Serum Transcobalamin Concentration in Cats—Method Validation and Evaluation in Chronic Enteropathies and Other Conditions
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Population and Sample Collection
2.2. Western Blot
2.3. Sandwich ELISA for Serum Feline TC Measurement
2.4. Analytical Validation of the ELISA for Use with Feline Serum
2.5. Association of Serum TC with Disease and Serum Cobalamin Levels
2.6. Statistical Analysis
3. Results
3.1. Antibody Specificity
3.2. ELISA Development and Validation
3.3. Serum TC Measurement in Clinical Cases and Association with Serum Cobalamin Level
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riggers, D.S.; Xenoulis, P.G.; Karra, D.A.; Enderle, L.L.; Köller, G.; Böttcher, D.; Steiner, J.M.; Heilmann, R.M. Fecal calprotectin concentrations in cats with chronic enteropathies. Vet. Sci. 2023, 10, 419. [Google Scholar] [CrossRef] [PubMed]
- Marsilio, S. Differentiating inflammatory bowel disease from alimentary lymphoma in cats: Does it matter? Vet. Clin. N. Am. Small Anim. Pract. 2021, 51, 93–109. [Google Scholar] [CrossRef] [PubMed]
- Washabau, R.J.; Day, M.J.; Willard, M.D.; Hall, E.J.; Jergens, A.E.; Mansell, J.; Minami, T.; Bilzer, T.W. Endoscopic, biopsy, and histopathologic guidelines for the evaluation of gastrointestinal inflammation in companion animals. J. Vet. Intern. Med. 2010, 24, 10–26. [Google Scholar] [CrossRef] [PubMed]
- Freiche, V.; Cordonnier, N.; Paulin, M.V.; Huet, H.; Turba, M.E.; Macintyre, E.; Malamut, G.; Cerf-Bensussan, N.; Molina, T.J.; Hermine, O.; et al. Feline low-grade intestinal T cell lymphoma: A unique natural model of human indolent T cell lymphoproliferative disorder of the gastrointestinal tract. Lab. Investig. 2021, 101, 794–804. [Google Scholar] [CrossRef]
- Marsilio, S. Feline chronic enteropathy. J. Small Anim. Pract. 2021, 62, 409–419. [Google Scholar] [CrossRef]
- Jergens, A.E.; Crandell, J.M.; Evans, R.; Ackermann, M.; Miles, K.G.; Wang, C. A clinical index for disease activity in cats with chronic enteropathy. J. Vet. Intern. Med. 2010, 24, 1027–1033. [Google Scholar] [CrossRef]
- Jergens, A.E.; Simpson, K.W. Inflammatory bowel disease in veterinary medicine. Front. Biosci. (Elite Ed.) 2012, 4, 1404–1419. [Google Scholar] [CrossRef]
- Reed, N.; Gunn-Moore, D.; Simpson, K. Cobalamin, folate and inorganic phosphate abnormalities in ill cats. J. Feline Med. Surg. 2007, 9, 278–288. [Google Scholar] [CrossRef]
- Kiselow, M.A.; Rassnick, K.M.; McDonough, S.P.; Goldstein, R.E.; Simpson, K.W.; Weinkle, T.K.; Erb, H.N. Outcome of cats with low-grade lymphocytic lymphoma: 41 cases (1995–2005). J. Am. Vet. Med. Assoc. 2008, 232, 405–410. [Google Scholar] [CrossRef]
- Kather, S.; Sielski, L.; Dengler, F.; Jirasek, A.; Heilmann, R.M. Prevalence and clinical relevance of hypercobalaminaemia in dogs and cats. Vet. J. 2022, 265, 105547. [Google Scholar] [CrossRef]
- Kather, S.; Grützner, N.; Kook, P.H.; Dengler, F.; Heilmann, R.M. Review of cobalamin status and disorders of cobalamin metabolism in dogs. J. Vet. Intern. Med. 2020, 34, 13–28. [Google Scholar] [CrossRef] [PubMed]
- Siani, G.; Mercaldo, B.; Alterisio, M.C.; Di Loria, A. Vitamin B12 in cats: Nutrition, metabolism, and disease. Animals 2023, 13, 1474. [Google Scholar] [CrossRef] [PubMed]
- Fyfe, J.C.; Giger, U.; Hall, C.A.; Jezyk, P.F.; Klumpp, S.A.; Levine, J.S.; Patterson, D.F. Inherited selective intestinal cobalamin malabsorption and cobalamin deficiency in dogs. Pediatr. Res. 1991, 29, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.H.; Stabler, S.P.; Savage, D.G.; Lindenbaum, J. Diagnosis of cobalamin deficiency I: Usefulness of serum methylmalonic acid and total homocysteine concentrations. Am. J. Hematol. 1990, 34, 90–98. [Google Scholar] [CrossRef]
- Solomon, L.R. Disorders of cobalamin (vitamin B12) metabolism: Emerging concepts in pathophysiology, diagnosis and treatment. Blood Rev. 2007, 21, 113–130. [Google Scholar] [CrossRef]
- Chen, Y.; Gu, X.; Zhang, Y.; Zhang, X.; Zhang, C.; Liu, M.; Sun, S.; Dong, N.; Wu, Q. CD320 expression and apical membrane targeting in renal and intestinal epithelial cells. Int. J. Biol. Macromol. 2022, 201, 85–92. [Google Scholar] [CrossRef]
- Kather, S.; Kacza, J.; Pfannkuche, H.; Böttcher, D.; Sung, C.-H.; Steiner, J.M.; Gäbel, G.; Dengler, F.; Heilmann, R.M. Expression of the cobalamin transporters cubam and MRP1 in the canine ileum–upregulation in chronic inflammatory enteropathy. PLoS ONE 2024, 19, e0296024. [Google Scholar] [CrossRef]
- Ruaux, C.G. Laboratory tests: Diagnosis of intestinal disorders. In Small Animal Gastroenterology, 2nd ed.; Heilmann, R.M., Lidbury, J.A., Steiner, J.M., Eds.; Schlütersche: Hanover, Germany, 2024; Volume 1, pp. 26–31. [Google Scholar]
- Ermens, A.; Vlasveld, L.T.; Lindemans, J. Significance of elevated cobalamin (vitamin B12) levels in blood. Clin. Biochem. 2003, 36, 585–590. [Google Scholar] [CrossRef]
- Linnell, J.C.; Collings, L.; Down, M.C.; England, J.M. Distribution of endogenous cobalamin between the transcobalamins in various mammals. Clin. Sci. 1979, 57, 139–144. [Google Scholar] [CrossRef]
- Gräsbeck, R. Biochemistry and clinical chemistry of vitamin B12 transport and the related diseases. Clin. Biochem. 1984, 17, 99–107. [Google Scholar] [CrossRef]
- Andrès, E.; Serraj, K.; Zhu, J.; Vermorken, A. The pathophysiology of elevated vitamin B12 in clinical practice. QJM 2013, 106, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Lindemans, J.; Kroes, A.C.; van Geel, J.; van Kapel, J.; Schoester, M.; Abels, J. Uptake of transcobalamin II-bound cobalamin by HL-60 cells: Effects of differentiation induction. Exp. Cell Res. 1989, 184, 449–460. [Google Scholar] [CrossRef]
- Gouda, H.; Ji, Y.; Rath, S.; Watkins, D.; Rosenblatt, D.; Mootha, V.; Jones, J.W.; Banerjee, R. Differential utilization of vitamin B12-dependent and independent pathways for propionate metabolism across human cells. J. Biol. Chem. 2024, 300, 107662. [Google Scholar] [CrossRef]
- Ruaux, C.G.; Steiner, J.M.; Williams, D.A. Relationships between low serum cobalamin concentrations and methylmalonic acidemia in cats. J. Vet. Intern. Med. 2009, 23, 472–475. [Google Scholar] [CrossRef]
- Geesaman, B.M.; Whitehouse, W.H.; Viviano, K.R. Serum cobalamin and methylmalonic acid concentrations in hyperthyroid cats before and after radioiodine treatment. J. Vet. Intern. Med. 2016, 30, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Cook, A.K.; Suchodolski, J.S.; Steiner, J.M.; Robertson, J.E. The prevalence of hypocobalaminaemia in cats with spontaneous hyperthyroidism. J. Small Anim. Pract. 2011, 52, 101–106. [Google Scholar] [CrossRef]
- Ruaux, C.G.; Steiner, J.M.; Williams, D.A. Early biochemical and clinical responses to cobalamin supplementation in cats with signs of gastrointestinal disease and severe hypocobalaminemia. J. Vet. Intern. Med. 2005, 19, 155–160. [Google Scholar] [CrossRef]
- Trehy, M.R.; German, A.J.; Silvestrini, P.; Serrano, G.; Batchelor, D.J. Hypercobalaminaemia is associated with hepatic and neoplastic disease in cats: A cross-sectional study. BMC Vet. Res. 2014, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chiche, L.; Jean, R.; Romain, F.; Roux, F.; Thomas, G.; Canavese, S.; Branger, S.; Harlé, J.-R.; Durand, J.-M. Clinical implications of high cobalamin blood levels for internal medicine [Implications cliniques de la découverte d’une hypervitaminémie B12 en médecine interne]. Rev. Med. Interne 2008, 29, 187–194. [Google Scholar] [CrossRef]
- Zittoun, J. Cobalamins: An update of fundamental and clinical data. Hématologie 1996, 2, 119–129. [Google Scholar]
- Li, N.; Seetharam, S.; Lindemans, J.; Alpers, D.H.; Arwert, F.; Seetharam, B. Isolation and sequence analysis of variant forms of human transcobalamin II. Biochim. Biophys. Acta 1993, 1172, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Nexo, E.; Hoffmann-Lücke, E. Holotranscobalamin, a marker of vitamin B12 status: Analytical aspects and clinical utility. Am. J. Clin. Nutr. 2011, 94, 359S–365S. [Google Scholar] [CrossRef]
- Nexo, E.; Christensen, A.-L.; Petersen, T.E.; Fedosov, S.N. Measurement of transcobalamin by ELISA. Clin. Chem. 2000, 46, 1643–1649. [Google Scholar] [CrossRef]
- Kather, S.; Reich, F.; Nexo, E.; Köller, G.; Grützner, N.; Pfannkuche, H.; Dengler, F.; Gäbel, G.; Heilmann, R.M. Serum transcobalamin analysis in dogs–method validation and association with serum cobalamin status in dogs with chronic enteropathy. J. Vet. Intern. Med. 2022, 36, 2484. [Google Scholar]
- Valentin, M.-A.; Ma, S.; Zhao, A.; Legay, F.; Avrameas, A. Validation of immunoassay for protein biomarkers: Bioanalytical study plan implementation to support pre-clinical and clinical studies. J. Pharm. Biomed. Anal. 2011, 55, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Geffré, A.; Concordet, D.; Braun, J.-P.; Trumel, C. Reference value advisor: A new freeware set of macroinstructions to calculate reference intervals with Microsoft Excel. Vet. Clin. Pathol. 2011, 40, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Friedrichs, K.R.; Harr, K.E.; Freeman, K.P.; Szladovits, B.; Walton, R.M.; Barnhart, K.F.; Blanco-Chavez, J. ASVCP reference interval guidelines: Determination of de novo reference intervals in veterinary species and other related topics. Vet. Clin. Pathol. 2012, 41, 441–453. [Google Scholar] [CrossRef] [PubMed]
- International Renal Interest Society (IRIS). Guidelines—Staging of Chronic Kidney Disease (CKD) in Cats. Available online: https://www.iris-kidney.com/pdf/2_IRIS_Staging_of_CKD_2023.pdf (accessed on 26 October 2024).
- Jugan, M.C.; August, J.R. Serum cobalamin concentrations and small intestinal ultrasound changes in 75 cats with clinical signs of gastrointestinal disease: A retrospective study. J. Fel. Med. Surg. 2017, 19, 48–56. [Google Scholar] [CrossRef]
- Sysel, A.M.; Valli, V.E.; Bauer, J.A. Immunohistochemical quantification of the cobalamin transport protein, cell surface receptor and Ki-67 in naturally occurring canine and feline malignant tumors and in adjacent normal tissues. Oncotarget 2015, 6, 2331–2348. [Google Scholar] [CrossRef]
- Knudsen, C.S.; Parkner, T.; Hoffmann-Lücke, E.; Abildgaard, A.; Greibe, E. Reference intervals and stability of haptocorrin and holotranscobalamin in Danish children and elderly. Clin. Chim. Acta 2023, 546, 117394. [Google Scholar] [CrossRef]
- Schroder, T.H.; Tan, A.; Mattman, A.; Sinclair, G.; Barr, S.I.; Vallance, H.D.; Lamers, Y. Reference intervals for serum total vitamin B12 and holotranscobalamin concentrations and their change points with methylmalonic acid concentration to assess vitamin B12 status during early and mid-pregnancy. Clin. Chem. Lab. Med. 2019, 57, 1790–1798. [Google Scholar] [CrossRef] [PubMed]
- Loikas, S.; Löppönen, M.; Suominen, P.; Møller, J.; Irjala, K.; Isoaho, R.; Kivelä, S.-L.; Koskinen, P.; Pelliniemi, T.-T. RIA for serum holo-transcobalamin: Method evaluation in the clinical laboratory and reference interval. Clin. Chem. 2003, 49, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Marsilio, S.; Ackermann, M.R.; Lidbury, J.A.; Suchodolski, J.S.; Steiner, J.M. Results of histopathology, immunohistochemistry, and molecular clonality testing of small intestinal biopsy specimens from clinically healthy client-owned cats. J. Vet. Intern. Med. 2019, 33, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Heilmann, R.M.; Riggers, D.S.; Trewin, I.; Köller, G.; Kathrani, A. Treatment success in cats with chronic enteropathy is associated with a decrease in fecal calprotectin concentrations. Front. Vet. Sci. 2024, 11, 1390681. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.; Woo, J.-S.; Schmitz, J.; Prinz, B.; Root, K.; Chen, F.; Bloch, J.S.; Zenobi, R.; Locher, K.P. Structural basis of transcobalamin recognition by human CD320 receptor. Nat. Commun. 2016, 7, 12100. [Google Scholar] [CrossRef]
- Quadros, E.V.; Jacobsen, D.W. The dynamics of cobalamin utilization in L-1210 mouse leukemia cells: A model of cellular cobalamin metabolism. Biochim. Biophys. Acta 1995, 1244, 395–403. [Google Scholar] [CrossRef]
- Youngdahl-Turner, P.; Rosenberg, L.E.; Allen, R.H. Binding and uptake of transcobalamin II by human fibroblasts. J. Clin. Investig. 1978, 61, 133–141. [Google Scholar] [CrossRef]
- Gick, G.G.; Arora, K.; Sequeira, J.M.; Nakayama, Y.; Lai, S.-C.; Quadros, E.V. Cellular uptake of vitamin B12: Role and fate of TCblR/CD320, the transcobalamin receptor. Exp. Cell Res. 2020, 396, 112256. [Google Scholar] [CrossRef]
- Ruaux, C.G.; Steiner, J.M.; Williams, D.A. Metabolism of amino acids in cats with severe cobalamin deficiency. Am. J. Vet. Res. 2001, 62, 1852–1858. [Google Scholar] [CrossRef]
- Simpson, K.W.; Fyfe, J.; Cornetta, A.; Sachs, A.; Strauss-Ayali, D.; Lamb, S.V.; Reimers, T.J. Subnormal concentrations of serum cobalamin (vitamin B12) in cats with gastrointestinal disease. J. Vet. Intern. Med. 2001, 15, 26–32. [Google Scholar] [CrossRef]
- Herrmann, W.; Obeid, R.; Schorr, H.; Geisel, J. The usefulness of holotranscobalamin in predicting vitamin B12 status in different clinical settings. Curr. Drug Metab. 2005, 6, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Carmel, R.; Vasireddy, H.; Aurangzeb, I.; George, K. High serum cobalamin levels in the clinical setting–clinical associations and holo-transcobalamin changes. Clin. Lab. Haematol. 2001, 23, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Obeid, R.; Kuhlmann, M.; Kirsch, C.-M.; Herrmann, W. Cellular uptake of vitamin B12 in patients with chronic renal failure. Nephron Clin. Pract. 2005, 99, c42–c48. [Google Scholar] [CrossRef]
- Amsellem, S.; Gburek, J.; Hamard, G.; Nielsen, R.; Willnow, T.E.; Devuyst, O.; Nexo, E.; Verroust, P.J.; Christensen, E.I.; Kozyraki, R. Cubulin is essential for albumin reabsorption in the renal proximal tubule. J. Am. Soc. Nephrol. 2010, 21, 1859–1867. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.A.; Elliott, J.; Schmiedt, C.W.; Brown, S.A. Chronic kidney disease in aged cats: Clinical features, morphology, and proposed pathogeneses. Vet. Pathol. 2016, 53, 309–326. [Google Scholar] [CrossRef]
- Møller, H.J.; Moestrup, S.K.; Weis, N.; Wejse, C.; Nielsen, H.; Pedersen, S.S.; Attermann, J.; Nexø, E.; Kronborg, G. Macrophage serum markers in pneumococcal bacteremia: Prediction of survival by soluble CD163. Crit. Care Med. 2006, 34, 2561–2566. [Google Scholar] [CrossRef]
- Eckersall, P.D.; Bell, R. Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. Vet. J. 2010, 185, 23–27. [Google Scholar] [CrossRef]
- Donato, G.; Pennisi, M.G.; Persichetti, M.F.; Archer, J.; Masucci, M. A retrospective comparative evaluation of selected blood cell ratios, acute phase proteins, and leukocyte changes suggestive of inflammation in cats. Animals 2023, 13, 2579. [Google Scholar] [CrossRef]
- Fehr, J.; De Vecchi, P. Transcobalamin II: A marker for macrophage/histiocyte proliferation. Am. J. Clin. Pathol. 1985, 84, 291–296. [Google Scholar] [CrossRef]
- Venema, J. Cobalamin- und Folsäurekonzentrationen Hyperthyreoter Katzen vor und Nach Radiojodbehandlung. PH.D. Thesis, Justus-Liebig University, Gießen, Germany, 2017. [Google Scholar] [CrossRef]
- Festen, H.P. Intrinsic factor secretion and cobalamin absorption. Physiology and pathophysiology in the gastrointestinal tract. Scand. J. Gastroenterol. Suppl. 1991, 188, 1–7. [Google Scholar] [CrossRef]
Sample | Dilutions | Serum TC (aU/L) | Observed/ Expected ± SD (%) |
---|---|---|---|
1 | 1:2–1:8 | 768 | 80.2 ± 7.8 |
2 | 1:2–1:8 | 2429 | 129.3 ± 0.5 |
3 | 1:2–1:8 | 10,886 | 138.6 ± 7.0 |
4 | 1:2–1:16 | 1914 | 90.0 ± 8.3 |
5 | 1:2–1:16 | 3747 | 124.2 ± 5.5 |
Spike Specimen | Serum 1 TC (aU/L) | Serum 2 TC (aU/L) | Observed Serum TC (aU/L) | Expected Serum TC (aU/L) | Observed/ Expected (%) |
---|---|---|---|---|---|
1 | 1244 | 103 | 736 | 674 | 109.3 |
2 | 1705 | 811 | 1594 | 1258 | 126.7 |
3 | 2072 | 1270 | 1580 | 1671 | 94.5 |
4 | 632 | 27,032 | 10,381 | 13,832 | 75.1 |
Serum Sample | Mean ± SD (aU/L) | CV (%) | Serum Sample | Mean ± SD (aU/L) | CV (%) | |||
---|---|---|---|---|---|---|---|---|
1 | 432 ± 47 | 10.8 | 1 | 510 ± 88 | 17.2 | |||
Intra-assay | 2 | 684 ± 26 | 3.9 | Inter-assay | 2 | 4947 ± 499 | 10.1 | |
Variation | 3 | 2457 ± 434 | 17.7 | Variation | 3 | 5699 ± 416 | 7.3 | |
4 | 5899 ± 105 | 1.8 |
Parameter | FCE | GI-N | CH | O-N | O-N/N | HCo | p-Value |
---|---|---|---|---|---|---|---|
N | 13 * | 15 | 24 | 17 | 37 | 41 | – |
Patient characteristics | |||||||
Age, in years | 11 A (4–12.5) | 10 A (4–11) | 8.5 A,B (2–11) | 9 A (6–11.5) | 8 A (3–10.5) | 4 B (2–6.5) | 0.0014 |
Sex, | 0.7038 | ||||||
male (neutered)/female (spayed) | 8 (7)/ 5 (5) | 8 (8)/ 7 (6) | 12 (11)/ 12 (11) | 12 (9)/ 5 (5) | 25 (22)/ 12 (8) | 26 (19)/ 15 (11) | |
Body weight, in kg † | 4.3 A,B (4.0–5.0) | 3.6 A (3.0–4.6) | 3.9 A,B (2.9–5.6) | 4.5 B,C (3.8–5.6) | 4.5 B,C (3.3–6.3) | 5.1 C (4.4–5.8) | 0.0209 |
Breed | 0.3916 | ||||||
Domestic (European) Shorthair | 8 (62%) | 12 (80%) | 16 (67%) | 13 (76%) | 24 (65%) | 34 (83%) | |
Other breeds | 5 (38%) | 3 (20%) | 8 (33%) | 4 (24%) | 13 (35%) | 7 (17%) | |
FeLV–status $ | 0/7 (0%) | 0/7 (0%) | 1/16 (6%) | 1/10 (10%) | 1/11 (9%) | 0/35 (0%) | – |
FIV–status $ | 0/7 (0%) | 0/7 (0%) | 0/16 (0%) | 1/10 (10%) | 2/11 (18%) | 0/25 (0%) | |
Clinical parameters | |||||||
Clinical signs | – | ||||||
vomiting | 9/13 (69%) | 7/15 (47%) | 11/24 (46%) | 3/17 (18%) | 17/37 (46%) | 0/41 (0%) | |
diarrhea | 5/13 (20%) | 3/15 (20%) | 5/24 (21%) | 2/17 (12%) | 7/37 (19%) | 0/41 (0%) | |
hypo-/anorexia | 8/13 (62%) | 11/15 (73%) | 16/24 (67%) | 13/17 (77%) | 21/37 (57%) | 0/41 (0%) | |
weight loss | 3/13 (23%) | 10/15 (67%) | 12/24 (50%) | 8/17 (47%) | 8/37 (22%) | 0/41 (0%) | |
lethargy | 7/13 (53%) | 8/15 (53%) | 17/24 (71%) | 11/17 (65%) | 21/37 (57%) | 1/41 (2%) | |
FCEAI score ¶ | 8.5 (5–9.5) | 6 (5–9) | 7 (6–9) | 7 (5–9) | 9 (3.5–15) | – | 0.7699 |
Clinicopathologic serum parameters | |||||||
Cobalamin, in pmol/L ‡ | 404 (262–705) | 3000 (179–5821) | 748 (282–1152) | 729 (220–1238) | 548 (221–1140) | 1083 (922–1244) | 0.6340 |
Hypocobalaminemia | 2/11 (18%) | 0/2 (0%) | 2/17 (12%) | 0/2 (0%) | 2/8 (25%) | 0/2 (0%) | 0.0869 |
Hypercobalaminemia | 1/11 (9%) | 1/2 (50%) | 7/17 (41%) | 1/2 (50%) | 3/8 (38%) | 1/2 (50%) | |
Folate, in nmol/L $ | 29.9 (25.8–35.1) | 44.3 | 31.2 (24.1–47.4) | – | 30.6 (25.3–31.9) | – | 0.5801 |
Hypofolatemia $ | 2/9 (22%) | 0/1 (0%) | 2/7 (29%) | – | 1/6 (17%) | – | 0.8395 |
Hyperfolatemia | 1/9 (11%) | 0/1 (0%) | 0/7 (0%) | 0/6 (0%) | |||
Albumin, in g/L ** | 31 A,B (28–32) | 24.5 C (23–27) | 27 A,C (23–32) | 31 A,C,D (25–36) | 32 B,D (30–34) | 32.5 D (31–36) | <0.0001 |
Globulin, in g/L ** | 38 (33–48) | 38.5 (37–42) | 39.5 (30–43) | 38 (32–49) | 43 (36–49) | 41 (39–45) | 0.1214 |
Total protein, in g/L ** | 69 A,B,C (61.5–77) | 63.5 A,C (61–72.5) | 66.5 A,C (58–76.5) | 74 A,B,C,D (64–76) | 74.5 B,D (69–82) | 74.5 D (72–79) | 0.0002 |
Hyperproteinemia | 3/14 (21%) | 1/14 (7%) | 4/24 (17%) | 2/15 (13%) | 14/36 (39%) | 12/38 (32%) | 0.0896 |
ALT, in U/L †† | 55.5 A,B,C (36–75) | 32 A (26.5–62) | 161.5 B (43–363) | 39 A (28–57) | 58 C (38–95) | 51 C (44.5–65.5) | 0.0003 |
Increased ALT †† | 3/14 (21%) | 2/13 (15%) | 15/24 (63%) | 3/15 (20%) | 10/35 (29%) | 1/37 (3%) | <0.0001 |
ALP, in U/L †† | 26 (20–48) | 40 (21.5–63.5) | 47.5 (25–129) | 29 (19–36) | 34 (26–62) | 34 (25–41) | 0.1581 |
Increased ALP †† | 3/14 (21%) | 4/13 (31%) | 11/24 (46%) | 3/15 (20%) | 9/34 (27%) | 5/38 (13%) | 0.0556 |
γGT, in U/L $$ | 3.5 (1–5) | 4 (1–5.5) | 4 (2–8) | 1 (1–2.5) | 2 (1–3) | 3 (1–4) | 0.0719 |
Phosphorus, in mmol/L ‡‡ | 1.4 (1.2–2.1) | 1.4 (1.3–3.9) | 1.4 (0.9–1.6) | 1.4 (1.2–1.7) | 1.9 (1.5–2.9) | 1.4 (1.1–1.6) | 0.0870 |
Hyperphosphatemia ‡‡ | 3/9 (33%) | 3/10 (30%) | 2/20 (10%) | 1/12 (8%) | 8/18 (44%) | 0/3 (0%) | 0.0644 |
Creatinine, in μmol/L †† | 131 A (108–167) | 125 A,B (77–205) | 88 B (67–105) | 117 A (97–135) | 122 A (77–197) | 119 A (105–131) | 0.0068 |
BUN, in mmol/L §§ | 8.8 (6.1–11.6) | 8.6 (6.0–22.1) | 8.5 (5.7–11.0) | 10.2 (6.0–17.3) | 11.2 (6.8–19.3) | 9.1 (8.0–10.0) | 0.2048 |
Spec fPL, in μg/L ¶¶ | 1.4 (0.7–3.2) | 6.6 (2.9–10.3) | 2.5 (1.7–10.4) | – | 1.4 (1.0–5.1) | 4.5 (1.0–8.0) | 0.1558 |
Transcobalamin II, in aU/L, median (IQR) | 160 A (160–178) | 160 A,B (160–314) | 160 A (160–214) | 160 A,B (160–781) | 160 A,B (160–939) | 160 B (160–551) | 0.0482 |
Serum TC | Spearman ρ Correlation Coefficient (p) | |||||||
---|---|---|---|---|---|---|---|---|
Correlated with | All Cats | FCE | GI-N | CH | O-N | O-N/N | HCo | |
Patient characteristics | ||||||||
Age | 0.04 (0.6627) | −0.20 (0.4850) | 0.31 (0.2559) | 0.14 (0.5051) | −0.21 (0.4246) | 0.23 (0.1770) | 0.20 (0.2101) | |
Clinical criteria | ||||||||
FCEAI score | −0.16 (0.2455) | −0.18 (0.6023) | 0.03 (0.9158) | −0.27 (0.2089) | n/a | −0.22 (0.7177) | n/a | |
Serum protein concentrations | ||||||||
Albumin concentration | 0.09 (0.2714) | 0.27 (0.3443) | 0.43 (0.1228) | 0.20 (0.3430) | 0.01 (0.9893) | −0.05 (0.7733) | 0.04 (0.8300) | |
Globulin concentration | 0.11 (0.1776) | 0.15 (0.6158) | −0.29 (0.3118) | −0.09 (0.6923) | −0.07 (0.8151) | 0.05 (0.7727) | 0.29 (0.0730) | |
Total protein concentration | 0.16 (0.0564) | 0.08 (0.7948) | −0.52 (0.0555) | 0.04 (0.8505) | 0.05 (0.8620) | 0.06 (0.7403) | 0.41 (0.0102) | |
Serum renal markers | ||||||||
Creatinine concentration | 0.01 (0.8900) | −0.03 (0.9256) | 0.02 (0.9605) | 0.25 (0.2690) | −0.16 (0.5570) | 0.04 (0.8122) | −0.20 (0.2437) | |
BUN concentration | 0.06 (0.4764) | 0.13 (0.6693) | −0.15 (0.6184) | 0.08 (0.7287) | −0.37 (0.1594) | 0.18 (0.3020) | 0.28 (0.0879) | |
Phosphorus concentration | −0.13 (0.2735) | −0.55 (0.1269) | −0.52 (0.1203) | 0.07 (0.7675) | −0.54 (0.0711) | −0.03 (0.9204) | −0.87 (0.3333) | |
Serum functional biomarker | ||||||||
Cobalamin concentration | −0.01 (0.9484) | −0.54 (0.0840) | n/a | −0.07 (0.7929) | n/a | 0.51 (0.1922) | n/a | |
Folate concentration | 0.11 (0.6337) | 0.10 (0.7999) | n/a | −0.08 (0.8666) | n/a | −0.03 (0.9493) | n/a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kunath, T.; Kather, S.; Dengler, F.; Nexo, E.; Pfannkuche, H.; Heilmann, R.M. Serum Transcobalamin Concentration in Cats—Method Validation and Evaluation in Chronic Enteropathies and Other Conditions. Vet. Sci. 2024, 11, 552. https://doi.org/10.3390/vetsci11110552
Kunath T, Kather S, Dengler F, Nexo E, Pfannkuche H, Heilmann RM. Serum Transcobalamin Concentration in Cats—Method Validation and Evaluation in Chronic Enteropathies and Other Conditions. Veterinary Sciences. 2024; 11(11):552. https://doi.org/10.3390/vetsci11110552
Chicago/Turabian StyleKunath, Tim, Stefanie Kather, Franziska Dengler, Ebba Nexo, Helga Pfannkuche, and Romy M. Heilmann. 2024. "Serum Transcobalamin Concentration in Cats—Method Validation and Evaluation in Chronic Enteropathies and Other Conditions" Veterinary Sciences 11, no. 11: 552. https://doi.org/10.3390/vetsci11110552
APA StyleKunath, T., Kather, S., Dengler, F., Nexo, E., Pfannkuche, H., & Heilmann, R. M. (2024). Serum Transcobalamin Concentration in Cats—Method Validation and Evaluation in Chronic Enteropathies and Other Conditions. Veterinary Sciences, 11(11), 552. https://doi.org/10.3390/vetsci11110552