In Vitro Antimycotic Activity and Structural Damage against Canine Malassezia pachydermatis Strains Caused by Mexican Stingless Bee Propolis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethanolic Extract of Propolis (EEP)
2.2. Gas Chromatography–Mass Spectrometry (GC-MS)
2.3. Evaluation of Antimycotic Activity
2.3.1. Inoculum Preparation
2.3.2. Determination of Minimum Inhibitory Concentration and Minimum Fungicidal Concentration
2.4. Structural Damage
3. Results
3.1. Gas Chromatography–Mass Spectrometry (GC-MS)
3.2. Evaluation of the Antimycotic Activity
3.3. Structural Damage
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bakchiche, B.; Temizer, I.K.; Güder, A.; Gencay, Ö.; Yegin, S.; Bardaweel, S.; Ghareeb, M. Chemical Composition and Biological Activities of Honeybee Products From Algeria. J. Appl. 2020, 7, 93. [Google Scholar] [CrossRef]
- Bankova, V.; Popova, M. PHCOG REV: Review Article Propolis of Stingless Bees: A Promising Source of Biologically Active Compounds. Pharmacogn. Rev. 2007, 1, 88–92. [Google Scholar]
- Ramón-Sierra, J.; Peraza-López, E.; Rodríguez-Borges, R.; Yam-Puc, A.; Madera-Santana, T.; Ortiz-Vázquez, E. Partial Characterization of Ethanolic Extract of Melipona beecheii Propolis and in vitro Evaluation of Its Antifungal Activity. Rev. Bras. Farmacogn. 2019, 29, 319–324. [Google Scholar] [CrossRef]
- Ayala, R. Revisión de Las Abejas Sin Aguijón de México (Hymenoptera: Apidae: Meliponini). Folia Entomol. Mex. 1999, 10, 106–123. [Google Scholar]
- Arnold, N.; Zepeda, R.; Vázquez, M.; Aldasoro, M. Las Abejas sin Aguijón y su Cultivo en Oaxaca, México Con Catálogo de Especies; Libros ECOSUR-CONABIO: San Cristóbal de las Casas, Mexico, 2018; pp. 10–58. [Google Scholar]
- Pardini, R.; Rocha, P.; El-Hani, C.; Pardini, F. Challenges and Opportunities for Bridging the Research—Implementation Gap in Ecological Science and Management in Brazil. In Conservation Biology: Voices from the Tropics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 75–85. [Google Scholar] [CrossRef]
- Hurtado Burillo, M.; Jara, L.; May-Itzá, W.; Quezada-Euán, J.J.; Ruiz, C.; Rúa, P.A. Geometric Morphometric and Microsatellite Analyses of Scaptotrigona mexicana and S. pectoralis (Apidae: Meliponini) Sheds Light on the Biodiversity of Mesoamerican Stingless Bees. J. Insect Conserv. 2016, 20, 753–763. [Google Scholar] [CrossRef]
- Aldama, J.; Rodríguez Pérez, B.; Gallardo, S.; Sánchez, T. Structural damage in Cryptococcus neoformans caused by a Mexican propolis. Nova Sci. 2020, 12, 1–17. [Google Scholar] [CrossRef]
- Quintero-Mora, M.L.; Londoño, O.A.; Hernández, H.F.; Manzano, G.P.; Lópe, M.R.; Soto, Z.C.I.; Carrillo, M.L.; Penieres, C.G.; García, C.G.; Cruz, T.A. Effect of Mexican propolis extracts from Apis mellifera on Candida albicans in vitro growth. Rev. Iberoam. Micol. 2008, 25, 22–26. [Google Scholar] [CrossRef]
- Rodríguez, P.B.; Canales, M.M.; Penieres, C.J.; Cruz, S.T. Chemical composition, antioxidant properties and antimicrobial activity of Mexican propolis. Acta Univ. 2019, 30, 1–29. [Google Scholar] [CrossRef]
- Flores, I.S.; Moreno, M.; Londoño, A.; Cruz, T.A. Use of mexican propolis for the tropical treatment of dermatomycosis in horses. Open J. Vet. Med. 2016, 6, 62770. [Google Scholar] [CrossRef]
- Tovar, N.; García, L.; Cruz, T.A. Propolis in dogs: Clinical experiences and perspectives (a brief review). Open J. Vet. Med. 2016, 5, 11–17. [Google Scholar] [CrossRef]
- Girão, M.D.; Prado, M.R.; Brilhante, R.S.N.; Cordeiro, R.A.; Monteiro, A.J.; Sidrim, J.J.C.; Rocha, M.F.G. Malassezia pachydermatis Isolated from Normal and Diseased External Ear Canals in Dogs: A Comparative Analysis. Vet. J. 2006, 172, 544–548. [Google Scholar] [CrossRef]
- Lozina, L.; Boehringer, S.; Daquino, M.; Acosta, O. Eficacia del Propóleo sobre Malassezia pachydermatis. Correlación de distintas Técnicas in vitro. Acta Farm. Bonaerense 2006, 25, 560. [Google Scholar]
- Cabañes, F.J. Diagnosis of Malassezia dermatitis and otitis in dogs and cats, is it just a matter of counting? Rev. Iberoam. Micol. 2021, 38, 3–4. [Google Scholar] [CrossRef]
- Deegan, K.R.; Fonseca, M.S.; Oliveira, D.C.P.; Santos, L.M.; Fernandez, C.C.; Hanna, S.A.; Machado, B.A.S.; Umsza-Guez, M.A.; Meyer, R.; Portela, R.W. Susceptibility of Malassezia pachydermatis Clinical Isolates to Allopathic Antifungals and Brazilian Red, Green, and Brown Propolis Extracts. Front. Vet. Sci. 2019, 6, 460. [Google Scholar] [CrossRef] [PubMed]
- Lozina, L.A.; Peichoto, M.E.; Boehringer, S.I.; Koscinczuk, P.; Granero, G.E.; Acosta, O.C. Efficacy of Argentine Propolis Formulation for Topical Treatment of Canine Otitis Externa. Arq. Bras. Med. Vet. Zootec. 2010, 62, 1359–1366. [Google Scholar] [CrossRef]
- Tovar Betancourt, N. Evaluación Antimicótica in vitro del Propóleo Mexicano Sobre Malassezia pachydermatis. Master’s thesis, Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán, Izcalli, Mexico, 2016. Available online: https://ru.dgb.unam.mx/bitstream/20.500.14330/TES01000753315/3/0753315.pdf (accessed on 5 October 2023).
- Medina, R.Y.M.; Rodríguez, C.M.; Rodríguez, M.M.A.; Hernández, H.A.B.; Delgado, B.N.L.; Chirino, Y.I.; Cruz, S.T.; Garcia, T.C.G.; Canales, M.M.M. Effect of the Essential Oils of Bursera morelensis and Lippia graveolens and Five Pure Compounds on the Mycelium, Spore Production, and Germination of Species of Fusarium. J. Fungi 2022, 8, 617. [Google Scholar] [CrossRef] [PubMed]
- Diario Oficial de la Federación. Norma Oficial Mexicana NOM-003-AG/GAN-2017: Propóleos, Producción y Especificaciones para su Procesamiento. 2017. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5500103&fecha=06/10/2017#gsc.tab=0 (accessed on 15 April 2023).
- Dos Santos, L.; Hochheim, S.; Boeder, A.; Kroger, A.; Tomazzoli, M.; Neto, R.; Maraschin, M.; Guedes, A.; Cordova, C. Chemical Characterization, Antioxidant, Cytotoxic and Antibacterial Activity of Propolis Extracts and Isolated Compounds from the Brazilian Stingless Bees Melipona quadrifasciata and Tetragonisca angustula. J. Apic. Res. 2017, 56, 543–558. [Google Scholar] [CrossRef]
- Rivera, Y.C.R.; Terrazas, L.I.; Jiménez, E.M.; Campos, J.E.; Flores, O.C.M.; Hernández, L.B.; Cruz, S.T.; Garrido, F.G.I.; Rodríguez, M.M.A.; Canales, M.M.M. Anti-Candida Activity of Bursera morelensis Ramírez Essential Oil and Two Compounds, α-Pinene and γ-Terpinene—An in vitro Study. Molecules 2017, 22, 2095. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, T.; Makimura, K.; Abe, M.; Shiota, R.; Nakamura, Y.; Kano, R.; Hasegawa, A.; Sugita, T.; Shibuya, S.; Watanabe, S.; et al. Revised Culture-Based System for Identification of Malassezia Species. J. Clin. Microbiol. 2007, 45, 3737–3742. [Google Scholar] [CrossRef]
- Aspíroz, C.; Gilaberte, Y.; Rezusta, A.; Boekhout, T.; Rubio, M.A.C. Gentamycin Inhibits the Growth of Malassezia pachydermatis in Culture. Rev. Iberoam. Micol. 2010, 27, 20–21. [Google Scholar] [CrossRef] [PubMed]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Sánchez, A.K.; Fernández, M.R.F.; Moreno, M.M.; Villegas, A.L.; Meneses, G.F.; Arenas, G.R. Sensitivity and specificity of mycological direct examination with calcofluor white for the diagnosis of onychomycosi. Med. Cut. Ibero-Lat. Am. 2013, 6, 261–266. [Google Scholar] [CrossRef]
- Phillips, A.J.; Sudbery, I.; Ramsdale, M. Apoptosis Induced by Environmental Stresses and Amphotericin B in Candida albicans. Proc. Natl. Acad. Sci. USA 2003, 100, 14327–14332. [Google Scholar] [CrossRef]
- Urbizu, G.A.L.; Castillo, R.O.; Martínez, A.G.C.; Torres, C.J.A. Natural Variability of Essential Oil and Antioxidants in the Medicinal Plant Turnera diffusa. Asian Pac. J. Trop. Med. 2017, 10, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Delmondes, G.A.; Santiago, L.I.C.; Días, D.Q.; Cunha, G.L.D.; Araujo, I.M.; Barbosa, R.; Coutinho, H.D.M.; Felipe, C.F.B.; Barbosa, F.J.M.; Lima, N.T.R.; et al. Pharmacological Applications of Farnesol (C15H26O): A patent review. Expert. Opin. Ther Pat. 2020, 30, 227–234. [Google Scholar] [CrossRef]
- Fatnassi, S.; Zarrouk, H.; Chatti, S. Chemical Composition and Antimicrobial Activity of Volatile Fraction of the Peel of Maclura pomifera Fruit Growing in Tunisia. J. Soc. Chim. Tunisia 2011, 13, 1–6. [Google Scholar]
- Chen, C.; Change, H.C.; Kirk, K. Betulachrysoquinone Hemiketal: A p-Benzoquinone Hemiketal Macrocyclic Compound Produced by Phanerochaete chrysosporium. Phytochemistry 1977, 16, 1983–1985. [Google Scholar] [CrossRef]
- Murira, K.G.; Njagi, E.N.M.; Machocho, A.K.; Nyawira, W.L.; Mungiria, J.N.M. Chemical Composition and in vitro Antioxidant Activities of Ocimum americanum. Adv. Anal. Chem. 2015, 5, 42–49. [Google Scholar]
- Otieno, A.J. Antimicrobial Activity and Phytochemical Profiles of Warburgia ugandensis Sprague (Canellaceae) Extracts from Different Populations across the Kenyan Rift Valley. Master’s thesis, Kenyatta University, Nairobi, Kenia, 2016. Available online: https://ir-library.ku.ac.ke/handle/123456789/17924 (accessed on 6 December 2023).
- Siswadi, S.; Saragih, G.S. Phytochemical Analysis of Bioactive Compounds in Ethanolic Extract of Sterculia quadrifida R. Br. AIP Conf. Proc. 2021, 2353, 030098. [Google Scholar] [CrossRef]
- Xie, C.; Wang, S.; Cao, M.; Xiong, W.; Wu, L. (E)-9-Octadecenoic Acid Ethyl Ester Derived from Lotus seedpod Ameliorates Inflammatory Responses by Regulating MAPKs and NF-κB Signalling Pathways in LPS-Induced RAW264.7 Macrophages. Evid. Based Complement. Altern. Med. 2022, 2022, 6731360. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Yeo, Y.-S.; Zhao, Y.; O’Maille, P.E.; Greenhagen, B.T.; Noel, J.P.; Coates, R.M.; Chappell, J. Functional Characterization of Premnaspirodiene Oxygenase, a Cytochrome P450 Catalyzing Regio- and Stereo-Specific Hydroxylations of Diverse Sesquiterpene Substrates. Int. J. Biol. Chem. 2007, 282, 31744–31754. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.Q.; Yu, Z.X.; Wang, C.H.; Gong, B.; Liu, Y.Y.; Wei, J.H. Chemical Constituents and Anti-Inflammatory Effect of Incense Smoke from Agarwood Determined by GC-MS. Int. J. Anal. Chem. 2020, 2020, 4575030. [Google Scholar] [CrossRef]
- Bruzual Villarroel, H.Y.; Henríquez Guzmán, W.; Crescente, O.; Lanza, J.G. Aceite esencial de Wedelia calycina (Asteraceae): Composición química, actividad antibacteriana y antifúngica. Saber 2015, 27, 87–93. [Google Scholar]
- Sarvesan, R.; Eganathan, P.; Saranya, J.; Sujanapa, P. Chemical Composition and Antibacterial Activity of Leaf Essential Oil of Eugenia cotinifolia ssp. Codyensis (Munro Ex Wight) Ashton. Int. J. Pharm. Sci. 2015, 6, 3981–3985. [Google Scholar]
- Ambriz-Pérez, D.; Leyva-López, N.; Gutiérrez-Grijalva, E.P. Phenolic Compounds: Natural Alternative in Inflammation Treatment. A Review. Cogent Food Agric. 2016, 2, 1131412. [Google Scholar] [CrossRef]
- Badiazaman, A.A.M.; Zin, N.B.M.; Annisava, A.R.; Nafi, N.E.M.; Mohd, K.S. Phytochemical Screening and Antioxidant Properties of Stingless Bee Geniotrigona thoracica Propolis. Malays. J. Fundam. Appl. Sci. 2019, 15, 330–335. [Google Scholar] [CrossRef]
- Surek, M.; Fachi, M.M.; de Fátima Cobre, A.; de Oliveira, F.F.; Pontarolo, R.; Crisma, A.R.; de Souza, W.M.; Felipe, K.B. Chemical composition, cytotoxicity and antibacterial activity of propolis from Africanized Honeybees and three different Meliponini species. J. Ethnopharmacol. 2021, 269, 113662. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.R.; Sandjo, L.P.; Friedemann, M.T.; Tomazzoli, M.M.; Maraschin, M.; Mello, C.F.; Santos, A.R.S. Chemical characterization, antioxidant and antimicrobial activity of propolis obtained from Melipona quadrifasciata and Tetragonisca angustula Stingless Bees. Braz. J. Med. Biol. Res. 2018, 51, e7118. [Google Scholar] [CrossRef] [PubMed]
- Yam, P.A.; Santana, H.A.; Yah, P.N.; Ramón, S.J.M.; Cáceres, M.R.; Borges, A.R.L.; Ortiz-Vázquez, E. Pentacyclic triterpenes and other constituents in propolis extract from Melipona beecheii collected in Yucatán, México. Rev. Bras. Farmacogn. 2019, 29, 358–363. [Google Scholar] [CrossRef]
- Grajales, C.J.; Elias, C.J.; Lozano, G.E.; Moreno, C.F.; Albores, F.V.; Lópe, G.A. Actividad antimicrobiana de propóleos de abejas sin aguijón en combinación con ajo, Allium sativum (Amaryllidaceae). Rev. Biol. Trop. 2020, 69, 23–35. [Google Scholar] [CrossRef]
- Hee, Y.C. In vitro evaluation of the antifungal activity of propolis extract on Cryptococcus neoformans and Candida albicans. Mycobiology 2002, 30, 93–95. [Google Scholar] [CrossRef]
- Shehu, A.; Ismail, S.; Rohin, M.; Harun, A.; Aziz, A.; Haque, M. Antifungal properties of Malaysian Tualang Honey and stingless bee propolis against Candida albicans and Cryptococcus neoformans. J. App. Pharm. Sci 2016, 6, 44–50. [Google Scholar] [CrossRef]
- Farida, S.; Sahlan, M.; Rohmatin, E.; Adawiyah, R. The beneficial effect of Indonesian Propolis wax from Tetragonula sp. as a therapy in limited vaginal candidiasis patients. Saudi J. Biol. Sci. 2020, 27, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, R.L.; Maboni, F.; Machado, G.; Alves, S.H.; de Vargas, A.C. Antimicrobial activity of propolis extract against Staphylococcus coagulase positive and Malassezia pachydermatis of canine otitis. Vet. Microbiol. 2010, 142, 432–434. [Google Scholar] [CrossRef] [PubMed]
- Hageage, G.J.; Harrington, B.J. Use of calcofluor white in clinical mycology. Lab. Med. 1984, 15, 109–112. [Google Scholar] [CrossRef]
- Ram, A.F.J.; Klis, F.M. Identification of fungal cell wall mutants using susceptibility assays based on calcofluor white and Congo red. Nat. Protoc. 2006, 1, 2253–2256. [Google Scholar] [CrossRef]
- Medina-Romero, Y.M.; Hernández-Hernández, A.B.; Rodríguez-Monroy, M.A.; Canales-Martínez, M.M. Essential oils of Bursera morelensis and Lippia graveolens for the development of a new biopesticides in postharvest control. Sci. Rep. 2021, 11, 20135. [Google Scholar] [CrossRef]
- De Castro, P.A.; Bom, V.L.P.; Brown, N.A.; Almeida, R.S.C.D.; Ramalho, L.N.Z.; Savoldi, M.; Goldman, M.H.S.; Berretta, A.A.; Goldman, G.H. Identification of the cell targets important for propolis-induced cell death in Candida albicans. Fungal Gent. Biol. 2013, 60, 74–86. [Google Scholar] [CrossRef] [PubMed]
- Adomavičiūtė, E.; Pupkevičiūtė, S.; Juskaite, V.; Zilius, M.; Stanys, S.; Pavilonis, A.; Briedis, V. Formation and investigation of electrospun PLA Materials with propolis extracts and silver nanoparticles for biomedical applications. J. Nanomater. 2017, 2017, 8612819. [Google Scholar] [CrossRef]
- Alfarrayeh, I.; Pollák, E.; Czéh, Á.; Vida, A.; Das, S.; Papp, G. Antifungal and anti-biofilm effects of caffeic acid phenethyl ester on different Candida species. Antibiotics 2021, 10, 1359. [Google Scholar] [CrossRef]
- Grecka, K.; Xiong, Z.R.; Chen, H.; Pełka, K.; Worobo, R.W.; Szweda, P. Effect of ethanol extracts of propolis (EEPs) against Staphylococcal biofilm—microscopic studies. Pathogens 2020, 9, 646. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, O.V.D.; Pérez, B.R.; Cruz-Sánchez, T.A.; Tovar, C.G.G.; Bordes, J.L.N.; Zárate, C.I.S. Evaluation of the antiviral activity of propolis from native bees (Plebeia frontalis) against canine distemper virus. Open J. Vet. Med. 2020, 10, 207–218. [Google Scholar] [CrossRef]
Retention Time (min) | Compound Proposed by the Database | Chemical Classification | Biological Activity | Reference |
---|---|---|---|---|
30.60 | (1.alpha.,4.alpha.,4a.alpha.,10a.alpha)-1,4,4a,5,6,9,10,10a-octahydro-11,11-dimethyl-1,4-methanocycloocta[d]pyridazine | Pyridazine (heterocyclic compound) | Antioxidant | [28] |
31.58 | Farnesol Isomer a | Sesquiterpene | Antimicrobial | [29] |
32.48 | Ethanone,1-(1,3a,4,5,6,7-hexahydro-4-hydroxy-3,8-dimethyl-5-azulenyl)- | Sesquiterpene ketone | Antimicrobial | [30] |
33.68 | 3,4,5,6,7,8,9,10,11,12,13,14-Dodecahydro-18,18a- benzoxacyclohexadecin-16(18aH)-one dihydroxy methyl-2H-1--2- | Macrocycle | Activity not reported | [31] |
33.73 | Furan-2,5-dicarbaldehyde | Heterocyclic compound with aldehyde groups | Antioxidant, antimicrobial | [32,33] |
Retention Time (min) | Compound Proposed by the Database | Chemical Classification | Biological Activity | Reference |
---|---|---|---|---|
23.17 | Hexadecanoic acid ethyl ester | Fatty acid | Antioxidant, hypocholesterolemic, nematicide pesticide | [34] |
25.20 | 9-Octadecenoic acid, ethyl ester | Fatty acid | Antiinflammatory | [35] |
28.98 | 1-(1,1-dimethylethoxy)-4-methylbenzene | Impurity | Not founded information | |
30.68 | Solavetivone | Sesquiterpenoid and a cyclic ketone | Antifungal, antiinflammatory | [36,37] |
30.90 | Benzene, 1-(1,1-dimethylpropoxy)-4-methyl | Impurity | No information found | |
31.65 | 2-Methyl-3-(3-methyl-but-2-enyl)-2-(4-methyl-pent-3-enyl)-oxethane | Heterocycle Compound derivative | No information found | |
32.75 | (1S,6R,9S)-5,5,9,10-Tetramethyltricycle[7.3.0.0(1,6)]dodec-10(11)-ene | Sesquiterpene | Antibacterial antifungal | [38,39] |
33.75 | 1,3-Benzenediol, 5-hexyl | Resorcinol derivative | Antibacterial, anthelmintic, local anaesthetic | [40] |
Mexican Stingless Bee Species | Origin | M. pachydermatis ATCC 14522 | Isolation Clinical * | Number of Isolates Clinical Inhibited * | ||
---|---|---|---|---|---|---|
MIC (mg/mL) | MFC (mg/mL) | Media MIC (mg/mL) | Media MFC (mg/mL) | |||
Scaptotrigona mexicana | Yecuatla, Veracruz | 7.11 | 21.33 | 7.11 | 21.33 | 3 |
Tetragonisca angustula | Chalchihuitan Chiapas | 7.11 | 21.33 | 7.11 | 21.33 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuentes Esquivel, D.B.; Pérez, B.R.; Betancourt, N.T.; García Tovar, C.G.; Penieres Carrillo, J.G.; Galindo, F.H.; Flores, J.P.; Sánchez, T.A.C. In Vitro Antimycotic Activity and Structural Damage against Canine Malassezia pachydermatis Strains Caused by Mexican Stingless Bee Propolis. Vet. Sci. 2024, 11, 106. https://doi.org/10.3390/vetsci11030106
Fuentes Esquivel DB, Pérez BR, Betancourt NT, García Tovar CG, Penieres Carrillo JG, Galindo FH, Flores JP, Sánchez TAC. In Vitro Antimycotic Activity and Structural Damage against Canine Malassezia pachydermatis Strains Caused by Mexican Stingless Bee Propolis. Veterinary Sciences. 2024; 11(3):106. https://doi.org/10.3390/vetsci11030106
Chicago/Turabian StyleFuentes Esquivel, Diana Berenice, Betsabé Rodríguez Pérez, Nelly Tovar Betancourt, Carlos Gerardo García Tovar, José Guillermo Penieres Carrillo, Florentina Hernández Galindo, Javier Pérez Flores, and Tonatiuh Alejandro Cruz Sánchez. 2024. "In Vitro Antimycotic Activity and Structural Damage against Canine Malassezia pachydermatis Strains Caused by Mexican Stingless Bee Propolis" Veterinary Sciences 11, no. 3: 106. https://doi.org/10.3390/vetsci11030106
APA StyleFuentes Esquivel, D. B., Pérez, B. R., Betancourt, N. T., García Tovar, C. G., Penieres Carrillo, J. G., Galindo, F. H., Flores, J. P., & Sánchez, T. A. C. (2024). In Vitro Antimycotic Activity and Structural Damage against Canine Malassezia pachydermatis Strains Caused by Mexican Stingless Bee Propolis. Veterinary Sciences, 11(3), 106. https://doi.org/10.3390/vetsci11030106