Selection of Male Donors in Local Chicken Breeds to Implement the Italian Semen Cryobank: Variability in Semen Quality, Freezability and Fertility
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bird Management
2.2. Semen Collection
2.3. Sperm Processing
2.4. Sperm Motility and Kinetic Parameters Analysis
2.5. Sperm Membrane Integrity
2.6. Semen Cryopreservation Processing
2.7. Fertility Trial
2.8. Statistical Analysis
3. Results
3.1. Semen Quality
3.2. Fertility and Embryo Viability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Domestic Animal Diversity Information System (DAD-IS); FAO: Rome, Italy, 2020; Available online: http://www.fao.org/dad-is/en (accessed on 29 January 2024).
- FAO. The State of the World’s Animal Genetic Resources for Food and Agriculture; Chief, Electronic Publishing Policy and Support Branch Communication Division; FAO: Rome, Italy, 2007. [Google Scholar]
- FAO. Status and Trends of Animal Genetics Resources. In Proceedings of the 2022 Intergovernmental Technical Working Group on Animal Genetic Resources for Food and Agriculture, Twelfth Session, Rome, Italy, 18–20 January 2023; Available online: https://www.fao.org/3/cc3705en/cc3705en.pdf (accessed on 5 December 2023).
- Zanon, A.; Sabbioni, A. Identificazione e salvaguardia genetica delle razze avicole Italiane. Ann. Med. Vet. 2001, 21, 117–134. [Google Scholar]
- Castillo, A.; Gariglio, M.; Franzoni, A.; Soglia, D.; Sartore, S.; Buccioni, A.; Mannelli, F.; Cassandro, M.; Cendron, F.; Castellini, C.; et al. Overview of Native Chicken Breeds in Italy: Conservation Status and Rearing Systems in Use. Animals 2021, 11, 490. [Google Scholar] [CrossRef] [PubMed]
- Sabbioni, A.; Zanon, A.; Beretti, V.; Superchi, P.; Zambini, E.M. Carcass yield and meat quality parameters of two Italian autochthonous chicken breeds reared outdoor: Modenese and Romagnolo. In Proceedings of the WPSA XII European Poultry Conference, Verona, Italy, 10–14 September 2006; p. 203. [Google Scholar]
- De Marchi, M.; Dalvit, C.; Targhetta, C.; Cassandro, M. Assessing genetic diversity in indigenous Veneto chicken breeds using AFLP markers. Anim. Genet. 2006, 37, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, C.; Marangon, A. Quality of organic eggs of hybrid and Italian breed hens. Poult. Sci. 2012, 91, 2330–2340. [Google Scholar] [CrossRef] [PubMed]
- Zanetti, E.; De Marchi, M.; Dalvit, C.; Cassandro, M. Genetic characterization of local Italian breeds of chickens undergoing in situ conservation. Poult. Sci. 2010, 89, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Madeddu, M.; Zaniboni, L.; Mangiagalli, M.G.; Cassinelli, C.; Cerolini, S. Egg related parameters affecting fertility and hatchability in the Italian bantam breed Mericanel della Brianza. Anim. Reprod. Sci. 2013, 137, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Cozzi, M.C.; Colombo, E.; Zaniboni, L.; Madeddu, M.; Mosca, F.; Strillacci, M.G.; Longeri, M.; Bagnato, A.; Cerolini, S. Phenotypic and genetic characterization of the Italian bantam chicken breed Mericanel della Brianza. Livest. Sci. 2017, 205, 56–63. [Google Scholar] [CrossRef]
- Mosca, F.; Zaniboni, L.; Stella, S.; Kuster, C.A.; Iaffaldano, N.; Cerolini, S. Slaughter performance and meat quality of Milanino chickens reared according to a specific free-range program. Poult. Sci. 2018, 97, 1148–1154. [Google Scholar] [CrossRef]
- Gualtieri, M.; Pignattelli, P.; Cristalli, A. Pollo di razza valdarnese bianca. In Risorse Genetiche Animali Autoctone Della Toscana; Commissione tecnico-scientifica delle risorse genetiche autoctone animali (LR 50/97) ARSIA; Press Service: Florence, Italy, 2006; pp. 37–45. [Google Scholar]
- MIPAAF. Disciplinare del Registro Anagrafico Degli Avicoli Autoctoni; Decreto Ministeriale N. 19536; Ministero delle Politiche Agricole, Alimentari e Forestali: Rome, Italy, 2014. [Google Scholar]
- Anci-Aia, Razze Avicole Autoctone. Available online: www.anci-aia.it (accessed on 24 July 2023).
- Gandini, G.; Oldenbroek, K. Strategies for moving from conservation to utilisation. In Chapter 2 in Utilisation and Conservation of Farm Animal Genetic Resources; Oldenbroek, K., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2007. [Google Scholar]
- Sun, Y.; Yunlei, L.; Zong, Y.; Mehaisen, G.M.K.; Chen, J. Poultry genetic heritage cryopreservation and reconstruction: Advancement and future challenges. J. Anim. Sci. Biotechnol. 2022, 13, 115. [Google Scholar] [CrossRef] [PubMed]
- Mazur, P. Basic concepts in freezing cells. In Proceedings of the First International Conference on Deep Freezing of Boar Semen, Uppsala, Sweden, 25 August 1985; Johnson, L.A., Larsson, K., Eds.; Oak Ridge National Lab: Oak Ridge, TN, USA, 1985; pp. 91–111. [Google Scholar]
- Meuwissen, T.H.E. Operation of conservation schemes. In Genebanks and the Conservation of farm Animal Genetic Resources; Oldenbroek, J.K., Ed.; Wageningen Academic: Lelystad, The Netherlands, 1999; pp. 91–112. [Google Scholar]
- Blesbois, E. Biological features of the avian male gamete and their application to biotechnology of conservation. J. Poult. Sci. 2012, 49, 141–149. [Google Scholar] [CrossRef]
- FAO. Genetic aspects of conservation in farm livestock. In Animal Genetic Resources Conservation by Management, Data Banks and Training, Proceedings of the Joint FAO/UNEP Expert Panel Meeting, October 1983 Part 1; Smith, C., Ed.; FAO Animal Production and Health Paper No. 44/1; FAO: Rome, Italy, 1984; pp. 18–24. Available online: http://www.fao.org/docrep/010/ah808e/ah808e00.htm (accessed on 2 January 2023).
- FAO. Cryoconservation of animal genetic resources. In FAO Animal Production and Health Guidelines No. 12; FAO: Rome, Italy, 2012. [Google Scholar]
- Lake, P. Factors affecting the fertility level in poultry, with special references to artificial insemination. World’s Poultry Sci. J. 1983, 39, 106–117. [Google Scholar] [CrossRef]
- Mohan, J.; Sharma, S.K.; Kolluri, G.; Dhama, K. History if artificial insemination in poultry, its components and significance. World’s Poult. Sci. J. 2018, 74, 475–488. [Google Scholar] [CrossRef]
- Bakst, M.R.; Dymond, J.S. Artificial insemination in poultry. In Success in Artificial Insemination—Quality of Semen and Diagnostics Employed; Lemma, A., Ed.; IntechOpen Press: Rijeka, Croatia, 2013; pp. 175–195. ISBN 978-953-51-0920-4. [Google Scholar]
- Sauveurs, B. Reproduction naturelle et insemination artificielle. In Reproduction des Volailles et Production D’oeufs; Sauveur, B., De Reviers, M., Eds.; INRA Press: Paris, France, 1988; pp. 209–228. ISBN 2-85340-961-9. [Google Scholar]
- Iaffaldano, N.; Di Iorio, M.; Rusco, G.; Antenucci, E.; Zaniboni, L.; Madeddu, M.; Marelli, S.; Schiavone, A.; Soglia, D.; Buccioni, A.; et al. Italian semen cryobank of autochthonous chicken and turkey breeds: A tool for preserving genetic biodiversity. Ital. J. Anim. Sci. 2021, 20, 2022–2033. [Google Scholar] [CrossRef]
- Fass, Guide for the Care and Use of Agricultural Animals in Research and Teaching, 3rd ed.; Federation of Animal Science Societies: Champaign, IL, USA, 2010; Available online: https://www.aaalac.org/pub/?id=E900BDB6-CCCF-AB13-89B6-DA98A4B52218 (accessed on 2 January 2023).
- Burrows, W.H.; Quinn, J.P. A method of obtaining spermatozoa from the domestic fowl. Poult. Sci. 1935, 14, 253–254. [Google Scholar] [CrossRef]
- Brillard, J.P.; McDaniel, G.R. The reliability and efficiency of various methods for estimating spermatozoa concentration. Br. Poult. Sci. 1985, 64, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Mosca, F.; Madeddu, M.; Sayed, A.A.; Zaniboni, L.; Iaffaldano, N.; Cerolini, S. Combined effect of permeant and non-permeant cryoprotectants on the quality of frozen/thawed chicken sperm. Cryobiology 2016, 73, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Rosato, M.P.; Iaffaldano, N. Effect of chilling temperature on the long-term survival of rabbit spermatozoa held either in a Tris based or a jellified extender. Reprod. Domest. Anim. 2011, 46, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Lake, P.E.; Ravie, O. Effect on fertility of storing fowl semen for 14 h at 5 °C in fluids of different pH. J. Reprod. Fertil. 1979, 57, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Zaniboni, L.; Madeddu, M.; Mosca, M.; Ahmad, A.S.; Marelli, S.P.; Di Iorio, M.; Iaffaldano, N.; Cerolini, S. Concentration dependent effect of dimethylacetamide and N-methylacetamide on the quality and fertility of cryopreserved chicken semen. Cryobiology 2022, 106, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Madeddu, M.; Mosca, F.; Abdel Sayed, A.; Zaniboni, L.; Mangiagalli, M.G.; Colombo, E.; Cerolini, S. Effect of cooling rate on the survival of cryopreserved rooster sperm: Comparison of different distances in the vapour above the surface of the liquid nitrogen. Anim. Reprod. Sci. 2016, 171, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Burrows, W.H.; Quinn, J.P. Artificial Insemination of Chickens and Turkeys; Circular 525; US Department of Agriculture: Washington, DC, USA, 1939. [Google Scholar]
- SAS. SAS, User’s Guide Statistics, 9th ed.; SAS Institute Inc.: Cary, NC, USA, 1999. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1. [Google Scholar]
- Bortoluzzi, C.; Crooijmans, R.P.M.A.; Bosse, M.; Hiemstra, S.J.; Groenen, M.A.; Megens, H.J. The effects of recent changes in breeding preferences on maintaining traditional Dutch chicken genomic diversity. Heredity 2018, 121, 564–578. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, S.; Ciani, E.; Sardinia, M.T.; Sottile, G.; Pilla, F.; Portolano, B.; Bi, O.V. Ita Consortium. Runs of homozygosity reveal genome-wide autozygosity in Italian sheep breeds. Anim. Genet. 2018, 49, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Malomane, D.K.; Simianer, H.; Weigend, A.; Reimer, C.; Schmitt, A.O.; Weigend, S. The SYNBREED chicken diversity panel: A global resource to assess chicken diversity at high genomic resolution. BMC Genom. 2019, 20, 345. [Google Scholar] [CrossRef] [PubMed]
- Blesbois, E.; Seigneurin, F.; Grasseau, I.; Limouzin, C.; Besnard, J.; Gourichon, D.; Coquerelle, G.; Rault, P.; Tixier-Boichard, M. Semen cryopreservation for ex situ management of genetic diversity in chicken: Creation of the French avian cryobank. Poult. Sci. 2007, 86, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Moreno, J.; López-Sebastián, A.; Castaño, C.; Coloma, M.A.; Gómez-Bruneta, A.; Toledano-Díaz, A.; Prieto, M.T.; Campo, J.L. Sperm variables as predictors of fertility in Black Castellana roosters: Use in the selection of sperm donors for genome resources banking purposes. Span. J. Agric. Res. 2009, 7, 555–562. [Google Scholar] [CrossRef]
- Mussa, N.J.; Boonkum, W.; Chankitisakul, V. Semen quality traits of two native Thai native chickens producing a high and a low of semen volumes. Vet. Sci. 2023, 10, 73. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, A.; Łukaszewicz, E. Simple and Effective Methods of Freezing Capercaillie (Tetrao urogallus L.) Semen. PLoS ONE 2015, 10, e0116797. [Google Scholar] [CrossRef] [PubMed]
- Froman, D.P.; Feltmann, A.J. Sperm mobility: A quantitative trait of the domestic fowl (Gallus domesticus). Biol. Reprod. 1998, 58, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Froman, D.P.; Feltman, A.J. Sperm mobility: Phenotype in roosters (Gallus domesticus) determined by concentration of motile sperm and straight line velocity. Biol. Reprod. 2000, 62, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Siudzinska, A.; Lukaszewicz, E. The effect of breed on freezability of semen of fancy fowl. Anim. Sci. Pap. Rep. 2008, 26, 331–340. [Google Scholar]
- Partika, A.; Lukaszewicz, E.; Nizanski, W. Effect of cryopreservation on sperm parameters, lipid peroxidation and antioxidant enzymes activity in fowl semen. Theriogenology 2012, 77, 1497–1504. [Google Scholar] [CrossRef] [PubMed]
- Makhafola, M.B.; Lehloenya, K.C.; Mphaphthi, M.L.; Dinnyes, A.; Nedambale, T.L. The effect of breed on the survivability and motility rate of cryopreserved cock semen. S. Afr. J. Anim. Sci. 2009, 39, 242–245. [Google Scholar]
- Mosca, F.; Madeddu, M.; Sayed, A.A.; Zaniboni, L.; Iaffaldano, N.; Cerolini, S. Data on the positive synergic action of dimethylacetamide and trehalose on quality of cryopreserved chicken sperm. Data Brief 2016, 9, 1118–1121. [Google Scholar] [CrossRef] [PubMed]
- Mosca, F.; Zaniboni, L.; Abdel Sayed, A.; Madeddu, M.; Iaffaldano, N.; Cerolini, S. Effect of dimethylacetamide and N-methylacetamide on the quality and fertility of frozen/thawed chicken semen. Poult. Sci. 2019, 98, 6071–6077. [Google Scholar] [CrossRef] [PubMed]
- Tselutin, K.; Seigneurin, F.; Blesbois, E. Comparison of cryoprotectants and methods of cryopreservation of fowl spermatozoa. Poult. Sci. 1999, 78, 586–590. [Google Scholar] [CrossRef] [PubMed]
- Long, J.A. Avian Semen Cryopreservation: What Are the Biological Challenges? Poult. Sci. 2006, 85, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Long, J.A.; Bongalhardo, D.C.; Pelaéz, J.; Saxena, S.; Settar, P.; O’Sullivan, N.P.; Fulton, J.E. Rooster semen cryopreservation: Effect of pedigree line and male age on postthaw sperm function. Poult. Sci. 2010, 89, 966–973. [Google Scholar] [CrossRef] [PubMed]
- Janosikova, M.; Petricakova, K.; Ptacek, M.; Savvulidi, F.G.; Rychtarova, J.; Fulka, J., Jr. New approaches for long-term conservation of rooster spermatozoa. Physiol. Reprod. 2023, 102, 102386. [Google Scholar] [CrossRef] [PubMed]
- Shanmugan, M.; Pranay Kumar, K.; Mahapatra, R.K.; Anand, N.L. Effect of different cryoprotectants on post-thaw semen parameters and fertility in Nicobari chickens. Indian J. Poult. Sci. 2018, 53, 208–211. [Google Scholar] [CrossRef]
- Pranay Kumar, K.; Swathi, B.; Shanmugam, M. Cryopreservation of rooster semen using N-methylacetamide as cryoprotective agent. Int. J. Agric. Sci. 2018, 10, 5123–5126. [Google Scholar] [CrossRef]
- Kim, S.W.; Choi, J.S.; Ko, Y.G.; Do, Y.J.; Byun, M.; Park, S.B.; Seong, H.H.; Kim, C.D. Effect of N-methylacetamide concentration on the fertility and hatchability of cryopreserved Ogye rooster semen. Korean J. Poult. Sci. 2014, 1, 21–27. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, S.K.; Jang, H.J.; Kang, K.S.; Kim, J.H.; Choi, S.B.; Han, J.Y. Cryopreservation of Korean Oge chicken semen using N-methylacetamide. Cryoletters 2012, 33, 427–434. [Google Scholar] [PubMed]
- Sasaki, K.; Tatsumi, T.; Tsutsui, M.; Niinomi, T.; Imai, T.; Naito, M.; Tajima, A.; Nishi, Y. A method for cryopreserving semen from Yakido roosters using N-methylacetamide as a cryoprotective agent. J. Poult. Sci. 2010, 47, 297–310. [Google Scholar] [CrossRef]
- Abouelezz, F.M.K.; Castaño, C.; Toledano-Díaz, A.; Esteso, M.C.; Lopez-Sebastián, A.; Campo, J.L.; Santiago-Moreno, J. Effect of the interaction between cryopotectant concentration and cryopreservation method on frozen/thawed chicken sperm variables. Reprod. Domest. Anim. 2015, 50, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Abouelezz, F.M.K.; Sayed, M.A.M.; Santiago-Moreno, J. Fertility disturbances of dimethylacetamide and glycerol in rooster sperm diluents: Discrimination among effects produced pre and post freezing-thawing process. Anim. Reprod. Sci. 2017, 184, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Thélie, A.; Bailliard, A.; Seigneurin, F.; Zerjal, T.; Tixier-Boichard, M.; Blesbois, E. Chicken semen cryopreservation and use for the restoration of rare genetic resources. Poult. Sci. 2019, 98, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Donoghue, A.M.; Wishart, G.J. Storage of poultry semen. Anim. Reprod. Sci. 2000, 62, 213–232. [Google Scholar] [CrossRef] [PubMed]
- Blesbois, E. Freezing avian semen. Avian Biol. Rev. 2011, 4, 52–58. [Google Scholar] [CrossRef]
- Blesbois, E.; Grasseau, I.; Seigneurin, F.; Mignon-Grasteau, S.; Saint Jalme, M.; Mialon-Richard, M.M. Predictors of success of semen cryopreservation in chickens. Theriogenology 2008, 69, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, A.; Łukaszewicz, E.; Rzońca, Z. Successful preservation of capercaillie (Tetrao urogallus L.) semen in liquid and frozen states. Theriogenology 2012, 77, 899–907. [Google Scholar] [CrossRef] [PubMed]
- Łukaszewicz, E.; Kowalczyk, A.; Rzońca, Z. Characteristics of fresh semen of captive-bred capercaillie Tetrao urogallus L. Zoo Biol. 2011, 30, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Sellés, E.; Gadea, J.; Romar, R.; Matas, C.; Ruiz, S. Analysis of in vitro fertilizing capacity to evaluate the freezing procedures of boar semen and to predict the subsequent fertility. Reprod. Domest. Anim. 2003, 38, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, S.; Hanrahan, J.P.; Donovan, A.; Duffy, P.; Boland, M.P.; Lonergan, P. In vitro fertilization as a predictor of fertility from cervical insemination of sheep. Theriogenology 2005, 63, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Yànez-Ortiz, I.; Catalàn, J.; Rodríguez-Gil, J.E.; Miró, J.; Yeste, M. Advances in sperm cryopreservation in farm mammals: Cattle, horse, pig and sheep. Anim. Reprod. Sci. 2022, 246, 106904. [Google Scholar] [CrossRef]
- Duracka, M.; Benko, F.; Tvrdá, E. Molecular markers: A new paradigm in the prediction of sperm freezability. Int. J. Mol. Sci. 2023, 24, 3379. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.V.; Soler, L.; Thélie, A.; Grasseau, I.; Cordeiro, L.; Tomas, D.; Teixeira-Gomes, A.P.; Labas, V.; Blesbois, E. Proteomic changes associated with sperm fertilizing ability in meat-type roosters. Front. Cell Dev. Biol. 2021, 9, 655866. [Google Scholar]
Sperm | BP | BS | PP | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables 1 | Mean | Min | Max | CV | Mean | Min | Max | CV | Mean | Min | Max | CV |
VOL (mL) | 0.27 | 0.03 | 0.83 | 61.17 | 0.26 | 0.03 | 1.00 | 70.23 | 0.35 | 0.05 | 0.80 | 52.88 |
CONC (×109/mL) | 2.49 | 0.38 | 5.38 | 50.21 | 2.53 | 0.42 | 6.31 | 56.00 | 4.42 | 2.33 | 6.80 | 21.44 |
TSO (×109) | 0.72 | 0.03 | 2.92 | 84.03 | 0.71 | 0.025 | 2.93 | 94.13 | 1.57 | 0.23 | 4.3 | 60.06 |
SMI (%) | 78.50 | 58.00 | 98.00 | 16.16 | 70.36 | 44.00 | 89.00 | 18.26 | 92.05 | 72.00 | 100.0 | 6.89 |
TMS (%) | 83.15 | 62.70 | 100.0 | 15.14 | 74.82 | 18.10 | 99.00 | 39.83 | 82.06 | 21.50 | 99.40 | 21.90 |
PMS (%) | 18.77 | 9.90 | 33.10 | 40.73 | 12.73 | 0.50 | 25.70 | 61.87 | 19.30 | 2.40 | 39.20 | 50.73 |
VCL (μm/s) | 64.80 | 38.60 | 131.1 | 45.27 | 53.08 | 25.70 | 91.10 | 36.64 | 56.44 | 27.40 | 108.2 | 32.52 |
VSL (μm/s) | 25.15 | 16.90 | 40.30 | 31.87 | 19.51 | 7.80 | 31.00 | 31.14 | 21.67 | 10.00 | 39.90 | 34.14 |
VAP (μm/s) | 39.80 | 24.50 | 74.00 | 38.56 | 32.52 | 13.30 | 54.90 | 35.61 | 34.83 | 17.90 | 65.90 | 33.84 |
LIN (%) | 40.96 | 30.80 | 53.40 | 21.02 | 37.66 | 30.20 | 49.80 | 17.90 | 38.64 | 26.60 | 53.30 | 15.20 |
STR (%) | 64.57 | 54.20 | 75.80 | 12.59 | 61.05 | 54.40 | 75.10 | 11.34 | 62.29 | 51.40 | 74.90 | 8.82 |
WOB (%) | 62.81 | 56.40 | 71.40 | 8.63 | 61.36 | 51.60 | 67.60 | 7.35 | 61.63 | 50.20 | 70.80 | 7.27 |
ALH (μm) | 3.76 | 2.60 | 5.80 | 26.42 | 3.36 | 1.90 | 4.40 | 21.97 | 3.34 | 2.10 | 4.90 | 15.84 |
BCF (Hz) | 7.06 | 5.10 | 9.40 | 18.58 | 6.66 | 5.60 | 8.40 | 13.64 | 7.07 | 5.20 | 9.80 | 12.79 |
Sperm Variables 1 | Breeds | p | ||
---|---|---|---|---|
BP | BS | PP | ||
VOL (mL) | 0.43 ± 0.03 | 0.35 ± 0.03 | 0.41 ± 0.02 | ns |
CONC (×109/mL) | 3.11 ± 0.17 a | 3.67 ± 0.16 b | 4.44 ± 0.11 c | 0.0001 |
TSO (×109) | 1.34 ± 0.15 a | 1.35 ± 0.15 a | 1.89 ± 0.10 b | 0.0012 |
SMI (%) | 91.59 ± 1.14 a | 91.00 ± 1.09 a | 95.09 ± 0.77 b | 0.0029 |
TMS (%) | 89.52 ± 1.65 | 90.71 ± 1.57 | 92.54 ± 1.10 | ns |
PMS (%) | 25.78 ± 1.38 a | 24.58 ± 1.32 a | 29.90 ± 0.92 b | 0.0018 |
VCL (μm/s) | 77.55 ± 3.19 a | 76.59 ± 3.05 a | 67.36 ± 2.14 b | 00.79 |
VSL (μm/s) | 30.02 ± 1.27 | 28.43 ± 1.21 | 29.30 ± 0.85 | ns |
VAP (μm/s) | 48.43 ± 2.01 | 47.05 ± 1.92 | 44.68 ± 1.35 | ns |
LIN (%) | 39.49 ± 0.82 a | 37.37 ± 0.78 a | 43.64 ± 0.55 b | 0.0001 |
STR (%) | 62.44 ± 0.72 a | 60.57 ± 0.69 a | 65.65 ± 0.48 b | 0.0001 |
WOB (%) | 62.90 ± 0.64 a | 61.42 ± 0.61 a | 66.23 ± 0.43 b | 0.0001 |
ALH (μm) | 3.89 ± 0.08 a | 3.92 ± 0.08 a | 3.27 ± 0.05 b | 0.0001 |
BCF (Hz) | 6.95 ± 0.10 a | 6.91 ± 0.09 a | 7.74 ± 0.06 b | 0.0001 |
Sperm Variables 1 | Breeds | p | ||
---|---|---|---|---|
BP | BS | PP | ||
SMI (%) | 38.00 ± 3.88 | 31.60 ± 3.47 | 31.09 ± 2.39 | ns |
TMS (%) | 31.22 ± 4.53 | 29.22 ± 4.05 | 28.28 ± 2.79 | ns |
PMS (%) | 2.91 ± 0.87 | 3.02 ± 0.78 | 3.53 ± 0.53 | ns |
VCL (μm/s) | 36.76 ± 1.71 | 36.77 ± 1.53 | 36.62 ± 1.06 | ns |
VSL (μm/s) | 11.71 ± 1.24 | 11.57 ± 1.11 | 11.98 ± 0.77 | ns |
VAP (μm/s) | 20.21 ± 1.58 | 20.16 ± 1.41 | 20.35 ± 0.97 | ns |
LIN (%) | 31.75 ± 2.31 | 31.02 ± 2.07 | 31.89 ± 1.43 | ns |
STR (%) | 57.62 ± 2.07 | 56.75 ± 1.85 | 57.31 ± 1.27 | ns |
WOB (%) | 54.92 ± 2.29 | 54.29 ± 2.05 | 54.78 ± 1.41 | ns |
ALH (μm) | 3.21 ± 0.15 a | 2.85 ± 0.13 ab | 2.52 ± 0.09 b | 0.0014 |
BCF (Hz) | 6.52 ± 0.61 | 6.18 ± 0.55 | 6.70 ± 0.38 | ns |
Breeds | Fresh | Overall | |||
---|---|---|---|---|---|
Parameters | BP | BS | PP | Semen | Value |
Fertility 1 (%) | 4.8 a | 15.55 | 15.89 | 100 a | 16.43 b |
Fertile eggs/eggs set (n/n) | (11/229) | (31/213) | (34/214) | (38/38) | (114/694) |
Embryo viability 2 (%) | 36.36 a | 81.25 | 79.41 | 86.84 | 78.26 b |
Live embryos/fertile eggs (n/n) | (4/11) | (25/31) | (27/34) | (33/38) | (89/114) |
BP1 | BP4 | BP17 | BS28 | BS35 | BS36 | PP10 | PP19 | PP20 | Overall Value | |
---|---|---|---|---|---|---|---|---|---|---|
Fertility 1 (%) | 2.7 a | 6.98 a | 4.35 a | 7.5 | 31 a | 8.45 | 21.74 | 5.56 a | 20.55 | 16.43 b |
Fertile eggs/eggs set (n/n) | (2/74) | (6/86) | (3/69) | (6/80) | (19/62) | (6/71) | (15/69) | (4/72) | (15/73) | (114/694) |
Embryo viability 2 (%) | 0 | 66.67 | 0 | 66.67 | 94.74 | 57.14 | 73.33 | 25.00 | 100 | 78.26 |
Live embryos/fertile eggs (n/n) | (0/2) | (4/6) | (0/3) | (4/6) | (18/19) | (3/6) | (11/15) | (1/4) | (15/15) | (89/114) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madeddu, M.; Zaniboni, L.; Marelli, S.P.; Tognoli, C.; Belcredito, S.; Iaffaldano, N.; Di Iorio, M.; Cerolini, S. Selection of Male Donors in Local Chicken Breeds to Implement the Italian Semen Cryobank: Variability in Semen Quality, Freezability and Fertility. Vet. Sci. 2024, 11, 148. https://doi.org/10.3390/vetsci11040148
Madeddu M, Zaniboni L, Marelli SP, Tognoli C, Belcredito S, Iaffaldano N, Di Iorio M, Cerolini S. Selection of Male Donors in Local Chicken Breeds to Implement the Italian Semen Cryobank: Variability in Semen Quality, Freezability and Fertility. Veterinary Sciences. 2024; 11(4):148. https://doi.org/10.3390/vetsci11040148
Chicago/Turabian StyleMadeddu, Manuela, Luisa Zaniboni, Stefano Paolo Marelli, Cristina Tognoli, Silvia Belcredito, Nicolaia Iaffaldano, Michele Di Iorio, and Silvia Cerolini. 2024. "Selection of Male Donors in Local Chicken Breeds to Implement the Italian Semen Cryobank: Variability in Semen Quality, Freezability and Fertility" Veterinary Sciences 11, no. 4: 148. https://doi.org/10.3390/vetsci11040148
APA StyleMadeddu, M., Zaniboni, L., Marelli, S. P., Tognoli, C., Belcredito, S., Iaffaldano, N., Di Iorio, M., & Cerolini, S. (2024). Selection of Male Donors in Local Chicken Breeds to Implement the Italian Semen Cryobank: Variability in Semen Quality, Freezability and Fertility. Veterinary Sciences, 11(4), 148. https://doi.org/10.3390/vetsci11040148