Perspectives on SARS-CoV-2 Cases in Zoological Institutions
Abstract
:Simple Summary
Abstract
1. Introduction
2. SARS-CoV-2 Host Range and Clinical Disease
2.1. Predicted and Demonstrated Susceptibility
2.2. Carnivores
2.2.1. Lions
2.2.2. Tigers
2.2.3. Other Felids
2.2.4. Mustelids
2.2.5. Procyonids and Viverrids
2.3. Nonhuman Primates
2.3.1. Old World Primates
2.3.2. New World Primates
2.4. Artiodactyla
2.4.1. Hippopotamuses
2.4.2. Cervids
3. Viral Dynamics and Diagnostics
3.1. Viral Dynamics
3.2. Diagnostic Methods
3.2.1. RT-PCR
3.2.2. Virus Isolation
3.2.3. Antigen Tests
3.2.4. Serology
3.3. Sampling Types
3.3.1. Oral and Nasal Samples
3.3.2. Fecal and Rectal Samples
3.3.3. (Waste) Water Sampling
3.3.4. Tissue Samples
4. Treatment Options
5. Viral Transmission and Associated Risks
5.1. SARS-CoV-2 Transmission
5.1.1. Surface Contamination, Stability, and Disinfection
5.1.2. Methods of Transmission
5.2. Spillover, Mutations, and Variants
5.2.1. Spillover to Humans
5.2.2. Variants of Concern
6. Moving Forward
6.1. Early Detection Strategies
6.2. Biosecurity and Visitor Management
6.3. Considerations for Vaccination Programs
6.4. Long COVID
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Medina-Enríquez, M.M.; Lopez-León, S.; Carlos-Escalante, J.A.; Aponte-Torres, Z.; Cuapio, A.; Wegman-Ostrosky, T. ACE2: The molecular doorway to SARS-CoV-2. Cell Biosci. 2020, 10, 148. [Google Scholar] [CrossRef]
- McAloose, D.; Laverack, M.; Wang, L.; Killian, M.L.; Caserta, L.C.; Yuan, F.; Mitchell, P.K.; Queen, K.; Mauldin, M.R.; Cronk, B.D.; et al. From People to Panthera: Natural SARS-CoV-2 Infection in Tigers and Lions at the Bronx Zoo. mBio 2020, 11, e02220-20. [Google Scholar] [CrossRef]
- Harvey, W.T.; Carabelli, A.M.; Jackson, B.; Gupta, R.K.; Thomson, E.C.; Harrison, E.M.; Ludden, C.; Reeve, R.; Rambaut, A.; Peacock, S.J.; et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 2021, 19, 409–424. [Google Scholar] [CrossRef] [PubMed]
- Praharaj, M.R.; Garg, P.; Kesarwani, V.; Topno, N.A.; Khan, R.I.N.; Sharma, S.; Panigrahi, M.; Mishra, B.P.; Mishra, B.; Kumar, G.S.; et al. SARS-CoV-2 Spike Glycoprotein and ACE2 Interaction Reveals Modulation of Viral Entry in Wild and Domestic Animals. Front. Med. 2022, 8, 775572. [Google Scholar] [CrossRef]
- Damas, J.; Hughes, G.M.; Keough, K.C.; Painter, C.A.; Persky, N.S.; Corbo, M.; Hiller, M.; Koepfli, K.-P.; Pfenning, A.R.; Zhao, H.; et al. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc. Natl. Acad. Sci. USA 2020, 117, 22311–22322. [Google Scholar] [CrossRef] [PubMed]
- Fischhoff, I.R.; Castellanos, A.A.; Rodrigues, J.P.G.L.M.; Varsani, A.; Han, B.A. Predicting the zoonotic capacity of mammals to transmit SARS-CoV-2. Proc. Biol. Sci. 2021, 288, 20211651. [Google Scholar] [CrossRef] [PubMed]
- Kapczynski, D.R.; Sweeney, R.; Spackman, E.; Pantin-Jackwood, M.; Suarez, D.L. Development of an in vitro model for animal species susceptibility to SARS-CoV-2 replication based on expression of ACE2 and TMPRSS2 in avian cells. Virology 2022, 569, 1–12. [Google Scholar] [CrossRef]
- Ulrich, L.; Wernike, K.; Hoffmann, D.; Mettenleiter, T.C.; Beer, M. Experimental Infection of Cattle with SARS-CoV-2. Emerg. Infect. Dis. 2020, 26, 2979–2981. [Google Scholar] [CrossRef] [PubMed]
- Encinas, P.; Escalera, A.; Aydillo, T.; Iglesias, I.; Nelson, M.I.; García-Sastre, A.; del Real, G. SARS-CoV-2 Neutralizing Antibodies in Free-Ranging Fallow Deer (Dama dama) and Red Deer (Cervus elaphus) in Suburban and Rural Areas in Spain. Transbound. Emerg. Dis. 2023, 2023, 3324790. [Google Scholar] [CrossRef]
- Porter, S.M.; Hartwig, A.E.; Bielefeldt-Ohmann, H.; Marano, J.M.; Root, J.J.; Bosco-Lauth, A.M. Experimental SARS-CoV-2 Infection of Elk and Mule Deer. Emerg. Infect. Dis. 2024, 30, 354–357. [Google Scholar] [CrossRef]
- Hamer, S.A.; Nunez, C.; Roundy, C.M.; Tang, W.; Thomas, L.; Richison, J.; Benn, J.S.; Auckland, L.D.; Hensley, T.; Cook, W.E.; et al. Persistence of SARS-CoV-2 neutralizing antibodies longer than 13 months in naturally infected, captive white-tailed deer (Odocoileus virginianus), Texas. Emerg. Microbes Infect. 2022, 11, 2112–2115. [Google Scholar] [CrossRef] [PubMed]
- Hale, V.L.; Dennis, P.M.; McBride, D.S.; Nolting, J.M.; Madden, C.; Huey, D.; Ehrlich, M.; Grieser, J.; Winston, J.; Lombardi, D.; et al. SARS-CoV-2 infection in free-ranging white-tailed deer. Nature 2022, 602, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Bui, V.N.; Dao, T.D.; Tran, L.H.; Vu, T.T.; Nguyen, T.H.; Nguyen, G.H.; Tran, K.V.D.; Nguyen, H.X.; Bui, A.N.; Unger, F.; et al. SARS-CoV-2 Infection in a Hippopotamus, Hanoi, Vietnam. Emerg. Infect. Dis. 2023, 29, 658–661. [Google Scholar] [CrossRef] [PubMed]
- Vercammen, F.; Cay, B.; Gryseels, S.; Balmelle, N.; Joffrin, L.; Van Hoorde, K.; Verhaegen, B.; Mathijs, E.; Van Vredendaal, R.; Dharmadhikari, T.; et al. SARS-CoV-2 infection in captive hippos (Hippopotamus amphibius), Belgium. Animals 2023, 13, 316. [Google Scholar] [CrossRef] [PubMed]
- Pickering, B.S.; Smith, G.; Pinette, M.M.; Embury-Hyatt, C.; Moffat, E.; Marszal, P.; Lewis, C.E. Susceptibility of Domestic Swine to Experimental Infection with Severe Acute Respiratory Syndrome Coronavirus 2. Emerg. Infect. Dis. 2021, 27, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Bosco-Lauth, A.M.; Hartwig, A.E.; Porter, S.M.; Gordy, P.W.; Nehring, M.; Byas, A.D.; VandeWoude, S.; Ragan, I.K.; Maison, R.M.; Bowen, R.A. Experimental infection of domestic dogs and cats with SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2020, 117, 26382–26388. [Google Scholar] [CrossRef] [PubMed]
- Sit, T.H.C.; Brackman, C.J.; Ip, S.M.; Tam, K.W.S.; Law, P.Y.T.; To, E.M.W.; Yu, V.Y.T.; Sims, L.D.; Tsang, D.N.C.; Chu, D.K.W.; et al. Infection of dogs with SARS-CoV-2. Nature 2020, 586, 776–778. [Google Scholar] [CrossRef] [PubMed]
- Freuling, C.M.; Breithaupt, A.; Müller, T.; Sehl, J.; Balkema-Buschmann, A.; Rissmann, M.; Klein, A.; Wylezich, C.; Höper, D.; Wernike, K.; et al. Susceptibility of raccoon dogs for experimental SARS-CoV-2 infection. Emerg. Infect. Dis. 2020, 26, 2982–2985. [Google Scholar] [CrossRef]
- Francisco, R.; Hernandez, S.M.; Mead, D.G.; Adcock, K.G.; Burke, S.C.; Nemeth, N.M.; Yabsley, M.J. Experimental Susceptibility of North American Raccoons (Procyon lotor) and Striped Skunks (Mephitis mephitis) to SARS-CoV-2. Front. Vet. Sci. 2022, 8, 715307. [Google Scholar] [CrossRef]
- WOAH. SARS-CoV-2 in Animals Situation Report 22. Available online: https://www.woah.org/app/uploads/2023/07/sars-cov-2-situation-report-22.pdf (accessed on 12 December 2023).
- Padilla-Blanco, M.; Aguiló-Gisbert, J.; Rubio, V.; Lizana, V.; Chillida-Martínez, E.; Cardells, J.; Maiques, E.; Rubio-Guerri, C. The Finding of the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) in a Wild Eurasian River Otter (Lutra lutra) Highlights the Need for Viral Surveillance in Wild Mustelids. Front. Vet. Sci. 2022, 9, 826991. [Google Scholar] [CrossRef]
- Davoust, B.; Guérin, P.; Orain, N.; Fligny, C.; Flirden, F.; Fenollar, F.; Mediannikov, O.; Edouard, S. Evidence of antibodies against SARS-CoV-2 in wild mustelids from Brittany (France). bioRxiv 2022, 69, 3400–3407. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.I.; Kim, S.G.; Kim, S.M.; Kim, E.H.; Park, S.J.; Yu, K.M.; Chang, J.H.; Kim, E.J.; Lee, S.; Casel, M.A.B.; et al. Infection and Rapid Transmission of SARS-CoV-2 in Ferrets. Cell Host Microbe 2020, 27, 704–709. [Google Scholar] [CrossRef]
- Giner, J.; Villanueva-Saz, S.; Tobajas, A.P.; Pérez, M.D.; González, A.; Verde, M.; Yzuel, A.; García-García, A.; Taleb, V.; Lira-Navarrete, E.; et al. SARS-CoV-2 Seroprevalence in Household Domestic Ferrets (Mustela putorius furo). Animals 2021, 11, 667. [Google Scholar] [CrossRef] [PubMed]
- Boklund, A.; Hammer, A.S.; Quaade, M.L.; Rasmussen, T.B.; Lohse, L.; Strandbygaard, B.; Jørgensen, C.S.; Olesen, A.S.; Hjerpe, F.B.; Petersen, H.H.; et al. SARS-CoV-2 in Danish Mink Farms: Course of the Epidemic and a Descriptive Analysis of the Outbreaks in 2020. Animals 2021, 11, 164. [Google Scholar] [CrossRef]
- Larsen, H.D.; Fonager, J.; Lomholt, F.K.; Dalby, T.; Benedetti, G.; Kristensen, B.; Urth, T.R.; Rasmussen, M.; Lassaunière, R.; Rasmussen, T.B.; et al. Preliminary report of an outbreak of SARS-CoV-2 in mink and mink farmers associated with community spread, Denmark, June to November 2020. Eurosurveillance 2021, 26, 2100009. [Google Scholar] [CrossRef]
- Oreshkova, N.; Molenaar, R.J.; Vreman, S.; Harders, F.; Oude Munnink, B.B.; Hakze-van der Honing, R.W.; Gerhards, N.; Tolsma, P.; Bouwstra, R.; Sikkema, R.S.; et al. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Science 2020, 25, 2001005. [Google Scholar] [CrossRef] [PubMed]
- Allender, M.C.; Adkesson, M.J.; Langan, J.N.; Delk, K.W.; Meehan, T.; Aitken-Palmer, C.; McEntire, M.M.; Killian, M.L.; Torchetti, M.; Morales, S.A.; et al. Multi-species outbreak of SARS-CoV-2 Delta variant in a zoological institution, with the detection in two new families of carnivores. Transbound. Emerg. Dis. 2022, 69, 3060–3075. [Google Scholar] [CrossRef]
- Gaudreault, N.N.; Trujillo, J.D.; Carossino, M.; Meekins, D.A.; Morozov, I.; Madden, D.W.; Indran, S.V.; Bold, D.; Balaraman, V.; Kwon, T.; et al. SARS-CoV-2 infection, disease and transmission in domestic cats. Emerg. Microbes Infect. 2020, 9, 2322–2332. [Google Scholar] [CrossRef]
- Newman, A.; Smith, D.; Ghai, R.R.; Wallace, R.M.; Torchetti, M.K.; Loiacono, C.; Murrell, L.S.; Carpenter, A.; Moroff, S.; Rooney, J.A.; et al. First Reported Cases of SARS-CoV-2 Infection in Companion Animals—New York, March–April 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 710–713. [Google Scholar] [CrossRef]
- Tewari, D.; Miller, R.; Livengood, J.; Wang, L.; Killian, M.L.; Bustamante, F.; Kessler, C.; Thirumalapura, N.; Terio, K.; Torchetti, M.; et al. SARS-CoV-2 Infection Dynamics in the Pittsburgh Zoo Wild Felids with Two Viral Variants (Delta and Alpha) during the 2021–2022 Pandemic in the United States. Animals 2023, 13, 3094. [Google Scholar] [CrossRef]
- Siegrist, A.A.; Richardson, K.L.; Ghai, R.R.; Pope, B.; Yeadon, J.; Culp, B.; Behravesh, C.B.; Liu, L.; Brown, J.A.; Boyer, L.V. Probable Transmission of SARS-CoV-2 from African Lion to Zoo Employees, Indiana, USA, 2021. Emerg. Infect. Dis. 2023, 29, 1102–1108. [Google Scholar] [CrossRef]
- Koeppel, K.N.; Mendes, A.; Strydom, A.; Rotherham, L.; Mulumba, M.; Venter, M. SARS-CoV-2 Reverse Zoonoses to Pumas and Lions, South Africa. Viruses 2022, 14, 120. [Google Scholar] [CrossRef]
- Bartlett, S.L.; Diel, D.G.; Wang, L.; Zec, S.; Laverack, M.; Martins, M.; Caserta, L.C.; Killian, M.L.; Terio, K.; Olmstead, C.; et al. SARS-CoV-2 Infection and Longitudinal Fecal Screening in Malayan Tigers (Panthera Tigris Jacksoni), Amur Tigers (Panthera Tigris Altaica), and African Lions (Panthera Leo Krugeri) at The Bronx Zoo, New York, USA. J. Zoo Wildl. Med. 2021, 51, 733–744. [Google Scholar] [CrossRef]
- Fernández-Bellon, H.; Rodon, J.; Fernández-Bastit, L.; Almagro, V.; Padilla-Solé, P.; Lorca-Oró, C.; Valle, R.; Roca, N.; Grazioli, S.; Trogu, T.; et al. Monitoring Natural SARS-CoV-2 Infection in Lions (Panthera leo) at the Barcelona Zoo: Viral Dynamics and Host Responses. Viruses 2021, 13, 1683. [Google Scholar] [CrossRef] [PubMed]
- Dusseldorp, F.; Bruins-van-Sonsbeek, L.G.R.; Buskermolen, M.; Niphuis, H.; Dirven, M.; Whelan, J.; Oude Munnink, B.B.; Koopmans, M.; Fanoy, E.B.; Sikkema, R.S.; et al. SARS-CoV-2 in lions, gorillas and zookeepers in the Rotterdam Zoo, the Netherlands, a One Health investigation, November 2021. Eurosurveillance 2023, 28, 2200741. [Google Scholar] [CrossRef] [PubMed]
- Nagy, A.; Stará, M.; Vodička, R.; Černíková, L.; Jiřincová, H.; Křivda, V.; Sedlák, K. Reverse-zoonotic transmission of SARS-CoV-2 lineage alpha (B.1.1.7) to great apes and exotic felids in a zoo in the Czech Republic. Arch. Virol. 2022, 167, 1681–1685. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Kumar, N.; Bhatia, S.; Aasdev, A.; Kanniappan, S.; Thayasekhar, A.; Gopinadhan, A.; Silambarasan, R.; Sreekumar, C.; Chandan, K.D.; et al. Natural infection of SARS-CoV-2 delta variant in Asiatic lions (Panthera leo persica) in India. Emerg. Infect. Dis. 2021, 27, 2723–2725. [Google Scholar] [CrossRef] [PubMed]
- Karikalan, M.; Chander, V.; Mahajan, S.; Deol, P.; Agrawal, R.K.; Nandi, S.; Rai, S.K.; Mathur, A.; Pawde, A.; Singh, K.P.; et al. Natural infection of Delta mutant of SARS-CoV-2 in Asiatic lions of India. Transbound. Emerg. Dis. 2022, 69, 3047–3055. [Google Scholar] [CrossRef] [PubMed]
- Borkakoti, R.; Karikalan, M.; Nehul, S.K.; Jogi, H.R.; Sharma, K.; Nautiyal, S.; Mishra, R.; Mahajan, S.; Biswas, S.K.; Nandi, S.; et al. A retrospective study showing a high rate of seropositivity against SARS-CoV-2 in wild felines in India. Arch. Virol. 2023, 168, 109. [Google Scholar] [CrossRef] [PubMed]
- Sangkachai, N.; Chaiwattanarungruengpaisan, S.; Thongdee, M.; Suksai, P.; Tangsudjai, S.; Wongluechai, P.; Suwanpakdee, S.; Wiriyarat, W.; Buddhirongawatr, R.; Prasittichai, L.; et al. Serological and Molecular Surveillance for SARS-CoV-2 Infection in Captive Tigers (Panthera tigris), Thailand. Animals 2022, 12, 3350. [Google Scholar] [CrossRef]
- Cushing, A.C.; Sawatzki, K.; Grome, H.N.; Puryear, W.B.; Kelly, N.; Runstadler, J. Duration of Antigen Shedding and Development of Antibody Titers in Malayan Tigers (Panthera Tigris Jacksoni) Naturally Infected with SARS-CoV-2. J. Zoo Wildl. Med. 2021, 52, 1224–1228. [Google Scholar] [CrossRef]
- Grome, H.N.; Meyer, B.; Read, E.; Buchanan, M.; Cushing, A.; Sawatzki, K.; Levinson, K.J.; Thomas, L.S.; Perry, Z.; Uehara, A.; et al. SARS-CoV-2 Outbreak among Malayan Tigers and Humans, Tennessee, USA, 2020. Emerg. Infect. Dis. 2022, 28, 833–836. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, P.K.; Martins, M.; Reilly, T.; Caserta, L.C.; Anderson, R.R.; Cronk, B.D.; Murphy, J.; Goodrich, E.L.; Diel, D.G. SARS-CoV-2 B.1.1.7 Variant Infection in Malayan Tigers, Virginia, USA. Animals 2021, 27, 3171–3173. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gyimesi, Z.S.; Killian, M.L.; Torchetti, M.; Olmstead, C.; Fredrickson, R.; Terio, K.A. Detection of SARS-CoV-2 clade B.1.2 in three snow leopards. Transbound. Emerg. Dis. 2022, 69, 3346–3351. [Google Scholar] [CrossRef] [PubMed]
- Schlottau, K.; Rissmann, M.; Graaf, A.; Schön, J.; Sehl, J.; Wylezich, C.; Höper, D.; Mettenleiter, T.C.; Balkema-Buschmann, A.; Harder, T.; et al. SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: An experimental transmission study. Lancet Microbe. 2020, 1, 218–225. [Google Scholar] [CrossRef]
- Arteaga, F.L.; Jodar, M.N.; Mondino, M.; Portu, A.; Boeris, M.; Joly, A.; Jar, A.; Mundo, S.; Castro, E.; Alvarez, D.; et al. An outbreak of SARS-CoV-2 in big hairy armadillos (Chaetophractus villosus) associated with Gamma variant in Argentina three months after being undetectable in humans. bioRxiv 2022. [Google Scholar] [CrossRef]
- Mykytyn, A.Z.; Lamers, M.M.; Okba, N.M.A.; Breugem, T.I.; Schipper, D.; van den Doel, P.B.; van Run, P.; van Amerongen, G.; de Waal, L.; Koopmans, M.P.G.; et al. Susceptibility of rabbits to SARS-CoV-2. Emerg. Microbes Infect. 2021, 10, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Fritz, M.; de Riols de Fonclare, D.; Garcia, D.; Beurlet, S.; Becquart, P.; Rosolen, S.G.; Briend-Marchal, A.; Leroy, E.M. First Evidence of Natural SARS-CoV-2 Infection in Domestic Rabbits. Vet. Sci. 2022, 9, 49. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.H.B.; Pereira, G.O.; Borges, J.C.; de Barros Silva, V.L.; Pereira, B.H.M.; Morgado, T.O.; da Silva Cavasani, J.P.; Slhessarenko, R.D.; Campos, R.P.; Biondo, A.W.; et al. A Novel Host of an Emerging Disease: SARS-CoV-2 Infection in a Giant Anteater (Myrmecophaga tridactyla) Kept Under Clinical Care in Brazil. Ecohealth 2022, 19, 458–462. [Google Scholar] [CrossRef]
- Singh, D.K.; Singh, B.; Ganatra, S.R.; Gazi, M.; Cole, J.; Thippeshappa, R.; Alfson, K.J.; Clemmons, E.; Gonzalez, O.; Escobedo, R.; et al. Responses to acute infection with SARS-CoV-2 in the lungs of rhesus macaques, baboons and marmosets. Nat. Microbiol. 2021, 6, 73–86. [Google Scholar] [CrossRef]
- Pereira, A.H.; Vasconcelos, A.L.; Silva, V.L.; Nogueira, B.S.; Silva, A.C.; Pacheco, R.C.; Souza, M.A.; Colodel, E.M.; Ubiali, D.G.; Biondo, A.W.; et al. Natural SARS-CoV-2 Infection in a Free-Ranging Black-Tailed Marmoset (Mico melanurus) from an Urban Area in Mid-West Brazil. J. Comp. Pathol. 2022, 194, 22–27. [Google Scholar] [CrossRef]
- Clancy, C.S.; Shaia, C.; Munster, V.; de Wit, E.; Hawman, D.; Okumura, A.; Feldmann, H.; Saturday, G.; Scott, D. Histologic pulmonary lesions of SARS-CoV-2 in 4 nonhuman primate species: An institutional comparative review. Vet. Pathol. 2022, 59, 673–680. [Google Scholar] [CrossRef]
- Blair, R.V.; Vaccari, M.; Doyle-Meyers, L.A.; Roy, C.J.; Russell-Lodrigue, K.; Fahlberg, M.; Monjure, C.J.; Beddingfield, B.; Plante, K.S.; Plante, J.A.; et al. Acute Respiratory Distress in Aged, SARS-CoV-2-Infected African Green Monkeys but Not Rhesus Macaques. Am J Pathol. 2021, 191, 274–282. [Google Scholar] [CrossRef]
- Ricks, K.M.; Herbert, A.; Koehler, J.; Kuehnert, P.A.; Clements, T.L.; Shoemaker, C.J.; Kuehne, A.I.; O’brien, C.M.; Coyne, S.R.; Delp, K.L.; et al. Animal Model Prescreening: Pre-exposure to SARS-CoV-2 impacts responses in the NHP model. bioRxiv 2020. [Google Scholar] [CrossRef]
- Rockx, B.; Kuiken, T.; Herfst, S.; Bestebroer, T.; Lamers, M.M.; Oude Munnink, B.B.; de Meulder, D.; van Amerongen, G.; van den Brand, J.; Okba, N.M.A.; et al. Comparative Pathogenesis of COVID-19, MERS, and SARS in a Nonhuman Primate Model. Science 2020, 368, 1012–1015. [Google Scholar] [CrossRef]
- Ulrich, L.; Michelitsch, A.; Halwe, N.; Wernike, K.; Hoffmann, D.; Beer, M. Experimental SARS-CoV-2 Infection of Bank Voles. Emerg. Infect. Dis. 2021, 27, 1193–1195. [Google Scholar] [CrossRef] [PubMed]
- Bertzbach, L.D.; Vladimirova, D.; Dietert, K.; Abdelgawad, A.; Gruber, A.D.; Osterrieder, N.; Trimpert, J. SARS-CoV-2 infection of Chinese hamsters (Cricetulus griseus) reproduces COVID-19 pneumonia in a well-established small animal model. Transbound. Emerg. Dis. 2021, 68, 1075–1079. [Google Scholar] [CrossRef] [PubMed]
- Osterrieder, N.; Bertzbach, L.D.; Dietert, K.; Abdelgawad, A.; Vladimirova, D.; Kunec, D.; Hoffmann, D.; Beer, M.; Gruber, A.D.; Trimpert, J. Age-Dependent Progression of SARS-CoV-2 Infection in Syrian Hamsters. Viruses 2020, 12, 779. [Google Scholar] [CrossRef] [PubMed]
- Yen, H.L.; Sit, T.H.C.; Brackman, C.J.; Chuk, S.S.Y.; Gu, H.; Tam, K.W.S.; Law, P.Y.T.; Leung, G.M.; Peiris, M.; Poon, L.L.M.; et al. Transmission of SARS-CoV-2 delta variant (AY.127) from pet hamsters to humans, leading to onward human-to-human transmission: A case study. Lancet 2022, 399, 1070–1078. [Google Scholar] [CrossRef] [PubMed]
- Fagre, A.; Lewis, J.; Eckley, M.; Zhan, S.; Rocha, S.M.; Sexton, N.R.; Burke, B.; Geiss, B.; Peersen, O.; Bass, T.; et al. SARS-CoV-2 infection, neuropathogenesis and transmission among deer mice: Implications for spillback to New World rodents. PLoS Pathog. 2021, 17, e1009585. [Google Scholar] [CrossRef] [PubMed]
- Shuai, H.; Chan, J.F.-W.; Yuen, T.T.-T.; Yoon, C.; Hu, J.-C.; Wen, L.; Hu, B.; Yang, D.; Wang, Y.; Hou, Y.; et al. Emerging SARS-CoV-2 variants expand species tropism to Murines. EBioMedicine 2021, 73, 103643. [Google Scholar] [CrossRef]
- Xu, L.; Yu, D.-D.; Ma, Y.-H.; Yao, Y.-L.; Luo, R.-H.; Feng, X.-L.; Cai, H.-R.; Han, J.-B.; Wang, X.-H.; Li, M.-H.; et al. COVID-19-like symptoms observed in Chinese tree shrews infected with SARS-CoV-2. Zool. Res. 2020, 41, 517–526. [Google Scholar] [CrossRef]
- Melo, F.L.; Bezerra, B.; Luna, F.O.; Barragan, N.A.N.; Arcoverde, R.M.L.; Umeed, R.; Lucchini, K.; Attademo, F.L.N. Investigation of Coronavirus (SARS-CoV-2) in Antillean manatees (Trichechus Manatus Manatus) in Northeast Brazil. Sci. World J. Cancer Sci. Ther. 2022, 1, 1–9. [Google Scholar]
- Joffrin, L.; Cooreman, T.; Verheyen, E.; Vercammen, F.; Mariën, J.; Leirs, H.; Gryseels, S. SARS-CoV-2 Surveillance between 2020 and 2021 of All Mammalian Species in Two Flemish Zoos (Antwerp Zoo and Planckendael Zoo). Vet. Sci. 2023, 10, 382. [Google Scholar] [CrossRef] [PubMed]
- Leyi, W.; Mitchell, P.K.; Calle, P.P.; Bartlett, S.L.; McAloose, D.; Killian, M.L.; Yuan, F.; Fang, Y.; Goodman, L.B.; Fredrickson, R.; et al. Complete Genome Sequence of SARS-CoV-2 in a Tiger from a U.S. Zoological Collection. Micriobiol. Resour. Announc. 2020, 9, e00468-20. [Google Scholar]
- Aruge, S.; Batool, H.; Khan, F.M.; Fakhar-I-Abbas; Janjua, S. A pilot study—Genetic diversity and population structure of snow leopards of Gilgit-Baltistan, Pakistan, using molecular techniques. PeerJ 2019, 7, 7672. [Google Scholar] [CrossRef] [PubMed]
- Kuchipudi, S.V.; Surendran-Nair, M.; Ruden, R.M.; Yon, M.; Nissly, R.H.; Vandegrift, K.J.; Nelli, R.K.; Li, L.; Jayarao, B.M.; Maranas, C.D.; et al. Multiple spillovers from humans and onward transmission of SARS-CoV-2 in white-tailed deer. Proc. Natl. Acad. Sci. USA 2022, 119, e2121644119. [Google Scholar] [CrossRef] [PubMed]
- Pickering, B.; Lung, O.; Maguire, F.; Kruczkiewicz, P.; Kotwa, J.D.; Buchanan, T.; Gagnier, M.; Guthrie, J.L.; Jardine, C.M.; Marchand-Austin, A.; et al. Divergent SARS-CoV-2 variant emerges in white-tailed deer with deer-to-human transmission. Nat. Microbiol. 2022, 7, 2011–2024. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.V.; Martins, M.; Falkenberg, S.; Buckley, A.; Caserta, L.C.; Mitchell, P.K.; Cassmann, E.D.; Rollins, A.; Zylich, N.C.; Renshaw, R.W.; et al. Susceptibility of White-Tailed Deer (Odocoileus virginianus) to SARS-CoV-2. J. Virol. 2021, 95, e00083-21. [Google Scholar] [CrossRef]
- Puhach, O.; Meyer, B.; Eckerle, I. SARS-CoV-2 viral load and shedding kinetics. Nat. Rev. Microbiol. 2023, 21, 147–161. [Google Scholar] [CrossRef]
- Munker, D.; Osterman, A.; Stubbe, H.; Muenchhoff, M.; Veit, T.; Weinberger, T.; Barnikel, M.; Mumm, J.-N.; Milger, K.; Khatamzas, E.; et al. Dynamics of SARS-CoV-2 shedding in the respiratory tract depends on the severity of disease in COVID-19 patients. Eur. Respir. J. 2021, 57, 2002724. [Google Scholar] [CrossRef] [PubMed]
- La Scola, B.; Le Bideau, M.; Andreani, J.; Hoang, V.T.; Grimaldier, C.; Colson, P.; Gautret, P.; Raoult, D. Viral RNA load as determined by cell culture as a management tool for discharge of SARS-CoV-2 patients from infectious disease wards. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1059–1061. [Google Scholar] [CrossRef] [PubMed]
- Jefferson, T.; Spencer, E.A.; Brassey, J.; Heneghan, C. Viral Cultures for Coronavirus Disease 2019 Infectivity Assessment: A Systematic Review. Clin. Infect. Dis. 2021, 73, e3884–e3899. [Google Scholar] [CrossRef]
- Pitol, A.K.; Julian, T.R. Community Transmission of SARS-CoV-2 by Surfaces: Risks and Risk Reduction Strategies. Environ. Sci. Technol. Lett. 2021, 8, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Singanayagam, A.; Patel, M.; Charlett, A.; Lopez Bernal, J.; Saliba, V.; Ellis, J.; Ladhani, S.; Zambon, M.; Gopal, R. Duration of infectiousness and correlation with RT-PCR cycle threshold values in cases of COVID-19, England, January to May 2020. Eurosurveillance 2020, 25, 2001483. [Google Scholar] [CrossRef] [PubMed]
- Glans, H.; Gredmark-Russ, S.; Olausson, M.; Falck-Jones, S.; Varnaite, R.; Christ, W.; Maleki, K.T.; Karlberg, M.L.; Broddesson, S.; Falck-Jones, R.; et al. Shedding of infectious SARS-CoV-2 by hospitalized COVID-19 patients in relation to serum antibody responses. BMC Infect. Dis. 2021, 21, 494. [Google Scholar] [CrossRef] [PubMed]
- Van Elslande, J.; Houben, E.; Depypere, M.; Brackenier, A.; Desmet, S.; André, E.; Van Ranst, M.; Lagrou, K.; Vermeersch, P. Diagnostic performance of seven rapid IgG/IgM antibody tests and the Euroimmun IgA/IgG ELISA in COVID-19 patients. Clin. Microbiol. Infect. 2020, 26, 1082–1087. [Google Scholar] [CrossRef]
- Ford, L.; Lee, C.; Pray, I.W.; Cole, D.; Bigouette, J.P.; Abedi, G.R.; Bushman, D.; Delahoy, M.J.; Currie, D.W.; Cherney, B.; et al. Epidemiologic Characteristics Associated With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Antigen-Based Test Results, Real-Time Reverse Transcription Polymerase Chain Reaction (rRT-PCR) Cycle Threshold Values, Subgenomic RNA, and Viral Culture Results From University Testing. Clin. Infect. Dis. 2021, 73, 1348–1355. [Google Scholar]
- Corman, V.M.; Haage, V.C.; Bleicker, T.; Schmidt, M.L.; Mühlemann, B.; Zuchowski, M.; Jo, W.K.; Tscheak, P.; Möncke-Buchner, E.; Müller, M.A.; et al. Comparison of seven commercial SARS-CoV-2 rapid point-of-care antigen tests: A single-centre laboratory evaluation study. Lancet Microbe 2021, 2, 311–319. [Google Scholar] [CrossRef]
- Currie, D.W.; Shah, M.M.; Salvatore, P.P.; Ford, L.; Whaley, M.J.; Meece, J.; Ivacic, L.; Thornburg, N.J.; Tamin, A.; Harcourt, J.L.; et al. Relationship of SARS-CoV-2 Antigen and Reverse Transcription PCR Positivity for Viral Cultures. Emerg. Infect. Dis. 2022, 28, 717–720. [Google Scholar] [CrossRef]
- Deng, J.; Jin, Y.; Liu, Y.; Sun, J.; Hao, L.; Bai, J.; Huang, T.; Lin, D.; Jin, Y.; Tian, K. Serological survey of SARS-CoV-2 for experimental, domestic, companion and wild animals excludes intermediate hosts of 35 different species of animals. Transbound. Emerg. Dis. 2020, 67, 1745–1749. [Google Scholar] [CrossRef] [PubMed]
- Chandler, J.C.; Bevins, S.N.; Ellis, J.W.; Linder, T.J.; Tell, R.M.; Jenkins-Moore, M.; Root, J.J.; Lenoch, J.B.; Robbe-Austerman, S.; DeLiberto, T.J.; et al. SARS-CoV-2 exposure in wild white-tailed deer (Odocoileus virginianus). Proc. Natl. Acad. Sci. USA 2021, 118, e2114828118. [Google Scholar] [CrossRef] [PubMed]
- Palermo, P.M.; Orbegozo, J.; Watts, D.M.; Morrill, J.C. SARS-CoV-2 Neutralizing Antibodies in White-Tailed Deer from Texas. Vector Borne Zoonotic Dis. 2022, 22, 62–64. [Google Scholar] [CrossRef] [PubMed]
- Mathavarajah, S.; Melin, A.; Dellaire, G. SARS-CoV-2 and wastewater: What does it mean for non-human primates? Am. J. Primatol. 2022, 84, 23340. [Google Scholar] [CrossRef] [PubMed]
- Transmissible Diseases Handbook: Science-Based Facts & Knowledge about Wild Animals, Zoos and SARS-CoV-2 Virus. Available online: https://cdn.ymaws.com/www.eazwv.org/resource/resmgr/files/transmissible_diseases_handbook/5th_ed_transmissible_diseases_handbook/chapters/covid19_faqv8_5_march21.pdf (accessed on 3 December 2023).
- Williamson, B.N.; Feldmann, F.; Schwarz, B.; Meade-White, K.; Porter, D.P.; Schulz, J.; van Doremalen, N.; Leighton, I.; Yinda, C.K.; Pérez-Pérez, L.; et al. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature 2020, 585, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Yu, K.M.; Kim, Y.I.; Kim, S.M.; Kim, E.H.; Kim, S.G.; Kim, E.J.; Casel, M.A.B.; Rollon, R.; Jang, S.G.; et al. Antiviral Efficacies of FDA-Approved Drugs against SARS-CoV-2 Infection in Ferrets. mBio 2020, 11, e01114-20. [Google Scholar] [CrossRef] [PubMed]
- Rogers, T.F.; Zhao, F.; Huang, D.; Beutler, N.; Burns, A.; He, W.-T.; Limbo, O.; Smith, C.; Song, G.; Woehl, J.; et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science 2020, 369, 956–963. [Google Scholar] [CrossRef] [PubMed]
- San Diego Zoo. Safari Park Gorillas Recovering after SARS-CoV-2 Diagnosis. Available online: https://stories.sandiegozoo.org/2021/01/25/gorillasrecovering/ (accessed on 15 December 2023).
- Maisonnasse, P.; Guedj, J.; Contreras, V.; Behillil, S.; Solas, C.; Marlin, R.; Naninck, T.; Pizzorno, A.; Lemaitre, J.; Gonçalves, A.; et al. Hydroxychloroquine use against SARS-CoV-2 infection in non-human primates. Nature 2020, 585, 584–587. [Google Scholar] [CrossRef]
- Bushmaker, T.; Yinda, C.K.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Adney, D.; Bushmaker, C.; van Doremalen, N.; Fischer, R.J.; Plowright, R.K.; et al. Comparative Aerosol and Surface Stability of SARS-CoV-2 Variants of Concern. Emerg. Infect. Dis. 2023, 29, 1033–1037. [Google Scholar] [CrossRef]
- Chin, A.W.H.; Chu, J.T.S.; Perera, M.R.A.; Hui, K.P.Y.; Yen, H.-L.; Chan, M.C.W.; Peiris, M.; Poon, L.L.M. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 2020, 1, 10. [Google Scholar] [CrossRef]
- Liu, H.; Fei, C.; Chen, Y.; Luo, S.; Yang, T.; Yang, L.; Liu, J.; Ji, X.; Wu, W.; Song, J. Investigating SARS-CoV-2 persistent contamination in different indoor environments. Environ. Res. 2021, 202, 111763. [Google Scholar] [CrossRef]
- Bedrosian, N.; Mitchell, E.; Rohm, E.; Rothe, M.; Kelly, C.; String, G.; Lantagne, D.A. Systematic Review of Surface Contamination, Stability, and Disinfection Data on SARS-CoV-2 (Through July 10, 2020). Environ. Sci. Technol. 2021, 55, 4162–4173. [Google Scholar] [CrossRef]
- Geng, Y.; Wang, Y. Stability and transmissibility of SARS-CoV-2 in the environment. J. Med. Virol. 2023, 95, 28103. [Google Scholar] [CrossRef] [PubMed]
- Paton, S.; Spencer, A.; Garratt, I.; Thompson, K.-A.; Dinesh, I.; Aranega-Bou, P.; Stevenson, D.; Clark, S.; Dunning, J.; Bennett, A.; et al. Persistence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Virus and Viral RNA in Relation to Surface Type and Contamination Concentration. Appl. Environ. Microbiol. 2021, 87, e0052621. [Google Scholar] [CrossRef]
- Pastorino, B.; Touret, F.; Gilles, M.; de Lamballerie, X.; Charrel, R.N. Prolonged Infectivity of SARS-CoV-2 in Fomites. Emerg. Infect. Dis. 2020, 26, 2256–2257. [Google Scholar] [CrossRef]
- Xiao, S.; Yuan, Z.; Huang, Y. Disinfectants against SARS-CoV-2: A Review. Viruses 2022, 14, 1721. [Google Scholar] [CrossRef] [PubMed]
- Criscuolo, E.; Diotti, R.A.; Ferrarese, R.; Alippi, C.; Viscardi, G.; Signorelli, C.; Mancini, N.; Clementi, M.; Clementi, N. Fast inactivation of SARS-CoV-2 by UV-C and ozone exposure on different materials. Emerg. Microbes Infect. 2021, 10, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Termansen, M.B.; Frische, S. Fecal-oral transmission of SARS-CoV-2: A systematic review of evidence from epidemiological and experimental studies. Am. J. Infect. Control. 2023, 51, 1430–1437. [Google Scholar] [CrossRef]
- Moura, I.B.; Buckley, A.M.; Wilcox, M.H. Can SARS-CoV-2 be transmitted via faeces? Curr. Opin. Gastroenterol. 2022, 38, 26–29. [Google Scholar] [CrossRef]
- Chu, D.K.; Akl, E.A.; Duda, S.; Solo, K.; Yaacoub, S.; Schünemann, H.J.; Chu, D.K.; Akl, E.A.; El-harakeh, A.; Bognanni, A.; et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A systematic review and meta-analysis. Lancet 2020, 395, 1973–1987. [Google Scholar] [CrossRef]
- Hammer, A.S.; Quaade, M.L.; Rasmussen, T.B.; Fonager, J.; Rasmussen, M.; Mundbjerg, K.; Lohse, L.; Strandbygaard, B.; Jørgensen, C.S.; Alfaro-Núñez, A.; et al. SARS-CoV-2 Transmission between Mink (Neovison vison) and Humans, Denmark. Emerg. Infect. Dis. 2021, 27, 547–551. [Google Scholar] [CrossRef]
- Meyerowitz, E.A.; Richterman, A.; Gandhi, R.T.; Sax, P.E. Transmission of SARS-CoV-2: A review of viral, host, and environmental factors. Ann. Intern. Med. 2021, 174, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Oude Munnink, B.B.; Sikkema, R.S.; Nieuwenhuijse, D.F.; Molenaar, R.J.; Munger, E.; Molenkamp, R.; van der Spek, A.; Tolsma, P.; Rietveld, A.; Brouwer, M.; et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 2021, 371, 172–177. [Google Scholar] [CrossRef]
- Tran, H.N.; Le, G.T.; Nguyen, D.T.; Juang, R.-S.; Rinklebe, J.; Bhatnagar, A.; Lima, E.C.; Iqbal, H.M.N.; Sarmah, A.K.; Chao, H.-P. SARS-CoV-2 coronavirus in water and wastewater: A critical review about presence and concern. Environ. Res. 2021, 193, 110265. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.Y.; Smith, D.M. SARS-CoV-2 variants of concern. Yonsei Med. J. 2021, 62, 961–968. [Google Scholar] [CrossRef] [PubMed]
- Lentini, A.; Pereira, A.; Winqvist, O.; Reinius, B. Monitoring of the SARS-CoV-2 Omicron BA.1/BA.2 lineage transition in the Swedish population reveals increased viral RNA levels in BA.2 cases. Med 2022, 3, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Kang, L.; Guo, Z.; Liu, J.; Liu, M.; Liang, W. Incubation Period of COVID-19 Caused by Unique SARS-CoV-2 Strains: A Systematic Review and Meta-analysis. JAMA Netw. Open 2022, 5, e2228008. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Boon, S.S.; Wang, M.H.; Chan, R.W.Y.; Chan, P.K.S. Genomic and evolutionary comparison between SARS-CoV-2 and other human coronaviruses. J. Virol. Methods 2021, 289, 114032. [Google Scholar] [CrossRef] [PubMed]
- Abavisani, M.; Rahimian, K.; Mahdavi, B.; Tokhanbigli, S.; Mollapour Siasakht, M.; Farhadi, A.; Kodori, M.; Mahmanzar, M.; Meshkat, Z. Mutations in SARS-CoV-2 structural proteins: A global analysis. Virol. J. 2022, 19, 220. [Google Scholar] [CrossRef]
- Chan, J.F.W.; Yuan, S.; Zhang, A.J.; Poon, V.K.M.; Chan, C.C.S.; Lee, A.C.Y.; Fan, Z.; Li, C.; Liang, R.; Cao, J.; et al. Surgical Mask Partition Reduces the Risk of Noncontact Transmission in a Golden Syrian Hamster Model for Coronavirus Disease 2019 (COVID-19). Clin. Infect. Dis. 2020, 71, 2139–2149. [Google Scholar] [CrossRef]
- Cotman, Z.J.; Bowden, M.J.; Richter, B.P.; Phelps, J.H.; Dibble, C.J. Factors affecting aerosol SARS-CoV-2 transmission via HVAC systems; a modeling study. PLoS Comput. Biol. 2021, 17, e1009474. [Google Scholar] [CrossRef] [PubMed]
- Chavda, V.P.; Feehan, J.; Apostolopoulos, V. A Veterinary Vaccine for SARS-CoV-2: The First COVID-19 Vaccine for Animals. Vaccines 2021, 9, 631. [Google Scholar] [CrossRef] [PubMed]
- Bates, T.A.; McBride, S.K.; Leier, H.C.; Guzman, G.; Lyski, Z.L.; Schoen, D.; Winders, B.; Lee, J.-Y.; Lee, D.X.; Messer, W.B.; et al. Vaccination before or after SARS-CoV-2 infection leads to robust humoral response and antibodies that effectively neutralize variants. Sci. Immunol. 2022, 7, eabn8014. [Google Scholar] [CrossRef]
- Tizard, I.R. Vaccination against coronaviruses in domestic animals. Vaccine 2020, 38, 5123–5130. [Google Scholar] [CrossRef]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Post COVID-19 Condition (Long COVID). Available online: https://www.who.int/europe/news-room/fact-sheets/item/post-covid-19-condition (accessed on 18 December 2023).
Order | Suborder | Family | Species | Experimental Infection | Source | Natural Infection | Source |
---|---|---|---|---|---|---|---|
Artiodactyla | Ruminantia | Bovidae | Cattle (Bos taurus) | X | [8] | ||
Cervidae | Red deer (Cervus elaphus) | X | [9] | ||||
Fallow deer (Dama dama) | X | [9] | |||||
Mule deer (Odocoileus hemionus) | X | [10] | |||||
White-tailed deer (Odocoileus virginianus) | X * | [11,12] | |||||
Whippomorpha | Hippopotamidae | Hippopotamus (Hippopotamus amphibius) | X * | [13,14] | |||
Suina | Suidae | Domestic swine (Sus domesticus) | X | [15] | |||
Carnivora | Caniformia | Canidae | Dog (Canis lupus familiaris) | X | [16] | X * | [17] |
Raccoon dog (Nyctereutes procyoniodes) | X | [18] | |||||
Mephitidae | Striped skunk (Mephitis mephitis) | X | [19] | ||||
Mustelidae | Small clawed otter (Aonyx cinereus) | X * | [20] | ||||
Eurasian River Otter (Lutra lutra) | X | [21] | |||||
European pine marten (Martes martes) | X | [22] | |||||
European badger (Meles meles) | X | [22] | |||||
Ferret (Mustela putorius) | X | [23] | X * | [24] | |||
American mink (Neovison vison) | X * | [25,26,27] | |||||
Procyonidae | White-nosed coati (Nasua narica) | X * | [28] | ||||
Raccoon (Procyon lotor) | X | [19] | |||||
Feliformia | Felidae | Domestic cat (Felis catus) | X | [16,29] | X * | [30] | |
Canada lynx (Lynx canadensis) | X * | [31] | |||||
Eurasian lynx (Lynx lynx) | X = | [20] | |||||
Lion (unspecified) (Panthera leo) | X * | [28,32,33] | |||||
Lion (Panthera leo krugeri) | X * | [2,31,34] | |||||
Lion (Panthera leo melanochaita) | X * | [35] | |||||
Lion (Panthera leo persica) | X * | [36,37,38,39] | |||||
Leopard (Panthera pardus) | X | [40] | |||||
Tiger (Panthera tigris) | X * | [41] | |||||
Siberian tiger (Panthera tigris altaica) | X * | [2,28,31,34] | |||||
Malayan tiger (Panthera tigris jacksoni) | X * | [2,34,37,42,43,44] | |||||
Sumatran tiger (Panthera tigris sumatrae) | X * | [37] | |||||
Snow leopard (Panthera uncia) | X * | [28,45] | |||||
Amur Leopard cat (Prionailurus bengalensis euptilurus) | X * | [37] | |||||
Fishing cat (Prionailurus viverrinus) | X * | [28] | |||||
Cougar (Puma concolor) | X * | [33] | |||||
Hyaenidae | Spotted hyena (Crocuta crocuta) | X * | [20] | ||||
Viverridae | Binturong (Arctictis binturong) | X * | [28] | ||||
Chiroptera | Yinpterochiroptera | Pteropodidae | Egyptian fruit bat (Rousettus aegyptiacus) | X | [46] | ||
Cingulata | Chlamyphoridae | Big hairy armadillo (Chaetophractus villosus) | X = | [47] | |||
Lagomorpha | Leporidae | European rabbit (Oryctolagus cuniculus) | X | [48] | X * | [49] | |
Pilosa | Vermilingua | Myrmecophagidae | Giant anteater (Myrmecophaga tridactyla) | X | [50] | ||
Primates | Haplorhini | Atelidae | Common woolly monkey (Lagothrix lagothricha) | X = | [20] | ||
Black-headed spider monkey (Ateles fusciceps) | X = | [20] | |||||
Callitrichidae | Common marmoset (Callithrix jacchus) | X | [51] | ||||
Black-tailed marmoset (Mico melanurus) | X | [52] | |||||
Cebidae | Common squirrel monkey (Saimiri sp.) | X | [53] | X * | [20] | ||
Cercopithecidae | African green monkey (Chlorocebus aethiops) | X | [54] | X * | [55] | ||
Cynomolgus macaque (Macaca fascicularis) | X | [56] | |||||
Rhesus macaque (Macaca mulatta) | X | [54] | |||||
Mandrill (Mandrillus sphinx) | X * | [20] | |||||
Hamadryas baboon (Papio hamadryas) | X | [51] | |||||
Hominidae | Western lowland gorilla (Gorilla Gorilla Gorilla) | X * | [36,37] | ||||
Rodentia | Myomorpha | Cricetidae | Bank vole (Clethrionomys glareolus) | X | [57] | ||
Chinese hamster (Cricetulus griseus) | X | [58] | |||||
Syrian hamster (Mesocricetus auratus) | X | [59] | X * | [60] | |||
Deer mouse (Peromyscus maniculatus) | X | [61] | |||||
Muridae | House mouse (Mus musculus) | X | [62] | ||||
Scandentia | Tupaiidae | Northern tree shrew (Tupaia belangeri) | X | [63] | |||
Sirenia | Trichechidae | West Indian manatee (Trichechus manatus) | X * | [64] |
Species | Hippopotamus (Hippopotamus amphibius) | Canadian Lynx (Lynx canadensis) | Lion (Panthera leo) | Tiger (Panthera tigris) | Snow Leopard (Panthera uncia) | Leopard Cat (Prionailurus bengalensis) | Fishing Cat (Prionailurus viverrinus) | Cougar (Puma concolor) | White-Nosed Coati (Nasua narica) | Binturong (Arctictis binturong) | Western Lowland Gorilla (Gorilla Gorilla) |
---|---|---|---|---|---|---|---|---|---|---|---|
Number of Animals (n) | 3 | 4 | 37 | 24 | 6 | 1 | 1 | 2 | 2 | 2 | 12 |
Sex (Male/Female/NA) | 0/3/0 | 0/0/5 | 13/12/12 | 6/11/7 | 1/2/3 | 1/0/0 | 1/0/0 | 0/1/1 | 1/1/0 | 1/1/0 | 1/4/7 |
Age in Years Average (Range) | 25.0 (14–41) | NA | 9.1 (2–20) | 8.8 (4–15) | 5.3 (1–9) | 1.0 (1) | 5.0 (5) | 12 (12) | 4 (4) | 9 (8–10) | 31.4 (35–47) |
Symptoms % (Yes/No/NA) | 100.0% (3/0/0) | 100.0% (4/0/0) | 96.4% (27/1/9) | 95.0% (19/1/4) | 83.3% (5/1/0) | 100.0% (1/0/0) | 100.0% (1/0/0) | 100.0% (2/0/0) | 0.0% (0/2/0) | 50.0% (1/1/0) | 91.7% (11/1/0) |
Duration of Clinical Signs in Days Average (Range) | 17 (17) | 25.8 (17–35) | 14.8 (1–49) | 10.2 (1–32) | NA | 2 (2) | NA | 22.5 (22–23) | NA | NA | 10.4 (1–14) |
Coughing % (Yes/No/NA or Asymptomatic) | 0.0% (0/3/0) | 75.0% (3/1/0) | 81.5% (22/5/10) | 94.7% (18/1/5) | 60.0% (3/2/1) | 0.0% (0/1/0) | 0.0% (0/1/0) | 50.0% (1/1/0) | NA (0/0/2) | 0.0% (0/1/1) | 90.9% (10/1/1) |
Sneezing % (Yes/No/NA or Asymptomatic) | 0.0% (0/3/0) | 0.0% (0/4/0) | 25.9% (7/20/10) | 5.3% (1/18/5) | 0.0% (0/5/0) | 100.0% (1/0/0) | 0.0% (0/1/0) | 0.0% (0/2/0) | NA (0/0/2) | 0.0% (0/1/1) | 0.0% (0/11/1) |
Wheezing % (Yes/No/NA or Asymptomatic) | 0.0% (0/3/0) | 0.0% (0/4/0) | 14.8% (4/23/10) | 63.2% (12/7/5) | 40.0% (2/3/1) | 0.0% (0/1/0) | 0.0% (0/1/0) | 0.0% (0/2/0) | NA (0/0/2) | 0.0% (0/1/1) | 0.0% (0/11/1) |
Ocular Discharge % (Yes/No/NA or Asymptomatic) | 0.0% (0/3/0) | 0.0% (0/4/0) | 11.1% (3/24/10) | 15.8% (3/16/4) | 0.0% (0/5/1) | 0.0% (0/1/0) | 0.0% (0/1/0) | 0.0% (0/2/0) | NA (0/0/2) | 0.0% (0/1/1) | 0.0% (0/11/1) |
Nasal Discharge % (Yes/No/NA or Asymptomatic) | 66.7% (2/1/0) | 0.0% (0/4/0) | 37.0% (10/17/10) | 36.8% (7/12/5) | 0.0% (0/5/1) | 100.0% (1/0/0) | 0.0% (0/1/0) | 100.0% (2/0/0) | NA (0/0/2) | 0.0% (0/1/1) | 100.0% (11/0/1) |
Lethargy % (Yes/No/NA or Asymptomatic) | 33.3% (1/2/0) | 100.0% (4/0/0) | 55.6% (15/12/10) | 63.2% (12/7/5) | 20.0% (1/4/1) | 0.0% (0/1/0) | 100.0% (1/0/0) | 0.0% (0/2/0) | NA (0/0/2) | 100.0% (1/0/1) | 41.7% (5/7/1) |
Hyporexia % (Yes/No/NA or Asymptomatic) | 33.3% (1/2/0) | 100.0% (4/0/0) | 37.0% (10/17/10) | 52.3% (10/9/5) | 40.0% (2/3/1) | 0.0% (0/1/0) | 100.0% (1/0/0) | 100.0% (2/0/0) | NA (0/0/2) | 100.0% (1/0/1) | 72.7% (8/3/1) |
Vomiting % (Yes/No/NA or Asymptomatic) | 0.0% (0/3/0) | 0.0% (0/4/0) | 0.0% (0/27/10) | 5.3% (1/18/5) | 0.0% (0/5/1) | 0.0% (0/1/0) | 0.0% (0/1/0) | 0.0% (0/2/0) | NA (0/0/2) | 0.0% (0/1/1) | 0.0% (0/11/1) |
Diarrhea % (Yes/No/NA or Asymptomatic) | 0.0% (0/3/0) | 25% (1/3/0) | 0.0% (0/27/10) | 5.3% (1/18/5) | 20.0% (1/4/1) | 0.0% (0/1/0) | 100.0% (1/0/0) | 100.0% (2/0/0) | NA (0/0/2) | 0.0% (0/1/1) | 0.0% (0/11/1) |
Epistaxis % (Yes/No/NA or Asymptomatic) | 0.0% (0/3/0) | 0.0% (0/4/0) | 7.1% (2/26/9) | 10.5% (2/17/5) | 0.0% (0/5/1) | 100.0% (1/0/0) | 0.0% (0/1/0) | 0.0% (0/2/0) | NA (0/0/2) | 0.0% (0/1/1) | 0.0% (0/11/1) |
Death % (Yes/No/NA or Asymptomatic) | 33.3% (1/2/0) | 0.0% (0/4/0) | 5.6% (2/34/0) | 0.0% (0/24/0) | 0.0% (0/5/1) | 0.0% (0/1/0) | 0.0% (0/1/0) | 0.0% (0/2/0) | 0.0% (0/2/0) | 0.0% (0/1/1) | 0.0% (0/11/1) |
Reference | [13,14,65] | [31] | [2,28,31,32,33,34,35,36,37,38,39] | [2,28,31,34,37,41,42,43,44,66] | [28,45] | [37] | [28] | [33] | [28] | [28] | [36,37] |
Species | Hippopotamus (Hippopotamus amphibius) | Canadian Lynx (Lynx canadensis) | Lion (Panthera leo) | Tiger (Panthera tigris) | Snow Leopard (Panthera uncia) | Leopard Cat (Prionailurus bengalensis) | Fishing Cat (Prionailurus viverrinus) | Cougar (Puma concolor) | White-Nosed Coati (Nasua narica) | Binturong (Arctictis binturong) | Western Lowland Gorilla (Gorilla Gorilla) |
---|---|---|---|---|---|---|---|---|---|---|---|
Number of Animals (n) | 3 | 4 | 37 | 24 | 6 | 1 | 1 | 2 | 2 | 2 | 12 |
Sex (Male/Female/NA) | 0/3/0 | 0/0/5 | 13/12/12 | 6/11/7 | 1/2/3 | 1/0/0 | 1/0/0 | 0/1/1 | 1/1/0 | 1/1/0 | 1/4/7 |
Age in Years Average (Range) | 25.0 (14–41) | NA | 9.1 (2–20) | 8.8 (4–15) | 5.3 (1–9) | 1.0 (1) | 5.0 (5) | 12 (12) | 4 (4) | 9 (8–10) | 31.4 (35–47) |
Intermittent shedding % (Yes/No/NA) | 100.0% (2/0/1) | NA (0/0/4) | 77.8% (7/2/28) | 75.0% (6/2/16) | 100.0% (6/0/0) | NA (0/0/1) | 100.0% (1/0/0) | NA (0/0/2) | 0.0% (0/2/0) | 0.0% (0/2/0) | NA (0/0/12) |
Animal Vaccinated % (Yes/No) | 0.0% (0/3) | 0.0% (0/4) | 8.1% (3/34) | 8.3% (2/22) | 50.0% (3/3) | 0.0% (0/1) | 100.0% (1/0) | 0.0% (0/2) | 100.0% (2/0) | 100.0% (2/0) | 0.0% (0/12) |
Keeper Vaccinated % (Yes/No/NA) | 100.0% (2/0/1) | NA (0/0/5) | 100.0% (5/0/32) | NA (0/0/24) | NA (0/0/6) | NA (0/0/1) | NA (0/0/1) | NA (0/0/2) | NA/ (0/0/2) | NA/ (0/0/2) | 100.0% (7/0/5) |
Keepers use PPE % (Yes/No/NA) | 100.0% (1/0/2) | NA (0/0/5) | 60.9% (14/9/14) | 50.0% (9/9/6) | NA (0/0/6) | 100.0% (1/0/0) | NA (0/0/1) | NA (0/0/2) | NA/ (0/0/2) | NA/ (0/0/2) | 100.0% (12/0/0) |
Reference | [13,14,65] | [31] | [2,28,31,32,33,34,35,36,37,38,39] | [2,28,31,34,37,41,42,43,44,66] | [28,45] | [37] | [28] | [33] | [28] | [28] | [36,37] |
Species | Hippopotamus (Hippopotamus amphibius) | Canadian Lynx (Lynx canadensis) | Lion (Panthera leo) | Tiger (Panthera tigris) | Snow Leopard (Panthera uncia) | Leopard Cat (Prionailurus bengalensis) | Fishing cat (Prionailurus viverrinus) | Cougar (Puma concolor) | White-Nosed Coati (Nasua narica) | Binturong (Arctictis binturong) | Western Lowland Gorilla (Gorilla Gorilla) |
---|---|---|---|---|---|---|---|---|---|---|---|
Number of Animals (n) | 3 | 4 | 37 | 24 | 6 | 1 | 1 | 2 | 2 | 2 | 12 |
Sex (Male/Female/NA) | 0/3/0 | 0/0/5 | 13/12/12 | 6/11/7 | 1/2/3 | 1/0/0 | 1/0/0 | 0/1/1 | 1/1/0 | 1/1/0 | 1/4/7 |
Age in Years Average (Range) | 25.0 (14–41) | NA | 9.1 (2–20) | 8.8 (4–15) | 5.3 (1–9) | 1.0 (1) | 5.0 (5) | 12 (12) | 4 (4) | 9 (8–10) | 31.4 (35–47) |
Serology % (Positive/Negative/NA) | 100.0% (1/0/1) | NA (0/0/4) | 100.0% (12/0/25) | 100.0% (10/0/14) | NA (0/0/6) | NA (0/0/1) | NA (0/0/1) | NA (0/0/2) | NA (0/0/2) | NA (0/0/2) | 0.0% (0/1/11) |
Days Between Onset of Clinical Signs and Serology (Range) | 70 (70) | NA | 72.0 (1–195) | 109.5 (6–196) | NA | NA | NA | NA | NA | NA | NA |
Rapid Antigen Detection Test (RADT) % (Positive/Negative/NA) | NA (0/0/3) | NA (0/0/4) | 100.0% (5/0/32) | NA (0/0/24) | NA (0/0/6) | NA (0/0/1) | NA (0/0/1) | NA (0/0/2) | NA (0/0/2) | NA (0/0/2) | NA (0/0/12) |
Fecal PCR % (Positive/Negative/NA) | 100.0% (2/0/1) | 25.0% (1/3/0) | 72.0% (18/7/12) | 100.0% (16/0/8) | 100.0% (3/0/3) | 100.0% (1/0/0) | NA (0/0/1) | NA (0/0/2) | NA (0/0/2) | NA (0/0/2) | 100.0% (5/0/7) |
Fecal PCR Ct-value Average (Range) | 37.8 (35.0–39.2) | 28.8 (28.8) | 29.7 (11.6–40.0) | 30.5 (14.3–40.0) | 30.4 (28.1–34.0) | 26.1 (26.1) | NA | NA | NA | NA | 32.4 (29.7–33.1) |
Pooled Fecal Sample (Yes/No/NA) | 0/2/1 | 0/4/0 | 2/24/11 | 66.7% (16/0/8) | 0/3/3 | 0/1/0 | NA (0/0/1) | NA (0/0/2) | NA (0/0/2) | NA (0/0/2) | 0/5/7 |
Days Between Positive Fecal PCR Tests Average (Range) | 16.5 (12–21) | NA | 20.0 (3–40) | 11.7 (2–24) | 10.3 (2–22) | NA | NA | NA | NA | NA | 8 (8) |
Rectal Swab PCR % (Positive/Negative/NA) | NA | NA | 100.0% (10/0/27) | 100.0% (1/0/23) | NA (0/0/6) | NA (0/0/1) | NA (0/0/1) | NA (0/0/2) | NA (0/0/2) | NA (0/0/2) | NA (0/0/12) |
Rectal Swab PCR Ct-value Average (Range) | NA | NA | 28.5 (16.2–34.5) | 29.3 (28.2–30.4) | NA | NA | NA | NA | NA | NA | NA |
Nasal PCR % (Positive/Negative/NA) | 100.0% (2/0/1) | NA (0/0/4) | 100.0% (19/0/18) | 85.7% (6/1/17) | NA (0/0/6) | NA (0/0/1) | NA (0/0/1) | 100.0% (1/0/1) | NA (0/0/2) | NA (0/0/2) | 100.0% (2/0/10) |
Nasal PCR Ct-value Average (Range) | 30.0 (15.6–40.0) | NA | 25.1 (16.9–39.5) | 23.3 (17.7–29.0) | NA | NA | NA | NA | NA | NA | 24.2 (19.7–33.7) |
Days Between Positive Nasal PCR Tests (Range) | 23.5 (13–34) | NA | 13.8 (3–33) | NA | NA | NA | NA | 29 (29) | NA | NA | NA |
Oral PCR % (Positive/Negative/NA) | NA (0/0/3) | NA (0/0/4) | 100.0% (1/0/36) | 50.0% (2/2/20) | NA (0/0/6) | NA (0/0/1) | NA (0/0/1) | NA (0/0/2) | NA (0/0/2) | NA (0/0/2) | NA (0/0/12) |
Oral PCR Ct-value (Range) | NA | NA | 37.2 (37.2) | 27.7 (27.7) | NA | NA | NA | NA | NA | NA | NA |
Days Between Positive Oral PCR Tests (Range) | NA | NA | 20.0 (20) | NA | NA | NA | NA | NA | NA | NA | NA |
Necropsy (Yes/No/NA) | 1/0/2 | NA (0/0/4) | 1/0/36 | NA (0/0/24) | NA (0/0/6) | NA (0/0/1) | NA (0/0/1) | NA (0/0/2) | NA (0/0/2) | NA (0/0/2) | NA (0/0/12) |
Tissue PCR Ct-value Average (Range) | 31.8 (26.7-37.0) | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Virus Isolation % (Positive/Negative/NA) | NA (0/0/3) | NA (0/0/4) | 55.6% (5/4/28) | 75.0% (6/2/16) | NA (0/0/6) | NA (0/0/1) | NA (0/0/1) | NA (0/0/2) | NA (0/0/2) | NA (0/0/2) | NA (0/0/12) |
SARS-CoV-2 Variant (Non-variant/Alpha/Delta/NA) | 0/0/2/1 | 0/0/4/0 | 3/12/28/0 | 8/6/10/0 | 3/0/3/0 | 0/1/0/0 | 0/0/1/0 | 2/0/0/0 | 0/0/2/0 | 0/0/2/0 | 0/5/7/0 |
Intermittent Shedding (Yes/No/NA) | 100.0% (2/0/1) | NA (0/0/4) | 77.8% (7/2/28) | 75.0% (6/2/16) | 100.0% (6/0/0) | NA (0/0/1) | 100.0% (1/0/0) | NA (0/0/2) | 0.0% (0/2/0) | 0.0% (0/2/0) | NA (0/0/12) |
Animal Vaccinated % (Yes/No) | 0.0% (0/3) | 0.0% (0/4) | 8.1% (3/34) | 8.3% (2/22) | 50.0% (3/3) | 0.0% (0/1) | 100.0% (1/0) | 0.0% (0/2) | 100.0% (2/0) | 100.0% (2/0) | 0.0% (0/12) |
Keeper Vaccinated % (Yes/No/NA) | 100.0% (2/0/1) | NA (0/0/5) | 100.0% (5/0/32) | NA (0/0/24) | NA (0/0/6) | NA (0/0/1) | NA (0/0/1) | NA (0/0/2) | NA/ (0/0/2) | NA/ (0/0/2) | 100.0% (7/0/5) |
Keepers use PPE % (Yes/No/NA) | 100.0% (1/0/2) | NA (0/0/5) | 60.9% (14/9/14) | 50.0% (9/9/6) | NA (0/0/6) | 100.0% (1/0/0) | NA (0/0/1) | NA (0/0/2) | NA/ (0/0/2) | NA/ (0/0/2) | 100.0% (12/0/0) |
Reference | [13,14,65] | [31] | [2,28,31,32,33,34,35,36,37,38,39] | [2,28,31,34,37,41,42,43,44,66] | [28,45] | [37] | [28] | [33] | [28] | [28] | [36,37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nederlof, R.A.; de la Garza, M.A.; Bakker, J. Perspectives on SARS-CoV-2 Cases in Zoological Institutions. Vet. Sci. 2024, 11, 78. https://doi.org/10.3390/vetsci11020078
Nederlof RA, de la Garza MA, Bakker J. Perspectives on SARS-CoV-2 Cases in Zoological Institutions. Veterinary Sciences. 2024; 11(2):78. https://doi.org/10.3390/vetsci11020078
Chicago/Turabian StyleNederlof, Remco A., Melissa A. de la Garza, and Jaco Bakker. 2024. "Perspectives on SARS-CoV-2 Cases in Zoological Institutions" Veterinary Sciences 11, no. 2: 78. https://doi.org/10.3390/vetsci11020078
APA StyleNederlof, R. A., de la Garza, M. A., & Bakker, J. (2024). Perspectives on SARS-CoV-2 Cases in Zoological Institutions. Veterinary Sciences, 11(2), 78. https://doi.org/10.3390/vetsci11020078