0.001 | 0.007 | <0.001 | <0.001 | <0.001 |
Ca in urine, g/d | 0.10 c | 0.42 a | 0.23 b | 0.120 | 0.043 | 0.022 | <0.001 | <0.001 | <0.001 |
Ca retained, g/d | 1.85 a | 1.18 b | 1.74 a | 0.252 | <0.001 | 0.724 | <0.001 | <0.001 | <0.001 |
Ca retention, % | 46.19 b | 36.82 c | 53.64 a | 6.555 | 0.032 | 0.555 | <0.001 | <0.001 | <0.001 |
Item | Treatment | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
PC | NC | PHY | Sex | Treatment | PC vs. NC | PHY vs. NC | ||
Phase 1, 0–28 days | ||||||||
Initial weight, kg | 21.13 | 21.13 | 21.2 | 0.445 | 0.028 | 0.814 | 0.999 | 0.855 |
Final weight, kg | 39.02 a | 37.34 b | 38.75 a | 1.709 | 0.701 | 0.002 | 0.003 | 0.014 |
ADG, g/d | 639 a | 579 b | 627 a | 57.60 | 0.309 | 0.001 | 0.002 | 0.013 |
ADFI, g/d | 1229 | 1192 | 1233 | 96.20 | 0.579 | 0.250 | 0.361 | 0.284 |
G:F ratio | 0.520 a | 0.485 b | 0.509 a | 0.020 | 0.001 | <0.001 | <0.001 | 0.001 |
Phase 2, 29–56 days | ||||||||
Final weight, kg | 58.97 a | 55.24 b | 59.28 a | 2.922 | 0.721 | <0.001 | <0.001 | <0.001 |
ADG, g/d | 713 a | 639 b | 733 a | 61.80 | 0.818 | <0.001 | 0.001 | <0.001 |
ADFI, g/d | 1731 a | 1634 b | 1778 a | 109.00 | 0.446 | <0.001 | 0.007 | <0.001 |
G:F ratio | 0.412 a | 0.391 b | 0.414 a | 0.019 | 0.120 | <0.001 | 0.001 | <0.001 |
Phase 3, 57–98 days | ||||||||
Final weight, kg | 90.94 a | 83.86 b | 93.31 a | 5.562 | 0.057 | <0.001 | <0.001 | <0.001 |
ADG, g/d | 761 a | 681 b | 810 a | 75.90 | 0.003 | <0.001 | 0.001 | <0.001 |
ADFI, g/d | 2236 a | 2073 b | 2302 a | 178.20 | 0.021 | <0.001 | 0.006 | <0.001 |
G:F ratio | 0.340 ab | 0.328 b | 0.352 a | 0.019 | 0.054 | 0.001 | 0.071 | <0.001 |
Overall period, 0–98 days | ||||||||
ADG, g/d | 712 a | 640 b | 736 a | 55.70 | 0.034 | <0.001 | <0.001 | <0.001 |
ADFI, g/d | 1804 a | 1696 b | 1847 a | 117.80 | 0.232 | <0.001 | 0.005 | <0.001 |
G:F ratio | 0.395 a | 0.377 b | 0.399 a | 0.014 | 0.017 | <0.001 | <0.001 | <0.001 |
Item | Treatment | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
PC | NC | PHY | Sex | Treatment | PC vs. NC | PHY vs. NC | ||
Bone dry weight, g/bone | 6.58 a | 5.98 b | 6.40 a | 0.57 | 0.138 | 0.002 | 0.002 | 0.036 |
Bone ash, g/bone | 2.56 a | 2.09 b | 2.46 a | 0.21 | 0.913 | <0.001 | <0.001 | <0.001 |
Bone ash, % | 39.0 a | 35.1 b | 38.5 a | 2.24 | 0.001 | <0.001 | <0.001 | <0.001 |
Bone P, g/bone | 0.49 a | 0.40 b | 0.46 a | 0.04 | 0.888 | <0.001 | <0.001 | <0.001 |
Bone P, % | 7.40 a | 6.61 b | 7.20 a | 0.45 | 0.008 | <0.001 | <0.001 | <0.001 |
Bone Ca, g/bone | 0.95 a | 0.79 b | 0.91 a | 0.08 | 0.650 | <0.001 | <0.001 | <0.001 |
Bone Ca, % | 14.5 a | 13.2 b | 14.2 a | 0.92 | 0.004 | <0.001 | <0.001 | 0.002 |
Item | Treatment | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
PC | NC | PHY | Sex | Treatment | PC vs. NC | PHY vs. NC | ||
Dry matter, % | 85.55 | 85.20 | 85.70 | 1.170 | 0.005 | 0.304 | 0.536 | 0.291 |
Crude protein, % | 79.98 | 79.56 | 79.74 | 2.190 | 0.007 | 0.796 | 0.779 | 0.954 |
Ca, % | 52.37 c | 55.08 b | 62.28 a | 3.970 | 0.757 | <0.001 | <0.001 | <0.001 |
P, % | 45.46 b | 38.80 c | 55.43 a | 4.140 | 0.359 | <0.001 | 0.049 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jlali, M.; Hincelin, C.; Torrallardona, D.; Rougier, T.; Ceccantini, M.; Ozbek, S.; Preynat, A.; Devillard, E. A New Biosynthetic 6-Phytase Added at 500 Phytase Unit/kg Diet Improves Growth Performance, Bone Mineralization, and Nutrient Digestibility and Retention in Weaned Piglets and Growing–Finishing Pigs. Vet. Sci. 2024, 11, 250. https://doi.org/10.3390/vetsci11060250
Jlali M, Hincelin C, Torrallardona D, Rougier T, Ceccantini M, Ozbek S, Preynat A, Devillard E. A New Biosynthetic 6-Phytase Added at 500 Phytase Unit/kg Diet Improves Growth Performance, Bone Mineralization, and Nutrient Digestibility and Retention in Weaned Piglets and Growing–Finishing Pigs. Veterinary Sciences. 2024; 11(6):250. https://doi.org/10.3390/vetsci11060250
Chicago/Turabian StyleJlali, Maamer, Clémentine Hincelin, David Torrallardona, Tania Rougier, Marcio Ceccantini, Sarper Ozbek, Aurélie Preynat, and Estelle Devillard. 2024. "A New Biosynthetic 6-Phytase Added at 500 Phytase Unit/kg Diet Improves Growth Performance, Bone Mineralization, and Nutrient Digestibility and Retention in Weaned Piglets and Growing–Finishing Pigs" Veterinary Sciences 11, no. 6: 250. https://doi.org/10.3390/vetsci11060250
APA StyleJlali, M., Hincelin, C., Torrallardona, D., Rougier, T., Ceccantini, M., Ozbek, S., Preynat, A., & Devillard, E. (2024). A New Biosynthetic 6-Phytase Added at 500 Phytase Unit/kg Diet Improves Growth Performance, Bone Mineralization, and Nutrient Digestibility and Retention in Weaned Piglets and Growing–Finishing Pigs. Veterinary Sciences, 11(6), 250. https://doi.org/10.3390/vetsci11060250