Comparative Impact of Hydroxychloride and Organic Sources of Manganese, Zinc, and Copper in Rearing Diets on Pullet Growth, Tibia Traits, Egg Production, and Eggshell Quality in Lohmann Brown Birds up to 50 Weeks of Age
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Rearing Phase
3.2. Laying Phase
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Whitehead, C.C. Overview of bone biology in the egg-laying hen. Poult. Sci. 2004, 83, 193–199. [Google Scholar] [CrossRef]
- Pereira, A.; Kakhki, R.A.M.; Kiarie, E.G. The effects of different spacing allowances in the pullet phase on the eggshell and bone quality of hens in the laying phase. Can. J. Anim. Sci. 2021, 101, 805–808. [Google Scholar] [CrossRef]
- Kakhki, R.A.M.; Shouldice, V.; Price, K.; Moats, J.; Kiarie, E. n-3 fatty acids fed to ISA brown and Shaver white breeders and their female progeny during rearing: Impact on egg production, eggshell, and select bone attributes from 18 to 42 weeks of age. Poult. Sci. 2020, 99, 3959–3970. [Google Scholar] [CrossRef]
- Elaroussi, M.A.; Forte, L.R.; Eber, S.L.; Biellier, H.V. Calcium Homeostasis in the Laying Hen: 1. Age and dietary calcium effects. Poult. Sci. 1994, 73, 1581–1589. [Google Scholar] [CrossRef]
- Mabe, I.; Rapp, C.; Bain, M.; Nys, Y. Supplementation of a corn-soybean meal diet with manganese, copper, and zinc from organic or inorganic sources improves eggshell quality in aged laying hens. Poult. Sci. 2003, 82, 1903–1913. [Google Scholar] [CrossRef]
- Starcher, B.C.; Hill, C.H.; Madaras, J.G. Effect of zinc deficiency on bone collagenase and collagen turnover. J. Nutr. 1980, 110, 2095–2102. [Google Scholar] [CrossRef]
- Rath, N.; Richards, M.P.; Huff, W.E. Factors regulating bone maturity and strength in poultry. Poult. Sci. 2000, 79, 1024–1032. [Google Scholar] [CrossRef]
- Liu, A.-H.; Heinrichs, B.; Leach, R., Jr. Influence of manganese deficiency on the characteristics of proteoglycans of avian epiphyseal growth plate cartilage. Poult. Sci. 1994, 73, 663–669. [Google Scholar] [CrossRef]
- Bao, Y.M.; Choct, M. Trace mineral nutrition for broiler chickens and prospects of application of organically complexed trace minerals: A review. Anim. Prod. Sci. 2009, 49, 269–282. [Google Scholar] [CrossRef]
- Bao, Y.M.; Choct, M.; Iji, P.A.; Bruerton, K. Effect of organically complexed copper, iron, manganese, and zinc on broiler performance, mineral excretion, and accumulation in tissues. J. Appl. Poult. Res. 2007, 16, 448–455. [Google Scholar] [CrossRef]
- Perez, V.; Shanmugasundaram, R.; Sifri, M.; Parr, T.; Selvaraj, R.K. Effects of hydroxychloride and sulfate form of zinc and manganese supplementation on superoxide dismutase activity and immune responses post lipopolysaccharide challenge in poultry fed marginally lower doses of zinc and manganese. Poult. Sci. 2017, 96, 4200–4207. [Google Scholar] [CrossRef]
- Jiang, Q.; Sun, J.; He, Y.; Ma, Y.; Zhang, B.; Han, Y.; Wu, Y. Hydroxychloride trace elements improved eggshell quality partly by modulating uterus histological structure and inflammatory cytokines expression in aged laying hens. Poult. Sci. 2021, 100, 101453. [Google Scholar] [CrossRef]
- Boletín Oficial del Estado. Real Decreto 53/2013 Sobre Protección de Animales Utilizados en Experimentación y Otros Fines Científicos. 2013, 34, pp. 11370–11471. Available online: https://www.boe.es/eli/es/rd/2013/02/01/53/con (accessed on 15 April 2024).
- CVB. Chemical Composition and Nutritional Values of Feedstuffs; Central Bureau for Livestock Feeding (CVB): Lelystad, The Netherlands, 2018. [Google Scholar]
- Leeson, S.; Summers, J.D. Commercial Poultry Nutrition; Nottingham University Press: Nottingham, UK, 2009. [Google Scholar]
- AOAC International. Official Methods of Analysis of the Association of Official Analytical Chemists; AOAC International: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Gitelman, H.J. An improved automated procedure for the determination of calcium in biological specimens. Anal. Biochem. 1967, 18, 521–531. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- DIN EN 17053; Animal Feeding Stuffs: Methods of Sampling and Analysis—Determination of Trace Elements, Heavy Metals and Other Elements in Feed by ICP-MS. Spanish Association for Standardization and Certification (AENOR): Madrid, Spain, 2018.
- Dijkslag, M.; Kwakkel, R.; Martin-Chaves, E.; Alfonso-Carrillo, C.; Walvoort, C.; Navarro-Villa, A. The effects of dietary calcium and phosphorus level, and feed form during rearing on growth performance, bone traits and egg production in brown egg-type pullets from 0 to 32 weeks of age. Poult. Sci. 2021, 100, 101130. [Google Scholar] [CrossRef]
- Sanchez-Rodriguez, E.; Benavides-Reyes, C.; Torres, C.; Dominguez-Gasca, N.; I Garcia-Ruiz, A.; Gonzalez-Lopez, S.; Rodriguez-Navarro, A.B. Changes with age (from 0 to 37 D) in tibiae bone mineralization, chemical composition and structural organization in broiler chickens. Poult. Sci. 2019, 98, 5215–5225. [Google Scholar] [CrossRef]
- Carter, T.C. The hen’s egg: Estimation of shell superficial area and egg volume, using measurements of fresh egg weight and shell length and breadth alone or in combination. Br. Poult. Sci. 1975, 5, 541–543. [Google Scholar] [CrossRef]
- Clarkson, D.T. Factors affecting mineral nutrient acquisition by plants. Annu. Rev. Plant Physiol. 1985, 36, 77–115. [Google Scholar] [CrossRef]
- Reddy, N.R.; Pierson, M.D.; Sathe, S.K.; Salunkhe, D.K. Phytates in Cereals and Legumes; CRC Press: Boca Raton, FL, USA, 1982. [Google Scholar]
- Olukosi, O.A.; van Kuijk, S.; Han, Y. Copper and zinc sources and levels of zinc inclusion influence growth performance, tissue trace mineral content, and carcass yield of broiler chickens. Poult. Sci. 2018, 97, 3891–3898. [Google Scholar] [CrossRef]
- Lohmann Breeders. Lohmann LSL-Lite Layers-Management Guide; Lohmann: Cuxhaven, Germany, 2020. [Google Scholar]
- Summers, J.D.; Leeson, S. Factors influencing early egg size. Poult. Sci. 1983, 62, 1155–1159. [Google Scholar] [CrossRef]
- Lacin, E.; Yildiz, A.; Esenbuga, N.; Macit, M. Effects of differences in the initial body weight of groups on laying performance and egg quality parameters of Lohmann laying hens. Czech J. Anim. Sci. 2008, 53, 466–471. [Google Scholar] [CrossRef]
- Olukosi, O.A.; Van Kuijk, S.J.; Han, Y. Sulfate and hydroxychloride trace minerals in poultry diets–comparative effects on egg production and quality in laying hens, and growth performance and oxidative stress response in broilers. Poult. Sci. 2019, 98, 4961–4971. [Google Scholar] [CrossRef]
- Swiatkiewicz, S.; Koreleski, J. The effect of zinc and manganese source in the diet for laying hens on eggshell and bones quality. Vet. Med. 2008, 53, 555–563. [Google Scholar] [CrossRef]
- De Mille, C.; Burrough, E.; Kerr, B.; Schweer, W.; Gabler, N. Dietary Pharmacological Zinc and Copper Enhances Voluntary Feed Intake of Nursery Pigs. Front. Anim. Sci. 2022, 3, 874284. [Google Scholar] [CrossRef]
- Pereira, C.G.; Rabello, C.B.-V.; Barros, M.R.; Manso, H.E.C.; Santos, M.J.B.d.; Faria, A.G.; Oliveira, H.B.d.; Medeiros-Ventura, W.R.L.; Silva Junior, R.V.; Carvalho, C.C. Zinc, manganese and copper amino acid complexed in laying hens’ diets affect performance, blood parameters and reproductive organs development. PLoS ONE 2020, 15, e0239229. [Google Scholar] [CrossRef]
- Bakhshalinejad, R.; Torrey, S.; Kiarie, E.G. Comparative efficacy of hydroxychloride and organic sources of zinc, copper, and manganese on egg production and concentration of trace minerals in eggs, plasma, and excreta in female broiler breeders from 42 to 63 weeks of age. Poult. Sci. 2024, 103, 103522. [Google Scholar] [CrossRef]
- Leach, R., Jr. Metabolism and function of manganese. Essen. Toxic Element 1976, 235–247. [Google Scholar]
- Leach, R., Jr.; Gross, J. The effect of manganese deficiency upon the ultrastructure of the eggshell. Poult. Sci. 1983, 62, 499–504. [Google Scholar] [CrossRef]
- Nys, Y.; Hincke, M.; Arias, J.; Garcia-Ruiz, J.; Solomon, S. Avian eggshell mineralization. Poult. Avian. Biol. Rev. 1999, 10, 143–166. [Google Scholar]
Items | Starter (1–3 Week) | Grower (4–10 Week) | Developer (11–16 Week) | |||
---|---|---|---|---|---|---|
Organic | Hydroxychloride | Organic | Hydroxychloride | Organic | Hydroxychloride | |
Ingredient, g/kg | ||||||
Corn 1 | 400.00 | 400.00 | 400.00 | 400.00 | 611.74 | 611.74 |
Wheat | 225.55 | 225.55 | 108.34 | 108.34 | 60.00 | 60.00 |
Soybean meal, CP = 480 g/kg | 285.59 | 285.59 | 253.23 | 253.23 | 54.56 | 54.56 |
Sunflower meal, CP = 310 g/kg | - | - | - | - | 120.00 | 120.00 |
Barley | - | - | 150.00 | 150.00 | - | - |
Barely Straw | - | - | - | - | 40.95 | 40.95 |
Potato Protein | - | - | - | - | 43.38 | 43.38 |
Wheat Bran Fine | - | - | 20.29 | 20.29 | - | - |
Soybean oil | 17.38 | 17.38 | 5.00 | 5.00 | 5.00 | 5.00 |
Oats hulls | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 |
Calcium carbonate (fine) | 16.77 | 16.22 | 13.18 | 12.64 | 8.58 | 8.10 |
Monocalcium phosphate | 4.81 | 4.81 | 2.25 | 2.25 | 2.12 | 2.12 |
Sepiolites Elite SPLF | 4.39 | 4.94 | 6.89 | 7.43 | 13.79 | 14.27 |
Salt (NaCl) | 2.78 | 2.78 | 3.03 | 3.03 | 2.51 | 2.51 |
Na Bicarbonate | 2.30 | 2.0 | 0.47 | 0.47 | 0.85 | 0.85 |
Dl-Methionine 99% | 2.23 | 2.23 | 1.22 | 1.22 | 0.16 | 0.16 |
L-Lysine HCl 98% | 1.39 | 1.39 | 0.10 | 0.10 | 0.37 | 0.37 |
AXTRA XAP 2 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
L-Threonine 98% | 0.82 | 0.82 | - | - | - | - |
Premix (organic) 3,4 | 5.00 | - | 5.00 | - | 5.00 | - |
Premix (hydroxychloride) 3,4 | 5.00 | - | 5.00 | - | 5.00 | |
Calculated nutrients (analyzed nutrients 5) | - | - | - | - | - | - |
AME, Kcal/kg | 2850 | 2850 | 2750 | 2750 | 2700 | 2700 |
Crude protein, g/kg | 190.45 (198.1) | 190.45 (194.8) | 177.54 (178.8) | 177.54 (177.5) | 150.00 (149.3) | 150.00 (148.3) |
Crude fiber, g/kg | 34.18 (32.6) | 34.18 (31.0) | 38.37 (36.5) | 38.37 (39.0) | 70.93 (68.8) | 70.93 (67.4) |
Crude fat, g/kg | 43.98 (34.5) | 43.98 (35.0) | 32.34 (23.5 | 32.34 (22.0) | 35.46 (25.5) | 35.46 (23.5) |
Dig Lysine, g/kg 6 | 9.50 | 9.50 | 7.80 | 7.80 | 6.20 | 6.20 |
Dig methionine, g/kg | 4.98 | 4.98 | 3.57 | 3.57 | 2.80 | 2.80 |
Dig methionine+ cystine, g/kg | 7.70 | 7.70 | 6.01 | 6.01 | 4.84 | 4.84 |
Dig threonine, g/kg | 6.84 | 6.84 | 5.30 | 5.30 | 4.20 | 4.20 |
Calcium, g/kg | 9.00 (7.1) | 9.00 (7.7) | 7.60 (5.8) | 7.60 (5.5) | 6.70 (5.8) | 6.70 (5.5) |
Digestible phosphorus, g/kg 7 | 3.80 | 3.80 | 3.30 | 3.30 | 2.90 | 2.90 |
Total phosphorus, g/kg | 4.53 (4.4) | 4.53 (4.1) | 3.99 (4.0) | 3.99 (3.9) | 3.44 (3.1) | 3.44 (2.9) |
Sodium, g/kg | 1.80 | 1.80 | 1.40 | 1.40 | 1.40 | 1.40 |
Chloride, g/kg | 2.50 | 2.50 | 2.50 | 2.50 | 2.50 | 2.50 |
Potassium, g/kg | 8.77 | 8.77 | 8.58 | 8.58 | 6.42 | 6.42 |
Magnesium, g/kg | 1.61 | 1.61 | 1.61 | 1.61 | 1.63 | 1.63 |
Manganese, mg/kg | 110 (101) | 110 (88) | 111 (103) | 111 (96) | 105 (90) | 105 (87) |
Zinc, mg/kg | 108 (86) | 108 (78) | 109 (93) | 109 (83) | 111 (86) | 111 (80) |
Copper, mg/kg | 20 (10) | 20 (9) | 21 (9) | 21 (9) | 21 (10) | 21 (10) |
Items | Organic | Hydroxychloride | SEM (n = 6) 2 | p-Value |
---|---|---|---|---|
Starter (1 to 3 weeks) | ||||
Body weight, g | 198 | 199 | 3.0 | 0.857 |
Daily feed intake, g/bird/day | 13.6 | 14.0 | 0.26 | 0.381 |
Feed conversion ratio | 1.890 | 1.933 | 0.0262 | 0.153 |
Grower (4 to 10 weeks) | ||||
Body weight, g | 1104 | 1105 | 12.7 | 0.999 |
Daily feed intake, g/bird/day | 54.5 | 55.0 | 0.80 | 0.629 |
Feed conversion ratio | 2.948 | 2.971 | 0.0271 | 0.555 |
Developer (11 to 16 weeks) | ||||
Body weight, g | 1659 | 1659 | 11.3 | 0.972 |
Daily feed intake, g/bird/day | 82.8 | 84.6 | 2.01 | 0.551 |
Feed conversion ratio | 6.291 | 6.424 | 0.1869 | 0.450 |
Items | Organic | Hydroxychloride | SEM (n = 6) 2 | p-Value |
---|---|---|---|---|
2 weeks | ||||
Length, mm | 44 | 43 | 0.4 | 0.127 |
Dry weight, g | 0.65 | 0.56 | 0.145 | 0.155 |
Ash content, g | 0.29 | 0.24 | 0.020 | 0.123 |
Ash, % | 44.17 | 43.82 | 0.494 | 0.643 |
Breaking strength, g | 2954 | 2817 | 199.2 | 0.501 |
Cortical composition, % of DM | ||||
Organic matter | 42.1 | 42.1 | 2.52 | 0.999 |
Carbonate | 2.2 | 3.3 | 1.50 | 0.482 |
Phosphate | 55.7 | 54.6 | 2.10 | 0.823 |
10 weeks | ||||
Length, mm | 99 | 99 | 1.1 | 0.749 |
Dry weight, g | 6.28 | 6.14 | 0.185 | 0.625 |
Ash content, g | 2.18 | 2.33 | 0.134 | 0.510 |
Ash, % | 37.90 | 37.94 | 0.435 | 0.957 |
Breaking strength, g | 15,995 | 16,122 | 1120 | 0.911 |
Cortical composition, % of DM | ||||
Organic matter | 35.8 | 35.7 | 1.53 | 0.970 |
Carbonate | 5.4 | 7.3 | 4.36 | 0.520 |
Phosphate | 58.2 | 56.6 | 2.95 | 0.615 |
16 weeks | ||||
Length, mm | 120 | 121 | 1.6 | 0.641 |
Dry weight, g | 9.82 | 10.25 | 0.243 | 0.243 |
Ash content, g | 3.22 | 3.36 | 0.056 | 0.142 |
Ash, % | 32.82 | 32.82 | 0.479 | 0.992 |
Breaking strength, g | 15,298 | 15,399 | 654.3 | 0.879 |
Cortical composition, % of DM | ||||
Organic matter | 29.4 | 27.6 | 1.31 | 0.239 |
Carbonate | 29.6 | 28.4 | 2.42 | 0.655 |
Phosphate | 41.0 | 43.9 | 1.56 | 0.128 |
Items | Organic | Hydroxychloride | SEM | p-Value |
---|---|---|---|---|
18 to 24 weeks | (n = 18) 2 | |||
Daily feed intake, g | 110 | 109 | 2.3 | 0.629 |
Hen-day egg production, % | 95.98 | 97.86 | 1.130 | 0.128 |
Egg weight, g | 56.42 | 56.69 | 1.064 | 0.801 |
Egg mass, g/d | 52.43 | 53.19 | 1.541 | 0.651 |
Feed conversion ratio | 2.408 | 2.104 | 0.211 | 0.200 |
Body weight at the end of 24 weeks, g | 1906 | 1896 | 59.1 | 0.873 |
25 to 50 weeks | (n = 16) 3 | |||
Daily feed intake, g | 122 | 118 * | 1.7 | 0.006 |
Hen-day egg production, % | 96.66 | 96.24 | 0.610 | 0.479 |
Egg weight, g | 64.94 | 63.59 | 0.856 | 0.122 |
Egg mass, g/d | 62.46 | 60.82 * | 0.637 | 0.011 |
Feed conversion ratio | 1.975 | 1.954 | 0.0227 | 0.337 |
Body weight at the end of 49 weeks, g | 2023 | 1989 | 93.5 | 0.724 |
Items | Organic | Hydroxychloride | SEM (n = 16) 3 | p-Value |
---|---|---|---|---|
Shell-less egg, % 2 | 0.68 | 0.71 | 0.119 | 0.502 |
Broken eggs, % 2 | 0.25 | 0.13 | 0.308 | 0.959 |
Albumin Percentage | 64.67 | 64.74 | 0.565 | 0.900 |
Yolk percentage | 25.53 | 25.24 | 0.507 | 0.562 |
Eggshell percentage | 9.97 | 10.15 | 0.139 | 0.192 |
Breaking strength, g | 6451 | 6464 | 225.0 | 0.956 |
Eggshell thickness, mm | 0.375 | 0.378 | 0.0081 | 0.769 |
Shell weight per unit surface area 2 | 85.57 | 86.63 | 1.199 | 0.381 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akbari Moghaddam Kakhki, R.; Alfonso-Carrillo, C.; Garcia-Ruiz, A.I. Comparative Impact of Hydroxychloride and Organic Sources of Manganese, Zinc, and Copper in Rearing Diets on Pullet Growth, Tibia Traits, Egg Production, and Eggshell Quality in Lohmann Brown Birds up to 50 Weeks of Age. Vet. Sci. 2024, 11, 245. https://doi.org/10.3390/vetsci11060245
Akbari Moghaddam Kakhki R, Alfonso-Carrillo C, Garcia-Ruiz AI. Comparative Impact of Hydroxychloride and Organic Sources of Manganese, Zinc, and Copper in Rearing Diets on Pullet Growth, Tibia Traits, Egg Production, and Eggshell Quality in Lohmann Brown Birds up to 50 Weeks of Age. Veterinary Sciences. 2024; 11(6):245. https://doi.org/10.3390/vetsci11060245
Chicago/Turabian StyleAkbari Moghaddam Kakhki, Reza, Clara Alfonso-Carrillo, and Ana Isabel Garcia-Ruiz. 2024. "Comparative Impact of Hydroxychloride and Organic Sources of Manganese, Zinc, and Copper in Rearing Diets on Pullet Growth, Tibia Traits, Egg Production, and Eggshell Quality in Lohmann Brown Birds up to 50 Weeks of Age" Veterinary Sciences 11, no. 6: 245. https://doi.org/10.3390/vetsci11060245
APA StyleAkbari Moghaddam Kakhki, R., Alfonso-Carrillo, C., & Garcia-Ruiz, A. I. (2024). Comparative Impact of Hydroxychloride and Organic Sources of Manganese, Zinc, and Copper in Rearing Diets on Pullet Growth, Tibia Traits, Egg Production, and Eggshell Quality in Lohmann Brown Birds up to 50 Weeks of Age. Veterinary Sciences, 11(6), 245. https://doi.org/10.3390/vetsci11060245