Unravelling Antimicrobial Resistance in Mycoplasma hyopneumoniae: Genetic Mechanisms and Future Directions
Simple Summary
Abstract
1. Introduction
2. Mycoplasma hyopneumoniae: The Etiologic Agent of Enzootic Pneumonia (EP)
3. Genome-Wide Studies and Antimicrobial Resistance
3.1. Challenges and Limitations
3.2. Bioinformatic Tools and Available Genomes
4. In Vitro Antimicrobial Susceptibility Testing
4.1. Minimum Inhibitory Concentration (MIC)
4.2. Minimum Bactericidal Concentration or MBC
5. Molecular Mechanisms of Antimicrobial Resistance
5.1. Macrolides (rRNA)
5.2. Tetracyclines (Ribosomal Proteins)
5.3. Fluoroquinolones (Topoisomerase)
5.4. Efflux Transporters
6. Future and Horizon
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Organisation for Animal Health (OIE). Terrestrial Animal Health Code. Chapter 6.8. 2021. Available online: https://www.oie.int/en/what-we-do/standards/codes-and-manuals/terrestrial-code-online-access/ (accessed on 20 October 2022).
- Hoelzer, K.; Wong, N.; Thomas, J.; Talkington, K.; Jungman, E.; Coukell, A. Antimicrobial drug use in food-producing animals and associated human health risks: What, and how strong, is the evidence? BMC Vet. Res. 2017, 13, 211. [Google Scholar] [CrossRef] [PubMed]
- Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Rep. 2012, 127, 4–22. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Xu, S.; Tang, Z.; Li, Z.; Zhang, L. Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosaf. Health 2021, 3, 32–38. [Google Scholar] [CrossRef]
- Tang, K.L.; Caffrey, N.P.; Nóbrega, D.B.; Cork, S.C.; Ronksley, P.E.; Barkema, H.W.; Polachek, A.J.; Ganshorn, H.; Sharma, N.; Kellner, J.D.; et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: A systematic review and meta-analysis. Lancet Planet. Health 2017, 1, e316–e327, Erratum in Lancet Planet. Health 2017, 1, e359. [Google Scholar] [CrossRef]
- Tassew, D.D.; Mechesso, A.F.; Park, N.H.; Song, J.B.; Shur, J.W.; Park, S.C. Biofilm formation and determination of minimum biofilm eradication concentration of antibiotics in Mycoplasma hyopneumoniae. J. Vet. Med. Sci. 2017, 79, 1716–1720. [Google Scholar] [CrossRef]
- Glasser, K. Zum Schweinegrippe problem. Dtsch. Tierärztliche Wochenschr. 1939, 47, 209. [Google Scholar]
- Gulrajani, T.S.; Beveridge, W.I. Studies on respiratory diseases of pigs. IV. Transmission of infectious pneumonia and its differentiation from swine influenza. J. Comp. Pathol. 1951, 61, 118–139. [Google Scholar] [CrossRef]
- Allicock, O.M.; Guo, C.; Uhlemann, A.C.; Whittier, S.; Chauhan, L.V.; Garcia, J.; Price, A.; Morse, S.S.; Mishra, N.; Briese, T.; et al. BacCapSeq: A platform for diagnosis and characterization of bacterial infections. MBio 2018, 9, 10–128. [Google Scholar] [CrossRef]
- Gupta, R.S.; Oren, A. Necessity and rationale for the proposed name changes in the classification of Mollicutes species. Reply to: ‘Recommended rejection of the names Malacoplasma gen. nov., Mesomycoplasma gen. nov., Metamycoplasma gen. nov., Metamycoplasmataceae fam. nov., Mycoplasmoidaceae fam. nov., Mycoplasmoidales ord. nov., Mycoplasmoides gen. nov., Mycoplasmopsis gen. Int. J. Syst. Evol. Microbiol. 2020, 70, 1431–1438. [Google Scholar] [CrossRef]
- Fritsch, T.E.; Siqueira, F.M.; Schrank, I.S. Intrinsic terminators in Mycoplasma hyopneumoniae transcription. BMC Genom. 2015, 16, 273. [Google Scholar] [CrossRef]
- Allam, A.B.; Reyes, L.; Assad-Garcia, N.; Glass, J.I.; Brown, M.B. Enhancement of targeted homologous recombination in Mycoplasma mycoides subsp. capri by inclusion of heterologous recA. Appl. Environ. Microbiol. 2010, 76, 6951–6954. [Google Scholar] [CrossRef] [PubMed]
- Faucher, M.; Nouvel, L.X.; Dordet-Frisoni, E.; Sagné, E.; Baranowski, E.; Hygonenq, M.C.; Marenda, M.S.; Tardy, F.; Citti, C. Mycoplasmas under experimental antimicrobial selection: The unpredicted contribution of horizontal chromosomal transfer. PLoS Genet. 2019, 15, e1007910. [Google Scholar] [CrossRef]
- Betlach, A.M.; Maes, D.; Garza-Moreno, L.; Tamiozzo, P.; Sibila, M.; Haesebrouck, F.; Segalés, J.; Pieters, M. Mycoplasma hyopneumoniae variability: Current trends and proposed terminology for genomic classification. Transbound. Emerg. Dis. 2019, 66, 1840–1854. [Google Scholar] [CrossRef] [PubMed]
- Vranckx, K.; Maes, D.; Calus, D.; Villarreal, I.; Pasmans, F.; Haesebrouck, F. Multiple-locus variable-number tandem-repeat analysis is a suitable tool for differentiation of Mycoplasma hyopneumoniae strains without cultivation. J. Clin. Microbiol. 2011, 49, 2020–2023. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.; Daniel, A.G.; Zarate, J.B.; Sato, J.P.; Santos, L.F.; Guedes, R. Genetic diversity of Mycoplasma hyopneumoniae in finishing pigs in Minas Gerais. Pesqui. Veterinária Bras. 2023, 43, e07155. [Google Scholar] [CrossRef]
- Nathues, H.; Grosse Beilage, E.; Kreienbrock, L.; Rosengarten, R.; Spergser, J. RAPD and VNTR analyses demonstrate genotypic heterogeneity of Mycoplasma hyopneumoniae isolates from pigs housed in a region with high pig density. Vet. Microbiol. 2011, 152, 338–345. [Google Scholar] [CrossRef]
- Mayor, D.; Jores, J.; Korczak, B.M.; Kuhnert, P. Multilocus sequence typing (MLST) of Mycoplasma hyopneumoniae: A diverse pathogen with limited clonality. Vet. Microbiol. 2008, 127, 63–72. [Google Scholar] [CrossRef]
- Farhat, M.R.; Freschi, L.; Calderon, R.; Ioerger, T.; Snyder, M.; Meehan, C.J.; de Jong, B.; Rigouts, L.; Sloutsky, A.; Kaur, D.; et al. GWAS for quantitative resistance phenotypes in Mycobacterium tuberculosis reveals resistance genes and regulatory regions. Nat. Commun. 2019, 10, 2128. [Google Scholar] [CrossRef]
- Davis, J.J.; Wattam, A.R.; Aziz, R.K.; Brettin, T.; Butler, R.; Butler, R.M.; Chlenski, P.; Conrad, N.; Dickerman, A.; Dietrich, E.M.; et al. The PATRIC Bioinformatics Resource Center: Expanding data and analysis capabilities. Nucleic Acids Res. 2020, 48, D606–D612. [Google Scholar] [CrossRef]
- Amoutzias, G.D.; Nikolaidis, M.; Hesketh, A. The notable achievements and the prospects of bacterial pathogen genomics. Microorganisms 2022, 10, 1040. [Google Scholar] [CrossRef]
- Davis, J.J.; Boisvert, S.; Brettin, T.; Kenyon, R.W.; Mao, C.; Olson, R.; Overbeek, R.; Santerre, J.; Shukla, M.; Wattam, A.R.; et al. Antimicrobial resistance prediction in PATRIC and RAST. Sci. Rep. 2016, 6, 27930. [Google Scholar] [CrossRef] [PubMed]
- Hannan, P.C. Guidelines and recommendations for antimicrobial minimum inhibitory concentration (MIC) testing against veterinary mycoplasma species. International Research Programme on Comparative Mycoplasmology. Vet. Res. 2000, 31, 373–395. [Google Scholar] [CrossRef]
- Kowalska-Krochmal, B.; Dudek-Wicher, R. The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens 2021, 10, 165. [Google Scholar] [CrossRef] [PubMed]
- Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef] [PubMed]
- Raymond, B.B.A.; Turnbull, L.; Jenkins, C.; Madhkoor, R.; Schleicher, I.; Uphoff, C.C.; Whitchurch, C.B.; Rohde, M.; Djordjevic, S.P. Mycoplasma hyopneumoniae resides intracellularly within porcine epithelial cells. Sci. Rep. 2018, 8, 17697. [Google Scholar] [CrossRef]
- Burian, A.; Wagner, C.; Stanek, J.; Manafi, M.; Böhmdorfer, M.; Jäger, W.; Zeitlinger, M. Plasma protein binding may reduce antimicrobial activity by preventing intra-bacterial uptake of antibiotics, for example clindamycin. J. Antimicrob. Chemother. 2011, 66, 134–137. [Google Scholar] [CrossRef]
- Gautier-Bouchardon, A.V. Antimicrobial Resistance in Mycoplasma spp. Microbiol. Spectr. 2018, 6, 425. [Google Scholar] [CrossRef]
- Felde, O.; Kreizinger, Z.; Sulyok, K.M.; Hrivnák, V.; Kiss, K.; Jerzsele, Á.; Biksi, I.; Gyuranecz, M. Antibiotic susceptibility testing of Mycoplasma hyopneumoniae field isolates from Central Europe for fifteen antibiotics by microbroth dilution method. PLoS ONE 2018, 13, e0209030. [Google Scholar] [CrossRef]
- CLSI. Methods for antimicrobial susceptibility testing for human mycoplasmas; approved guideline. In CLSI Document M43-A; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2011. [Google Scholar]
- Rosales, R.; Ramírez, A.; Tavío, M.; Poveda, C.; Poveda, J. Antimicrobial susceptibility profiles of porcine mycoplasmas isolated from samples collected in southern Europe. BMC Vet. Res. 2020, 16, 512. [Google Scholar] [CrossRef]
- Bekő, K.; Felde, O.; Sulyok, K.M.; Kreizinger, Z.; Hrivnák, V.; Kiss, K.; Biksi, I.; Jerzsele, Á.; Gyuranecz, M. Antibiotic susceptibility profiles of Mycoplasma hyorhinis strains isolated from swine in Hungary. Vet. Microbiol. 2019, 227, 61–65. [Google Scholar] [CrossRef]
- Gonzaga, N.F.; de Souza, L.F.L.; Santos, M.R.; Assao, V.S.; Rycroft, A.; Deeney, A.S.; Fietto, J.L.R.; Bressan, G.C.; Moreira, M.A.S.; Silva-Júnior, A. Antimicrobial susceptibility and genetic profile of Mycoplasma hyopneumoniae isolates from Brazil. Braz. J. Microbiol. 2020, 51, 377–384. [Google Scholar] [CrossRef] [PubMed]
- The European Committee on Antimicrobial Susceptibility Testing. EUCAST SOP 10.0. MIC Distributions and the Setting of Epidemiological Cutoff (ECOFF) Values. 2017. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/EUCAST_SOPs/EUCAST_SOP_10.0_MIC_distributions_and_epidemiological_cut-off_value__ECOFF__setting_20171117.pdf (accessed on 20 October 2022).
- Amaral, A.F.; Rebelatto, R.; Klein, C.S.; Takeuti, K.L.; Filho, J.X.; Morés, N.; Cardoso, M.; Barcellos, D. Antimicrobial susceptibility profile of historical and recent Brazilian pig isolates of Pasteurella multocida. Pesqui. Vet. Bras. 2019, 39, 107–112. [Google Scholar] [CrossRef]
- Thacker, E.L. Mycoplasmal diseases. In Diseases of Swine, 9th ed.; Straw, B.E., Zimmerman, J.J., D’Allaire, S., Taylor, D.J., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2006; pp. 701–717. [Google Scholar]
- Del Pozo Sacristán, R.; Thiry, J.; Vranckx, K.; Lopez Rodriguez, A.; Chiers, K.; Haesebrouck, F.; Thomas, E.; Maes, D. Efficacy of florfenicol injection in the treatment of Mycoplasma hyopneumoniae induced respiratory disease in pigs. Vet. J. 2012, 194, 420–422. [Google Scholar] [CrossRef]
- Le Carrou, J.; Laurentie, M.; Kobisch, M.; Gautier-Bouchardon, A.V. Persistence of Mycoplasma hyopneumoniae in experimentally infected pigs after marbofloxacin treatment and detection of mutations in the parC gene. Antimicrob. Agents Chemother. 2006, 50, 1959–1966. [Google Scholar] [CrossRef]
- Puig, A.; Bernal, I.; Sabaté, D.; Ballarà, I.; Montané, J.; Nodar, L.; Angelats, D.; Jordà, R. Comparison of effects of a single dose of MHYOSPHERE® PCV ID with three commercial porcine vaccine associations against Mycoplasma hyopneumoniae (Mhyo) and porcine circovirus type 2 (PCV2) on piglet growth during the nursery period under field conditions. Vet. Res. Commun. 2022, 46, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Stingelin, G.M.; Mechler-Dreibi, M.L.; Storino, G.; Sonalio, K.; Almeida, H.M.S.; Petri, F.A.M.; de Oliveira, L.G. Chemotherapeutic strategies with valnemulin, tilmicosin, and tulathromycin to control Mycoplasma hyopneumoniae infection in pigs. Antibiotics 2022, 11, 893. [Google Scholar] [CrossRef] [PubMed]
- Vicca, J.; Maes, D.; Jonker, L.; de Kruif, A.; Haesebrouck, F. Efficacy of in-feed medication with tylosin for the treatment and control of Mycoplasma hyopneumoniae infections. Vet. Rec. 2005, 156, 606–610. [Google Scholar] [CrossRef]
- Band, V.I.; Weiss, D.S. Heteroresistance: A cause of unexplained antibiotic treatment failure? PLoS Pathog. 2019, 15, e1007726. [Google Scholar] [CrossRef]
- Westblade, L.F.; Errington, J.; Dörr, T. Antibiotic tolerance. PLoS Pathog. 2020, 16, e1008892. [Google Scholar] [CrossRef]
- Huemer, M.; Mairpady Shambat, S.; Brugger, S.D.; Zinkernagel, A.S. Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO Rep. 2020, 21, e51034. [Google Scholar] [CrossRef]
- Cui, P.; Xu, T.; Zhang, W.H.; Zhang, Y. Molecular mechanisms of bacterial persistence and phenotypic antibiotic resistance. Yi Chuan 2016, 38, 859–871. [Google Scholar] [CrossRef] [PubMed]
- Blondeau, J.M.; Hansen, G.; Metzler, K.; Hedlin, P. The role of PK/PD parameters to avoid selection and increase of resistance: Mutant prevention concentration. J. Chemother. 2004, 16 (Suppl. S3), 1–19. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Yang, L.; Ling, Y.; Yu, J.; Ding, H. Emergence and Mechanism of Resistance of Tulathromycin Against Mycoplasma hyopneumoniae in a PK/PD Model and the Fitness Costs of 23S rRNA Mutants. Front. Vet. Sci. 2022, 9, 801800. [Google Scholar] [CrossRef]
- Huang, Z.; Hu, Z.; Zheng, H.; Xia, X.; Gu, X.; Shen, X.; Yang, H.; Ding, H. The PK/PD Integration and Resistance of Tilmicosin against Mycoplasma hyopneumoniae. Pathogens 2020, 9, 487. [Google Scholar] [CrossRef]
- Tavío, M.M.; Poveda, C.; Assunção, P.; Ramírez, A.S.; Poveda, J.B. In vitro activity of tylvalosin against Spanish field strains of Mycoplasma hyopneumoniae. Vet. Rec. 2014, 175, 539. [Google Scholar] [CrossRef]
- Klein, U.; de Jong, A.; Moyaert, H.; El Garch, F.; Leon, R.; Richard-Mazet, A.; Rose, M.; Maes, D.; Pridmore, A.; Thomson, J.R.; et al. Antimicrobial susceptibility monitoring of Mycoplasma hyopneumoniae and Mycoplasma bovis isolated in Europe. Vet. Microbiol. 2017, 204, 188–193, Erratum in Vet. Microbiol. 2017, 208, 173. [Google Scholar] [CrossRef] [PubMed]
- Assunção, P.; Antunes, N.T.; Rosales, R.S.; Poveda, C.; de la Fe, C.; Poveda, J.B.; Davey, H.M. Application of flow cytometry for the determination of minimal inhibitory concentration of several antibacterial agents on Mycoplasma hyopneumoniae. J. Appl. Microbiol. 2007, 102, 1132–1137. [Google Scholar] [CrossRef]
- Bowler, P.; Murphy, C.; Wolcott, R. Biofilm exacerbates antibiotic resistance: Is this a current oversight in antimicrobial stewardship? Antimicrob. Resist. Infect. Control 2020, 9, 162. [Google Scholar] [CrossRef]
- Stakenborg, T.; Vicca, J.; Butaye, P.; Maes, D.; Minion, F.C.; Peeters, J.; De Kruif, A.; Haesebrouck, F. Characterization of In Vivo acquired resistance of Mycoplasma hyopneumoniae to macrolides and lincosamides. Microb. Drug Resist. 2005, 11, 290–294. [Google Scholar] [CrossRef]
- Qiu, G.; Rui, Y.; Zhang, J.; Zhang, L.; Huang, S.; Wu, Q.; Li, K.; Han, Z.; Liu, S.; Li, J. Macrolide-Resistance Selection in Tibetan Pigs with a High Load of Mycoplasma hyopneumoniae. Microb. Drug Resist. 2018, 24, 1043–1049. [Google Scholar] [CrossRef]
- Vicca, J.; Maes, D.; Stakenborg, T.; Butaye, P.; Minion, F.; Peeters, J.; de Kruif, A.; Decostere, A.; Haesebrouck, F. Resistance mechanism against fluoroquinolones in Mycoplasma hyopneumoniae field isolates. Microb. Drug Resist. 2007, 13, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Poehlsgaard, J.; Andersen, N.M.; Warrass, R.; Douthwaite, S. Visualizing the 16-membered ring macrolides tildipirosin and tilmicosin bound to their ribosomal site. ACS Chem. Biol. 2012, 7, 1351–1355. [Google Scholar] [CrossRef] [PubMed]
- Maravić, G. Macrolide resistance based on the Erm-mediated rRNA methylation. Curr. Drug Targets Infect. Disord. 2004, 4, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.G.; Lindahl, L.; Zengel, J.M. Effects on translation pausing of alterations in protein and RNA components of the ribosome exit tunnel. J. Bacteriol. 2008, 190, 5862–5869. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.D.; Sauer, R.T. Revisiting the mechanism of macrolide-antibiotic resistance mediated by ribosomal protein L22. Proc. Natl. Acad. Sci. USA 2008, 105, 18261–18266. [Google Scholar] [CrossRef]
- Atkinson, G.C.; Hansen, L.H.; Tenson, T.; Rasmussen, A.; Kirpekar, F.; Vester, B. Distinction between the Cfr methyltransferase conferring antibiotic resistance and the housekeeping RlmN methyltransferase. Antimicrob. Agents Chemother. 2013, 57, 4019–4026. [Google Scholar] [CrossRef]
- Vester, B. The cfr and cfr-like multiple resistance genes. Res. Microbiol. 2018, 169, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Lysnyansky, I.; Gerchman, I.; Flaminio, B.; Catania, S. Decreased Susceptibility to Macrolide-Lincosamide in Mycoplasma synoviae Is Associated with Mutations in 23S Ribosomal RNA. Microb. Drug Resist. 2015, 21, 581–589. [Google Scholar] [CrossRef]
- Coorevits, L.; Traen, A.; Bingé, L.; Descheemaeker, P.; Boelens, J.; Reynders, M.; Padalko, E. Macrolide resistance in Mycoplasma genitalium from female sex workers in Belgium. J. Glob. Antimicrob. Resist. 2018, 12, 149–152. [Google Scholar] [CrossRef]
- Kong, L.C.; Gao, D.; Jia, B.Y.; Wang, Z.; Gao, Y.H.; Pei, Z.H.; Liu, S.M.; Xin, J.Q.; Ma, H.X. Antimicrobial susceptibility and molecular characterization of macrolide resistance of Mycoplasma bovis isolates from multiple provinces in China. J. Vet. Med. Sci. 2016, 78, 293–296. [Google Scholar] [CrossRef]
- Prats-van der Ham, M.; Tatay-Dualde, J.; de la Fe, C.; Paterna, A.; Sánchez, A.; Corrales, J.C.; Contreras, A.; Gómez-Martín, Á. Molecular resistance mechanisms of Mycoplasma agalactiae to macrolides and lincomycin. Vet. Microbiol. 2017, 211, 135–140, Erratum in Vet. Microbiol. 2017, 214, 155. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.M.; Wu, H.; Ning, Y.; Wang, J.; Du, X.; Shen, J. Induction of macrolide resistance in Mycoplasma gallisepticum in vitro and its resistance-related mutations within domain V of 23S rRNA. FEMS Microbiol. Lett. 2005, 247, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Pereyre, S.; Gonzalez, P.; De Barbeyrac, B.; Darnige, A.; Renaudin, H.; Charron, A.; Raherison, S.; Bébéar, C.; Bébéar, C.M. Mutations in 23S rRNA account for intrinsic resistance to macrolides in Mycoplasma hominis and Mycoplasma fermentans and for acquired resistance to macrolides in M. hominis. Antimicrob. Agents Chemother. 2002, 46, 3142–3150. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Wu, Y.; Huang, Z.; Zhang, C.; Zhang, L.; Cai, Q.; Shen, X.; Jiang, H.; Ding, H. Relationship between danofloxacin PK/PD parameters and emergence and mechanism of resistance of Mycoplasma gallisepticum in In Vitro model. PLoS ONE 2018, 13, e0202070. [Google Scholar] [CrossRef]
- Vester, B.; Long, K.S. Antibiotic Resistance in Bacteria Caused by Modified Nucleosides in 23S Ribosomal RNA. In Madam Curier Bioscience Database; Lands Bioscience: Austin, TX, USA, 2013. [Google Scholar]
- Beabout, K.; Hammerstrom, T.G.; Perez, A.M.; Magalhães, B.F.; Prater, A.G.; Clements, T.P.; Arias, C.A.; Saxer, G.; Shamoo, Y. The ribosomal S10 protein is a general target for decreased tigecycline susceptibility. Antimicrob. Agents Chemother. 2015, 59, 5561–5566. [Google Scholar] [CrossRef]
- Amram, E.; Mikula, I.; Schnee, C.; Ayling, R.D.; Nicholas, R.A.J.; Rosales, R.S.; Harrus, S.; Lysnyansky, I. 16S rRNA gene mutations associated with decreased susceptibility to tetracycline in Mycoplasma bovis. Antimicrob. Agents Chemother. 2014, 59, 796–801. [Google Scholar] [CrossRef]
- Tait-Kamradt, A.; Davies, T.; Appelbaum, P.C.; Depardieu, F.; Courvalin, P.; Petitpas, J.; Wondrack, L.; Walker, A.; Jacobs, M.R.; Sutcliffe, J. Two new mechanisms of macrolide resistance in clinical strains of Streptococcus pneumoniae from Eastern Europe and North America. Antimicrob. Agents Chemother. 2000, 44, 3395–3401. [Google Scholar] [CrossRef]
- Lupien, A.; Gingras, H.; Leprohon, P.; Ouellette, M. Induced tigecycline resistance in Streptococcus pneumoniae mutants reveals mutations in ribosomal proteins and rRNA. J. Antimicrob. Chemother. 2015, 70, 2973–2980. [Google Scholar] [CrossRef]
- Cattoir, V.; Isnard, C.; Cosquer, T.; Odhiambo, A.; Bucquet, F.; Guérin, F.; Giard, J.C. Genomic analysis of reduced susceptibility to tigecycline in Enterococcus faecium. Antimicrob. Agents Chemother. 2015, 59, 239–244. [Google Scholar] [CrossRef]
- Bébéar, C.; Renaudin, J.; Charron, A.; Renaudin, H.; de Barbeyrac, B.; Schaeverbeke, T.; Bébéar, C. Mutations in the gyrA, parC, and parE Genes Associated with Fluoroquinolone Resistance in Clinical Isolates of Mycoplasma hominis. Antimicrob. Agents Chemother. 1999, 43, 954–956. [Google Scholar] [CrossRef]
- Li, J.; Wei, Y.; Wang, J.; Li, Y.; Shao, G.; Feng, Z.; Xiong, Q. Characterization of mutations in DNA gyrase and topoisomerase IV in field strains and in vitro selected quinolone-resistant Mycoplasma hyorhinis mutants. Antibiotics 2022, 11, 494. [Google Scholar] [CrossRef] [PubMed]
- Murray, G.L.; Plummer, E.L.; Bodiyabadu, K.; Vodstrcil, L.A.; Huaman, J.L.; Danielewski, J.A.; Chua, T.P.; Machalek, D.A.; Garland, S.; Doyle, M.; et al. gyrA mutations in Mycoplasma genitalium and their contribution to moxifloxacin failure: Time for the next generation of resistance-guided therapy. Clin. Infect. Dis. 2023, 76, 2187–2195. [Google Scholar] [CrossRef] [PubMed]
- Raherison, S.; Gonzalez, P.; Renaudin, H.; Charron, A.; Bébéar, C.; Bébéar, C.M. Evidence of active efflux in resistance to ciprofloxacin and to ethidium bromide by Mycoplasma hominis. Antimicrob. Agents Chemother. 2002, 46, 672–679. [Google Scholar] [CrossRef]
- Reinhardt, A.K.; Gautier-Bouchardon, A.V.; Gicquel-Bruneau, M.; Kobisch, M.; Kempf, I. Persistence of Mycoplasma gallisepticum in chickens after treatment with enrofloxacin without development of resistance. Vet. Microbiol. 2005, 106, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Rahman, T.; Yarnall, B.; Doyle, D.A. Efflux drug transporters at the forefront of antimicrobial resistance. Eur. Biophys. J. 2017, 46, 647–653. [Google Scholar] [CrossRef]
- Kolesnikova, E.A.; Brusnigina, N.F.; Makhova, M.A.; Alekseeva, A.E. The Genome Structure of Ciprofloxacin-Resistant Mycoplasma Hominis Clinical Isolates. Acta Naturae 2020, 12, 56–62. [Google Scholar] [CrossRef]
- Antunes, N.T.; Assunção, P.; Poveda, J.B.; Tavío, M.M. Mechanisms involved in quinolone resistance in Mycoplasma mycoides subsp. capri. Vet. J. 2015, 204, 327–332. [Google Scholar] [CrossRef]
- Li, S.L.; Sun, H.M.; Zhu, B.L.; Liu, F.; Zhao, H.Q. Whole Genome Analysis Reveals New Insights into Macrolide Resistance in Mycoplasma pneumoniae. Biomed. Environ. Sci. 2017, 30, 343–350. [Google Scholar] [CrossRef]
- Citti, C.; Dordet-Frisoni, E.; Nouvel, L.X.; Kuo, C.H.; Baranowski, E. Horizontal Gene Transfers in Mycoplasmas (Mollicutes). Curr. Issues Mol. Biol. 2018, 29, 3–22. [Google Scholar] [CrossRef]
- Huang, Z.; Xia, X.; Mao, C.; Gu, X.; Shen, X.; Yang, H.; Ding, H. Pharmacokinetic-pharmacodynamic integration and resistance of tiamulin against Mycoplasma hyopneumoniae in an in vitro dynamic model. Microb. Pathog. 2020, 147, 104255. [Google Scholar] [CrossRef]
Strain Name | Size (mb) | Gc% | Contigs | CDs | Isolation Country | tRNA | rRNA | Hypothetical Proteins | Proteins with Functional Assignments | Prediction of Antibiotic Resistance Genes-PATRIC | Prediction of Antibiotic Resistance Genes-CARD |
---|---|---|---|---|---|---|---|---|---|---|---|
232 | 0.89 | 28.6 | 1 | 674 | US | 28 | 2 | 311 | 457 | 10 | 1 |
J | 0.89 | 28.5 | 1 | 672 | US | 29 | 3 | 274 | 488 | 8 | 1 |
7448 | 0.92 | 28.5 | 1 | 686 | Brazil | 30 | 3 | 298 | 434 | 11 | 1 |
168 | 0.92 | 28.5 | 1 | 694 | China | 29 | 3 | 389 | 458 | 9 | 1 |
168-L | 0.92 | 28.5 | 1 | 697 | China | 28 | 2 | 369 | 463 | 12 | 1 |
7422 | 0.89 | 28.5 | 1 | 673 | Brazil | 30 | 3 | 392 | 497 | 10 | 1 |
11 | 0.90 | 28.7 | 5 | 670 | The Netherland | 30 | 3 | 348 | 484 | 12 | 1 |
TB1 | 0.91 | 28.7 | 57 | 602 | China | 30 | 3 | 287 | 450 | 12 | 0 |
KM014 | 0.96 | 28.4 | 1 | 900 | Republic of Korea | 29 | 2 | 348 | 7 | 1 | |
NCTC10127 | 0.96 | 28.5 | 5 | 738 | Switzerland | 29 | 3 | 359 | 481 | 11 | 0 |
ES-2 | 0.96 | 28.4 | 1 | 718 | China | 30 | 2 | 287 | 463 | 6 | 1 |
F7.2C | 0.89 | 28.6 | 1 | 676 | Belgium | 30 | 3 | 319 | 479 | 9 | 1 |
MHP691 | 0.90 | 28.5 | 69 | 625 | France | 30 | 3 | 298 | 455 | 12 | 0 |
MHP696 | 0.87 | 28.6 | 64 | 617 | France | 29 | 3 | 272 | 456 | 12 | 0 |
MHP699 | 0.92 | 28.5 | 74 | 641 | France | 30 | 3 | 316 | 457 | 12 | 0 |
MHP694 | 0.87 | 28.6 | 51 | 600 | France | 30 | 3 | 284 | 445 | 12 | 0 |
MHP709 | 0.87 | 28.6 | 58 | 619 | France | 30 | 3 | 272 | 455 | 12 | 0 |
MHP650 | 0.90 | 28.6 | 82 | 616 | France | 30 | 3 | 294 | 464 | 12 | 2 |
MHP653 | 0.89 | 28.5 | 74 | 625 | France | 29 | 3 | 300 | 462 | 12 | 0 |
MHP682 | 0.90 | 28.6 | 85 | 635 | France | 30 | 289 | 426 | 10 | 2 | |
MHP679 | 0.90 | 28.6 | 102 | 641 | France | 29 | 3 | 294 | 458 | 12 | 0 |
ES-2L | 0.92 | 28.5 | 1 | 686 | China | 28 | 2 | 321 | 408 | 9 | 1 |
98 | 0.88 | 28.6 | 19 | 625 | The Netherland | 30 | 3 | 318 | 121 | 7 | 3 |
LH | 0.92 | 28.5 | 1 | 693 | China | 28 | 2 | 271 | 286 | 7 | 1 |
Gene/Phenomenon | Mutation | Associated Antimicrobial | Resistance Mechanism | Target Molecule | References |
---|---|---|---|---|---|
23S rRNA | A2058G | Macrolides | Alters ribosome binding site, reduces antibiotic binding | Ribosom | [53] |
23S rRNA | A2059G | Macrolides and Lincosamides | Alters ribosome binding site, reduces antibiotic binding | Ribosome | [29,53] |
23S rRNA | A2064G | Macrolides | Alters ribosome binding site, reduces antibiotic binding | Ribosome | [54] |
gyrA | Ser83Leu | Fluoroquinolones | Alters DNA gyrase, reduces drug binding | DNA Gyrase | [29,55] |
parC | Ser80Tyr | Fluoroquinolones | Alters topoisomerase IV, reduces drug binding | Topoisomerase IV | [29,38,55] |
efflux pump genes | Overexpression | Various antibiotics | Increases drug efflux, reducing intracellular concentration | ABC superfamily, MATE, MFS, RND, SMR | [47] |
Biofilm formation | Phenotypic adaptation | Various antibiotics | Enhances resistance by limiting antibiotic penetration and promoting horizontal gene transfer | Extracellular Polymeric Substances, Small RNAs | [6] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jafari Jozani, R.; Khallawi, M.F.H.A.; Trott, D.; Petrovski, K.; Low, W.Y.; Hemmatzadeh, F. Unravelling Antimicrobial Resistance in Mycoplasma hyopneumoniae: Genetic Mechanisms and Future Directions. Vet. Sci. 2024, 11, 542. https://doi.org/10.3390/vetsci11110542
Jafari Jozani R, Khallawi MFHA, Trott D, Petrovski K, Low WY, Hemmatzadeh F. Unravelling Antimicrobial Resistance in Mycoplasma hyopneumoniae: Genetic Mechanisms and Future Directions. Veterinary Sciences. 2024; 11(11):542. https://doi.org/10.3390/vetsci11110542
Chicago/Turabian StyleJafari Jozani, Raziallah, Mauida F. Hasoon Al Khallawi, Darren Trott, Kiro Petrovski, Wai Yee Low, and Farhid Hemmatzadeh. 2024. "Unravelling Antimicrobial Resistance in Mycoplasma hyopneumoniae: Genetic Mechanisms and Future Directions" Veterinary Sciences 11, no. 11: 542. https://doi.org/10.3390/vetsci11110542
APA StyleJafari Jozani, R., Khallawi, M. F. H. A., Trott, D., Petrovski, K., Low, W. Y., & Hemmatzadeh, F. (2024). Unravelling Antimicrobial Resistance in Mycoplasma hyopneumoniae: Genetic Mechanisms and Future Directions. Veterinary Sciences, 11(11), 542. https://doi.org/10.3390/vetsci11110542