Microvesicle-Shuttled microRNA-130b Activates the Hepatic Inflammation by Inhibiting Glucocorticoid-Receptor-Mediated Immunosuppression in High-Fat Diet-Induced Obese Mice
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cells and Antibodies
2.2. miR-130b Plasmid Construction, Transfection, and MV Isolation
2.3. Animals and Diets
2.4. Preparation of Blood and Liver Tissue
2.5. Determination of Plasma Concentrations of Proinflammatory Factors IL-6 and TNF-α
2.6. mRNA Quantification
2.7. miRNA RT-PCR Quantification
2.8. Determination of Protein Content
2.9. Dual-Luciferase Test
2.10. Statistical Analysis
3. Results
3.1. Body Weight, Liver Index, and Blood Proinflammation Indexes
3.2. mRNA Expression of Genes Related to Hepatic Inflammation
3.3. Expression of miR-130b and Its Predicted Target Genes in the Liver
3.4. Validation of mmu-miR-130b (Mouse miR-130b) Targeting GR mRNA 3′-UTR
3.5. miR-130b-MVs Significantly Inhibited GR Expression and Thus Activated NF-κB Signals in the Liver
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meister, G.; Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 2004, 431, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C.; Chang, Y.M.; Pan, C.T.; Chen, C.C.; Ling, L.; Tsao, K.C.; Yang, R.B.; Li, W.H. Functional evolution of cardiac microRNAs in heart development and functions. Mol. Biol. Evol. 2014, 31, 2722–2734. [Google Scholar] [CrossRef]
- Trontti, K.; Väänänen, J.; Sipilä, T.; Greco, D.; Hovatta, I. Strong conservation of inbred mouse strain microRNA loci but broad variation in brain microRNAs due to RNA editing and isomiR expression. RNA 2018, 24, 643–655. [Google Scholar] [CrossRef]
- Li, Y.; Yang, W.; Yang, X.; Ma, A.; Zhang, X.; Li, H.; Wu, H. Quemeiteng granule relieves goiter by suppressing thyroid microvascular endothelial cell proliferation and angiogenesis via miR-217-5p-mediated targeting of FGF2-induced regulation of the ERK pathway. J. Ethnopharmacol. 2024, 326, 117908. [Google Scholar] [CrossRef]
- Qian, Z.; Lin, W.; Cai, X.; Wu, J.; Ke, K.; Ye, Z.; Wu, F. WYC-209 inhibited GC malignant progression by down-regulating WNT4 through RARα. Cancer Biol. Ther. 2024, 25, 2299288. [Google Scholar] [CrossRef]
- Xia, M.; Chen, J.; Hu, Y.; Qu, B.; Bu, Q.; Shen, H. miR-10b-5p promotes tumor growth by regulating cell metabolism in liver cancer via targeting SLC38A2. Cancer Biol. Ther. 2024, 25, 2315651. [Google Scholar] [CrossRef]
- Qin, X.; Chen, H.; Zheng, W.; Zhu, X.; Gao, J. METTL3 modification of circStk4 affects mouse glomerular messangial cell autophagy, proliferation and apotosis by regulating miR-133a-3p/C1 axis. Cell. Signal. 2024, 117, 111091. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Xu, Y.; Wang, J.; Zhang, Y.; Zhou, J.; Wu, H. Mesenchymal stem cells-derived exosomes carrying microRNA-30b confer protection against pulmonary fibrosis by downregulating Runx1 via Spred2. Mol. Genet. Genom. MGG 2024, 299, 33. [Google Scholar] [CrossRef]
- Jin, F.; Jin, L.; Wei, B.; Li, X.; Li, R.; Liu, W.; Guo, S.; Fan, H.; Duan, C. miR-96-5p alleviates cerebral ischemia-reperfusion injury in mice by inhibiting pyroptosis via downregulating caspase 1. Exp. Neurol. 2024, 374, 114676. [Google Scholar] [CrossRef]
- Li, H.; Duan, J.; Zhang, T.; Fu, Y.; Xu, Y.; Miao, H.; Ge, X. miR-16-5p aggravates sepsis-associated acute kidney injury by inducing apoptosis. Ren. Fail. 2024, 46, 2322688. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Meng, X.K.; Shao, W.Z.; Liu, Y.Q.; Tang, C.; Deng, S.S.; Tang, C.F.; Zheng, L.; Guo, W. miR-34a/TAN1/CREB Axis Engages in Alleviating Oligodendrocyte Trophic Factor-Induced Myelin Repair Function and Astrocyte-Dependent Neuroinflammation in the Early Stages of Alzheimer’s Disease: The Anti-Neurodegenerative Effect of Treadmill Exercise. Neurochem. Res. 2024, 49, 1105–1120. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Yang, Y.; Liu, Y.; Shi, X.; Wu, H.; Dai, M. MicroRNA let-7g links foam cell formation and adipogenic differentiation: A key regulator of Paeonol treating atherosclerosis-osteoporosis. Phytomedicine 2024, 126, 155447. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Xin, Y.J.; He, M.; Bian, J.; Cheng, X.L.; Li, R.; Li, J.J.; Wang, J.; Liu, J.Y.; Yang, L. Downregulation of miR-337-3p in hypoxia/reoxygenation neuroblastoma cells increases KCTD11 expression. J. Biochem. Mol. Toxicol. 2024, 38, e23685. [Google Scholar] [CrossRef]
- Chen, S.; Wang, H.; Guo, M.; Zhao, X.; Yang, J.; Chen, L.; Zhao, J.; Chen, C.; Zhou, Y.; Xu, L. Promoter A1312C mutation leads to microRNA-7 downregulation in human non-small cell lung cancer. Cell. Signal. 2024, 117, 111095. [Google Scholar] [CrossRef]
- Chen, X.; Lu, T.; Zheng, Y.; Lin, Z.; Liu, C.; Yuan, D.; Yuan, C. miR-155-5p promotes hepatic steatosis via PICALM-mediated autophagy in aging hepatocytes. Arch. Gerontol. Geriatr. 2024, 120, 105327. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.; Cao, X. Salidroside inhibited the proliferation of gastric cancer cells through up-regulating tumor suppressor miR-1343-3p and down-regulating MAP3K6/MMP24 signal molecules. Cancer Biol. Ther. 2024, 25, 2322206. [Google Scholar] [CrossRef]
- Song, D.; Zhang, Q.; Zhang, H.; Zhan, L.; Sun, X. MiR-130b-3p promotes colorectal cancer progression by targeting CHD9. Cell Cycle 2022, 21, 585–601. [Google Scholar] [CrossRef]
- Wang, D.; Song, Q.; Zhao, T.; Wang, F.; Yu, Y.; Qi, J.; Lyu, P.; Duan, X. Long non-coding RNA MRPS30 divergent transcript can be detected in the cytoplasm of triple-negative breast cancer cells and is targeted by microRNA-130b. Bioengineered 2022, 13, 5954–5961. [Google Scholar] [CrossRef]
- Wang, X.; Feng, J.; Dai, H.; Mo, J.; Luo, B.; Luo, C.; Zhang, W.; Pan, L. microRNA-130b-3p delivery by mesenchymal stem cells-derived exosomes confers protection on acute lung injury. Autoimmunity 2022, 55, 597–607. [Google Scholar] [CrossRef]
- Liu, X.; Chen, S.; Zhang, L. Downregulated microRNA-130b-5p prevents lipid accumulation and insulin resistance in a murine model of nonalcoholic fatty liver disease. Am. J. Physiol.-Endocrinol. Metab. 2020, 319, E34–E42. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Zheng, Y.; Zhao, R.; Yang, X. MicroRNA-130b and microRNA-374b mediate the effect of maternal dietary protein on offspring lipid metabolism in Meishan pigs. Br. J. Nutr. 2013, 109, 1731–1738. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.K.; Lee, M.J.; Abdelmohsen, K.; Kim, W.; Kim, M.M.; Srikantan, S.; Martindale, J.L.; Hutchison, E.R.; Kim, H.H.; Marasa, B.S.; et al. miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma expression. Mol. Cell. Biol. 2011, 31, 626–638. [Google Scholar] [CrossRef]
- Wang, Y.C.; Li, Y.; Wang, X.Y.; Zhang, D.; Zhang, H.; Wu, Q.; He, Y.Q.; Wang, J.Y.; Zhang, L.; Xia, H.; et al. Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweight/obesity. Diabetologia 2013, 56, 2275–2285. [Google Scholar] [CrossRef]
- Pan, S.; Yang, X.; Jia, Y.; Li, R.; Zhao, R. Microvesicle-shuttled miR-130b reduces fat deposition in recipient primary cultured porcine adipocytes by inhibiting PPAR-g expression. J. Cell. Physiol. 2014, 229, 631–639. [Google Scholar] [CrossRef]
- Pan, S.; Yang, X.; Jia, Y.; Li, Y.; Chen, R.; Wang, M.; Cai, D.; Zhao, R. Intravenous injection of microvesicle-delivery miR-130b alleviates high-fat diet-induced obesity in C57BL/6 mice through translational repression of PPAR-γ. J. Biomed. Sci. 2015, 22, 86. [Google Scholar] [CrossRef]
- Lv, C.; Zhou, Y.H.; Wu, C.; Shao, Y.; Lu, C.L.; Wang, Q.Y. The changes in miR-130b levels in human serum and the correlation with the severity of diabetic nephropathy. Diabetes/Metab. Res. Rev. 2015, 31, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Tekcan, E.; Kara, N.; Aydın, H.M.; Abur, Ü.; Abbaszadeh, M. Evaluation of the promoter methylation status of hypoxia factor 3A and interleukin-6 genes and expression levels of mir-130b and mir-146b in childhood obesity. Rev. Da Assoc. Medica Bras. 2022, 68, 1276–1281. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, Z.; Wang, J.; Li, S. MiR-130b promotes obesity associated adipose tissue inflammation and insulin resistance in diabetes mice through alleviating M2 macrophage polarization via repression of PPAR-γ. Immunol. Lett. 2016, 180, 1–8. [Google Scholar] [CrossRef]
- John, B.; Enright, A.J.; Aravin, A.; Tuschl, T.; Sander, C.; Marks, D.S. Human MicroRNA targets. PLoS Biol. 2004, 2, e363. [Google Scholar] [CrossRef]
- Chen, Z.; Luo, J.; Ma, L.; Wang, H.; Cao, W.; Xu, H.; Zhu, J.; Sun, Y.; Li, J.; Yao, D.; et al. MiR130b-Regulation of PPARγ Coactivator- 1α Suppresses Fat Metabolism in Goat Mammary Epithelial Cells. PLoS ONE 2015, 10, e0142809. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Cao, R.; Li, S.; Fu, M.; Ren, L.; Chen, W.; Zhu, H.; Zhan, Q.; Shi, R. MiR-130b plays an oncogenic role by repressing PTEN expression in esophageal squamous cell carcinoma cells. BMC Cancer 2015, 15, 29. [Google Scholar] [CrossRef] [PubMed]
- Wagschal, A.; Najafi-Shoushtari, S.H.; Wang, L.; Goedeke, L.; Sinha, S.; deLemos, A.S.; Black, J.C.; Ramírez, C.M.; Li, Y.; Tewhey, R.; et al. Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis. Nat. Med. 2015, 21, 1290–1297. [Google Scholar] [CrossRef] [PubMed]
- Qualls, K.A.; Xie, W.; Zhang, J.; Lückemeyer, D.D.; Lackey, S.V.; Strong, J.A.; Zhang, J.M. Mineralocorticoid Receptor Antagonism Reduces Inflammatory Pain Measures in Mice Independent of the Receptors on Sensory Neurons. Neuroscience 2024, 541, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Hu, C.; Chen, X.; Ren, S.; Gao, F. Drug Repositioning of Inflammatory Bowel Disease Based on Co-Target Gene Expression Signature of Glucocorticoid Receptor and TET2. Biology 2024, 13, 82. [Google Scholar] [CrossRef]
- Tessel, M.A.; Benham, A.L.; Krett, N.L.; Rosen, S.T.; Gunaratne, P.H. Role for microRNAs in regulating glucocorticoid response and resistance in multiple myeloma. Horm. Cancer 2011, 2, 182–189. [Google Scholar] [CrossRef]
- Du, L.; Liu, W.; Aldana-Masangkay, G.; Pozhitkov, A.; Pichiorri, F.; Chen, Y.; Rosen, S.T. SUMOylation inhibition enhances dexamethasone sensitivity in multiple myeloma. J. Exp. Clin. Cancer Res. 2022, 41, 8. [Google Scholar] [CrossRef]
- Sun, Q.; Li, X.; Jia, Y.; Pan, S.; Li, R.; Yang, X.; Zhao, R. Maternal betaine supplementation during gestation modifies hippocampal expression of GR and its regulatory miRNAs in neonatal piglets. J. Vet. Med. Sci. 2016, 78, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, R.; Subbarayan, R.; Shrestha, R.; Chauhan, A.; Krishnamoorthy, L. Exploring platelet-derived microvesicles in vascular regeneration: Unraveling the intricate mechanisms and molecular mediators. Mol. Biol. Rep. 2024, 51, 393. [Google Scholar] [CrossRef]
- Dorado, E.; Doria, M.L.; Nagelkerke, A.; McKenzie, J.S.; Maneta-Stavrakaki, S.; Whittaker, T.E.; Nicholson, J.K.; Coombes, R.C.; Stevens, M.M.; Takats, Z. Extracellular vesicles as a promising source of lipid biomarkers for breast cancer detection in blood plasma. J. Extracell. Vesicles 2024, 13, e12419. [Google Scholar] [CrossRef]
- Petrova, T.; Kalinina, O.; Aquino, A.; Grigoryev, E.; Dubashynskaya, N.V.; Zubkova, K.; Kostareva, A.; Golovkin, A. Topographic Distribution of miRNAs (miR-30a, miR-223, miR-let-7a, miR-let-7f, miR-451, and miR-486) in the Plasma Extracellular Vesicles. Non-Coding RNA 2024, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Razaviyan, J.; Sirati-Sabet, M.; Tafti, A.; Hadavi, R.; Karima, S.; Rajabibazl, M.; Mohammadi-Yeganeh, S. Inhibition of MiR-155 Using Exosomal Delivery of Antagomir Can Up-Regulate PTEN in Triple Negative Breast Cancer. Metab. Immune Disord.-Drug Targets 2024, 24, 1664–1676. [Google Scholar] [CrossRef]
- Yu, L.; He, R.; Liu, C.; Shi, Y.; Wang, D. Circulating microvesicles miR139-3p from bronchopulmonary dysplasia aggravates pulmonary vascular simplification by targeting 4E binding protein 1. J. Gene Med. 2024, 26, e3675. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Cui, R.; Du, R.; Song, C.; Xie, F.; Ren, L.; Li, J. Platelet-Derived Microvesicles Mediate Cardiomyocyte Ferroptosis by Transferring ACSL1 During Acute Myocardial Infarction. Mol. Biotechnol. 2024. [Google Scholar] [CrossRef]
- Koronowicz, A.A.; Banks, P.; Szymczyk, B.; Leszczyńska, T.; Master, A.; Piasna, E.; Szczepański, W.; Domagała, D.; Kopeć, A.; Piątkowska, E.; et al. Dietary conjugated linoleic acid affects blood parameters, liver morphology and expression of selected hepatic genes in laying hens. Br. Poult. Sci. 2016, 57, 663–673. [Google Scholar] [CrossRef]
- Shen, W.; Chuang, C.C.; Martinez, K.; Reid, T.; Brown, J.M.; Xi, L.; Hixson, L.; Hopkins, R.; Starnes, J.; McIntosh, M. Conjugated linoleic acid reduces adiposity and increases markers of browning and inflammation in white adipose tissue of mice. J. Lipid Res. 2013, 54, 909–922. [Google Scholar] [CrossRef]
- Kim, C.; Lee, H.; Cho, Y.M.; Kwon, O.J.; Kim, W.; Lee, E.K. TNFα-induced miR-130 resulted in adipocyte dysfunction during obesity-related inflammation. FEBS Lett. 2013, 587, 3853–3858. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhao, Y.; Pei, Y.; Lian, F.; Lin, H. Role of the NF-kB signalling pathway in heterotopic ossification: Biological and therapeutic significance. Cell Commun. Signal. CCS 2024, 22, 159. [Google Scholar] [CrossRef]
- Barnes, P.J. Anti-inflammatory actions of glucocorticoids: Molecular mechanisms. Clin. Sci. 1998, 94, 557–572. [Google Scholar] [CrossRef]
- Kagoshima, M.; Ito, K.; Cosio, B.; Adcock, I.M. Glucocorticoid suppression of nuclear factor-kappa B: A role for histone modifications. Biochem. Soc. Trans. 2003, 31 Pt 1, 60–65. [Google Scholar] [CrossRef]
- Chantong, B.; Kratschmar, D.V.; Nashev, L.G.; Balazs, Z.; Odermatt, A. Mineralocorticoid and glucocorticoid receptors differentially regulate NF-kappaB activity and pro-inflammatory cytokine production in murine BV-2 microglial cells. J. Neuroinflamm. 2012, 9, 260. [Google Scholar] [CrossRef] [PubMed]
- Gerber, A.N.; Newton, R.; Sasse, S.K. Repression of transcription by the glucocorticoid receptor: A parsimonious model for the genomics era. J. Biol. Chem. 2021, 296, 100687. [Google Scholar] [CrossRef] [PubMed]
- Stout, M.B.; Liu, L.F.; Belury, M.A. Hepatic steatosis by dietary-conjugated linoleic acid is accompanied by accumulation of diacylglycerol and increased membrane-associated protein kinase C ε in mice. Mol. Nutr. Food Res. 2011, 55, 1010–1017. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, D.; Chen, X.; Li, J.; Li, L.; Bian, Z.; Sun, F.; Lu, J.; Yin, Y.; Cai, X.; et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol. Cell 2010, 39, 133–144. [Google Scholar] [CrossRef]
- Liberman, A.C.; Druker, J.; Perone, M.J.; Arzt, E. Glucocorticoids in the regulation of transcription factors that control cytokine synthesis. Cytokine Growth Factor Rev. 2007, 18, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Corticosteroid effects on cell signalling. Eur. Respir. J. 2006, 27, 413–426. [Google Scholar] [CrossRef]
- Clark, A.R. MAP kinase phosphatase 1: A novel mediator of biological effects of glucocorticoids? J. Endocrinol. 2003, 178, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Maneechotesuwan, K.; Yao, X.; Ito, K.; Jazrawi, E.; Usmani, O.S.; Adcock, I.M.; Barnes, P.J. Suppression of GATA-3 nuclear import and phosphorylation: A novel mechanism of corticosteroid action in allergic disease. PLoS Med. 2009, 6, e1000076. [Google Scholar] [CrossRef]
- Valen, G. Innate immunity and remodelling. Heart Fail. Rev. 2011, 16, 71–78. [Google Scholar] [CrossRef]
- Chen, F.E.; Huang, D.B.; Chen, Y.Q.; Ghosh, G. Crystal structure of p50/p65 heterodimer of transcription factor NF-kappaB bound to DNA. Nature 1998, 391, 410–413. [Google Scholar] [CrossRef]
- Whiteside, S.T.; Israël, A. I kappa B proteins: Structure, function and regulation. Semin. Cancer Biol. 1997, 8, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Camici, G.G.; Lüscher, T.F. Cardiovascular determinants of life span. Pflügers Arch.-Eur. J. Physiol. 2010, 459, 315–324. [Google Scholar] [CrossRef] [PubMed]
Antibody | Corporation | Catalog | Dilution |
---|---|---|---|
anti-GR | Santa Cruz, Dallas, TX, USA | SC1004 | 1:500 |
anti-NF-kB (p50) | Santa Cruz, Dallas, TX, USA | SC7178X | 1:5000 |
anti-phosphorylated-GR | Cell Signaling Technology, Danvers, MA, USA | 4161S | 1:500 |
anti-LDLR | Protein Group, Qingdao, China | 10785 | 1:500 |
anti-PPARG | Bioworld Technology, Shanghai, China | BS6442 | 1:500 |
anti-PGC1 | Santa Cruz, Dallas, TX, USA | SC13067 | 1:200 |
anti-PPAR-α | Bioworld Technology, Dublin, OH, USA | BS1689 | 1:500 |
anti-SCD-1 | Proteintech, Chicago, IL, USA | 28678-1-AP | 1:2000 |
anti-Lamin A/C | Bioworld Technology, Dublin, OH, USA | BS1446 | 1:500 |
anti-GAPDH | Minneapolis, Bloomington, MN, USA | AP0066 | 1:10,000 |
Target Genes | Primer Sequences (5′-3′) | GenBank Accession | |
---|---|---|---|
Plasmid construction | |||
miR-130b | F:GATCCGCCTGCCTGACACTCTTTCCCTGTTGCACTACTGTGGGCCACTGGGAAGCAGTGCAATGATGAAAGGGCATCAGTCAGGCTTTTTTGGAAA | R:AGCTTTTCCAAAAAAGCCTGACTGATGCCCTTTCATCATTGCACTGCTTCCCAGTGGCCCACAGTAGTGCAACAGGGAAAGAGTGTCAGGCAGGCG | MI0013136 |
miR-SC | F:GATCCGACTTACAGCCAGTTCCTAGTATAGTGAAGCAGCAGATGGTATACTAGGAACTGGCTGTAAGCTTTTTTTGGAAA | R:AGCTTTTCCAAAAAAAGCTTACAGCCAGTTCCTAGTATACCATCTGCTGCTTCACTATACTAGGAACTGGCTGTAAGTCG | ENSMUST00000115567.2 |
miR-130b expression | |||
miR-130b | CAGUGCAAUGAUGAAAGGGCAU | TAGAGTGAGTGTAGCGAGCA | MIMAT0013922 |
Exogenous reference | GTGACCCACGATGTGTATTCGC | GTGACCCACGATGTGTATTCGC | |
poly(T) adapter | TAGAGTGAGTGTAGCGAGCACAGAATTAATACGACTCACTATAGGTTTTTTTTTTTTTTTTVN | ||
mRNA expression | |||
TNF-α | F: ACCACCATCAAGGACTCA | R: AGGTCTGAAGGTAGGAAGG | NM_001278601.1 |
IL-1α | F: AAGAAGAGACGGCTGAGT | R: GTGGTGCTGAGATAGTGTT | NM_010554.4 |
IL-1β | F: CTTCAGGCAGGCAGTATC | R: CAGCAGGTTATCATCATCATC | NM_008361.4 |
IL-6 | F: CCCCAATTTCCAATGCTCTCC | R: CGCACTAGGTTTGCCGAGTA | NM_031168.2 |
IL-10 | F:CAGTACAGCCGGGAAGACAA | R:CCTGGGGCATCACTTCTACC | NM_010548.2 |
IL-1R | F:GAAGGTCTTAGCTGGTGCG | R:TTCATATTCTCCTGGGCGTGC | NM_001123382.1 |
IL6-Rα | F:TGAATGATGACCCCAGGCAC | R:ACACCCATCCGCTCTCTACT | NM_001310676.1 |
IL-10Rα | F:GCCAAGCCCTTCCTATGTGT | R:CCAGGGTGAACGTTGTGAGA | NM_001324486.1 |
c-myb | F:GAGAGGGCCATGGGACTAGA | R:GACGTCAGCAAAGAGGGAGG | NM_001198914.1 |
MMP9 | F: GCCGACTTTTGTGGTCTTCC | R: CTTCTCTCCCATCATCTGGGC | NM_013599.4 |
Col1a1 | F: CGACCTCAAGATGTGCCACT | R: CCATCGGTCATGCTCTCTCC | NM_007742.4 |
CCR2 | F: TTCTGGGCTCACTATGCTGC | R: GGCCACAGGTGTAATGGTGA | NM_009915.2 |
TLR2 | F: ATGTTGAAGTCCAGCAGAAT | R: CCGAACCAGGAGGAAGAT | NM_011905.3 |
TLR4 | F: TTCACCTCTGCCTTCACT | R: GGACTTCTCAACCTTCTCAA | NM_021297.3 |
SCD1 | F: TGCCTCTTAGCCACTGAA | R: CTGTTGAGATGTGAGACTGT | NM_009127.4 |
PPAR-γ | F: CCACCAACTTCGGAATCA | R: GCTCTTGTGAATGGAATGTC | NM_001127330.2 |
PPARα | F:TTCCGTGTCAGTCTGCATCT | R:CCTGAAAGGTCCTAGCACCA | NM_011144.6 |
PGC1α | F:TTGACTGGCGTCATTCGGG | R:TCGCAGGCTCATTGTTGTACT | NM_008904.2 |
LDLR | F:CCAATCGACTCACGGGTTCA | R:CTCACACCAGTTCACCCCTC | NM_010700.3 |
GR | F:TGAAGCTTCGGGATGCCATT | R:ATTGTGCTGTCCTTCCACTG | NM_008173.3 |
RPS17 | F: GGAGATCGCCATTATCCCCA | R: ATCTCCTTGGTGTCGGGATC | NM_009092.3 |
HF-SC-MV | HF-130b-MV | p Value | |
---|---|---|---|
liver weight (g) | 1.17 ± 0.06 | 1.18 ± 0.05 | 0.85 |
body weight (g) | 29.75 ± 0.53 | 26.30 ± 0.90 | 0.00 |
liver/body weight (g/100 g) | 3.92 ± 0.15 | 4.52 ± 0.17 | 0.01 |
TNF-α (pg/mL) | 6.66 ± 0.48 | 7.81 ± 0.69 | 0.19 |
IL-6 (pg/mL) | 69.76 ± 14.10 | 216.99 ± 96.75 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Z.; Wang, L.; Xu, S.; Zhang, H.; Cheng, J.; Pan, S. Microvesicle-Shuttled microRNA-130b Activates the Hepatic Inflammation by Inhibiting Glucocorticoid-Receptor-Mediated Immunosuppression in High-Fat Diet-Induced Obese Mice. Vet. Sci. 2024, 11, 565. https://doi.org/10.3390/vetsci11110565
Han Z, Wang L, Xu S, Zhang H, Cheng J, Pan S. Microvesicle-Shuttled microRNA-130b Activates the Hepatic Inflammation by Inhibiting Glucocorticoid-Receptor-Mediated Immunosuppression in High-Fat Diet-Induced Obese Mice. Veterinary Sciences. 2024; 11(11):565. https://doi.org/10.3390/vetsci11110565
Chicago/Turabian StyleHan, Zhengqiang, Lijun Wang, Shiyong Xu, Horsen Zhang, Ji Cheng, and Shifeng Pan. 2024. "Microvesicle-Shuttled microRNA-130b Activates the Hepatic Inflammation by Inhibiting Glucocorticoid-Receptor-Mediated Immunosuppression in High-Fat Diet-Induced Obese Mice" Veterinary Sciences 11, no. 11: 565. https://doi.org/10.3390/vetsci11110565
APA StyleHan, Z., Wang, L., Xu, S., Zhang, H., Cheng, J., & Pan, S. (2024). Microvesicle-Shuttled microRNA-130b Activates the Hepatic Inflammation by Inhibiting Glucocorticoid-Receptor-Mediated Immunosuppression in High-Fat Diet-Induced Obese Mice. Veterinary Sciences, 11(11), 565. https://doi.org/10.3390/vetsci11110565