Growth Performance, Dietary Energetics, Blood Metabolites, Carcass Traits, Meat Quality, and Gene Expression of Lambs Supplemented with a Polyherbal Phytogenic Additive
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Location
2.2. Characterization of the Polyherbal Phytogenic Additive
2.3. Animals, Experimental Design, and Diet Composition
2.4. Calculations
2.5. Carcass Traits, Carcass Morphometry, and Non-Carcass Components
2.6. Meat Quality
2.7. Blood Metabolites
2.8. Liver Samples, RNA Extraction and Microarrays
2.9. Statistical Analysis
2.9.1. Performance, Dietary Energetics, Blood Metabolites, Carcass Traits, Non-Carcass Components and Meat Quality
2.9.2. Gene Enrichment Analysis
3. Results
3.1. Growth Performance and Dietary Energetics
3.2. Carcass Traits and Carcass Morphometry
3.3. Non-Carcass Components and Meat Quality
3.4. Blood Metabolites
3.5. Gene Expression
4. Discussion
4.1. Growth Performance and Dietary Energetics
4.2. Carcass Traits and Carcass Morphometry
4.3. Non-Carcass Components and Meat Quality
4.4. Blood Metabolites
4.5. Gene Expression
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Ingredients, g/kg of DM | Treatments | |||
---|---|---|---|---|
CON | PPAL | PPAM | PPAH | |
Oat straw | 194 | 194 | 194 | 194 |
Ground corn | 303 | 300.5 | 298 | 295.5 |
Ground sorghum | 241 | 241 | 241 | 241 |
Soybean meal | 81 | 81 | 81 | 81 |
Wheat bran | 71 | 71 | 71 | 71 |
Corn gluten | 74 | 74 | 74 | 74 |
Bypass fat | 23 | 23 | 23 | 23 |
Common salt | 5 | 5 | 5 | 5 |
Vitamin and mineral premix a | 5 | 5 | 5 | 5 |
Calcium carbonate | 3 | 3 | 3 | 3 |
Polyherbal phytogenic additive (PPA) b | 0 | 2.5 | 5 | 7.5 |
Total | 1000 | 1000 | 1000 | 1000 |
Nutrient composition, g/kg of DM | ||||
Dry matter | 892.3 | 893.2 | 888.0 | 889.5 |
Crude protein | 158.1 | 157.9 | 157.7 | 157.4 |
Ether extract | 25.5 | 25.4 | 25.3 | 25.3 |
Neutral detergen fiber | 271.2 | 273.8 | 272.3 | 276.2 |
Acid detergent fiber | 142.1 | 143.4 | 142.8 | 144.6 |
Ashes | 55.2 | 54.2 | 49.6 | 50.1 |
Calculated net energy, Mcal/kg | ||||
Maintenance c | 1.79 | 1.79 | 1.79 | 1.79 |
Gain c | 1.25 | 1.25 | 1.25 | 1.25 |
References
- Callaway, T.R.; Lillehoj, H.; Chuanchuen, R.; Gay, C.G. Alternatives to Antibiotics: A Symposium on the Challenges and Solutions for Animal Health and Production. Antibiotics 2021, 10, 471. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Hao, H.; Xie, S.; Wang, X.; Dai, M.; Huang, L.; Yuan, Z. Antibiotic alternatives: The substitution of antibiotics in animal husbandry? Front. Microbiol. 2014, 5, 217. [Google Scholar] [CrossRef] [PubMed]
- Hao, H.; Cheng, G.; Iqbal, Z.; Ai, X.; Hussain, H.I.; Huang, L.; Dai, M.; Wang, Y.; Liu, Z.; Yuan, Z. Benefits and risks of antimicrobial use in food-producing animals. Front. Microbiol. 2014, 5, 288. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela-Grijalva, N.V.; Pinelli-Saavedra, A.; Muhlia-Almazan, A.; Domínguez-Díaz, D.; González-Ríos, H. Dietary inclusion effects of phytochemicals as growth promoters in animal production. J. Anim. Sci. Technol. 2017, 59, 8. [Google Scholar] [CrossRef]
- Windisch, W.; Schedle, K.; Plitzner, C.; Kroismayr, A. Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci. 2008, 86, E140–E148. [Google Scholar] [CrossRef]
- Sánchez, N.; Lee-Rangel, H.A.; Martínez-Cortés, I.; Mendoza, G.D.; Hernández, P.A.; Espinoza, E.; Vazquez-Valladolid, A.; Flores-Ramírez, R.; Roque-Jiménez, A.; Campillo-Navarro, M.; et al. A polyherbal phytogenic additive improved growth performance, health, and immune response in dairy calves. Food Agric. Immunol. 2021, 32, 482–498. [Google Scholar] [CrossRef]
- Orzuna-Orzuna, J.F.; Dorantes-Iturbide, G.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Hernández-García, P.A. Growth Performance, Carcass Characteristics, and Blood Metabolites of Lambs Supplemented with a Polyherbal Mixture. Animals 2021, 11, 955. [Google Scholar] [CrossRef]
- Dorantes-Iturbide, G.; Orzuna-Orzuna, J.F.; Lara-Bueno, A.; Miranda-Romero, L.A.; Mendoza-Martínez, G.D.; Hernández-García, P.A. Effects of a Polyherbal Dietary Additive on Performance, Dietary Energetics, Carcass Traits, and Blood Metabolites of Finishing Lambs. Metabolites 2022, 12, 413. [Google Scholar] [CrossRef]
- Orzuna-Orzuna, J.F.; Dorantes-Iturbide, G.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; López-Ordaz, R.; Hernández-García, P.A. Productive Performance, Carcass Traits, and Meat Quality in Finishing Lambs Supplemented with a Polyherbal Mixture. Agriculture 2021, 11, 942. [Google Scholar] [CrossRef]
- Khattab, M.S.A.; Kholif, A.E.; Abd El Tawab, A.M.; Shaaban, M.M.; Hadhoud, F.I.; El-Fouly, H.A.; Olafadehan, O.A. Effect of replacement of antibiotics with thyme and celery seed mixture on the feed intake and digestion, ruminal fermentation, blood chemistry, and milk lactation of lactating Barki ewes. Food Funct. 2020, 11, 6889–6898. [Google Scholar] [CrossRef]
- Redoy, M.R.A.; Shuvo, A.A.S.; Cheng, L.; Al-Mamun, M. Effect of herbal supplementation on growth, immunity, rumen histology, serum antioxidants and meat quality of sheep. Animal 2020, 14, 2433–2441. [Google Scholar] [CrossRef] [PubMed]
- Hashemzadeh, F.; Rafeie, F.; Hadipour, A.; Rezadoust, M.H. Supplementing a phytogenic-rich herbal mixture to heat-stressed lambs: Growth performance, carcass yield, and muscle and liver antioxidant status. Small Rumin. Res. 2022, 206, 106596. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, I.H. Effects of dietary Achyranthes japonica extract supplementation on the growth performance, total tract digestibility, cecal microflora, excreta noxious gas emission, and meat quality of broiler chickens. Poult. Sci. 2019, 99, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Kolbadinejad, A.; Rezaeipour, V. Efficacy of ajwain (Trachyspermum ammi L.) seed at graded levels of dietary threonine on growth performance, serum metabolites, intestinal morphology and microbial population in broiler chickens. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1333–1342. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, A.L.; Adeyemi, K.D.; Samsudin, A.A.; Goh, Y.M.; Alimon, A.R.; Sazili, A.Q. Effects of dietary supplementation of leaves and whole plant of Andrographis paniculata on rumen fermentation, fatty acid composition and microbiota in goats. BMC Vet. Res. 2017, 13, 349. [Google Scholar] [CrossRef]
- Yusuf, A.L.; Adeyemi, K.D.; Roselina, K.; Alimon, A.R.; Goh, Y.M.; Samsudin, A.A.; Sazili, A.Q. Dietary supplementation of different parts of Andrographis paniculata affects the fatty acids, lipid oxidation, microbiota, and quality attributes of longissimus muscle in goats. Food Res. Int. 2018, 111, 699–707. [Google Scholar] [CrossRef]
- Hailemariam, S.; Urge, M.; Menkir, S. Effect of feeding Neem (Azadirachta indica) and Acacia (Acacia senegal) tree foliage on nutritional and carcass parameters in short-eared Somali goats. Trop. Anim. Health Prod. 2016, 48, 461–464. [Google Scholar] [CrossRef]
- El-Zaiat, H.M.; Elshafie, E.I.; Al-Marzooqi, W.; Dughaishi, K.A. Effects of Neem (Azadirachta indica) Leaf Powder Supplementation on Rumen Fermentation, Feed Intake, Apparent Digestibility and Performance in Omani Sheep. Animals 2022, 12, 3146. [Google Scholar] [CrossRef]
- Hassan, F.-u.; Arshad, M.A.; Ebeid, H.M.; Rehman, M.S.-u.; Khan, M.S.; Shahid, S.; Yang, C. Phytogenic Additives Can Modulate Rumen Microbiome to Mediate Fermentation Kinetics and Methanogenesis Through Exploiting Diet–Microbe Interaction. Front. Vet. Sci. 2020, 7, 575801. [Google Scholar] [CrossRef]
- Saleh, N.E.; Wassef, E.A.; Kamel, M.A.; El-Haroun, E.R.; El-Tahan, R.A. Beneficial effects of soybean lecithin and vitamin C combination in fingerlings gilthead seabream (Sparus aurata) diets on; fish performance, oxidation status and genes expression responses. Aquaculture 2022, 546, 737345. [Google Scholar] [CrossRef]
- Mendoza-Martínez, G.D.; Hernández-García, P.A.; Plata-Pérez, F.X.; Martínez-García, J.A.; Lizarazo-Chaparro, A.C.; Martínez-Cortes, I.; Campillo-Navarro, M.; Lee-Rangel, H.A.; De la Torre-Hernández, M.E.; Gloria-Trujillo, A. Influence of a Polyherbal Choline Source in Dogs: Body Weight Changes, Blood Metabolites, and Gene Expression. Animals 2022, 12, 1313. [Google Scholar] [CrossRef] [PubMed]
- Díaz, G.C.; Méndez, O.E.T.; Martínez, G.D.; Gloria, T.A.; Hernández, G.P.A.; Espinosa, A.E.; Palacios, M.M.; Lara, B.A.; Mendoza, M.G.D.; Velázquez, C.L.A. Influence of a Polyherbal Mixture in Dairy Calves: Growth Performance and Gene Expression. Front. Vet. Sci. 2021, 7, 623710. [Google Scholar] [CrossRef]
- Chen, G.J.; Zhang, R.; Wu, J.H.; Shang, Y.S.; Li, X.D.; Qiong, M.; Wang, P.C.; Li, S.G.; Gao, Y.H.; Xiong, X.Q. Effects of soybean lecithin supplementation on growth performance, serum metabolites, ruminal fermentation and microbial flora of beef steers. Livest. Sci. 2020, 240, 104121. [Google Scholar] [CrossRef]
- Leal, K.W.; Alba, D.F.; Cunha, M.G.; Marcon, H.; Oliveira, F.C.; Wagner, R.; Silva, A.D.; Lopes, T.F.; de Jesus, L.S.B.; Schetinger, M.R.C.; et al. Effects of biocholine powder supplementation in ewe lambs: Growth, rumen fermentation, antioxidant status, and metabolism. Biotechnol. Rep. 2021, 29, e00580. [Google Scholar] [CrossRef]
- Nunes, A.T.; Takiya, C.S.; da Silva, G.G.; Ghizzi, L.G.; Grigoletto, N.T.S.; Dias, M.S.S.; Silva, T.B.P.; Junior, P.C.V.; Chesini, R.G.; Curti, P.F.; et al. Increasing doses of biocholine on apparent digestibility, ruminal fermentation, 940 and performance in dairy cows. Livest. Sci. 2022, 260, 104927. [Google Scholar] [CrossRef]
- Diario Oficial de la Federación. Norma Oficial Mexicana NOM-062-ZOO-1999. Especificaciones Técnicas Para La Producción, Cuidado y Uso de Los Animales de Laboratorio. México. 2001. Available online: https://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf (accessed on 20 January 2024).
- Lee-Rangel, H.A.; Mendoza-Martinez, G.; Martínez-García, J.A.; Espinosa-Ayala, E.; Hernández-García, P.A.; Cifuentes-López, R.O.; Vazquez-Valladolid, A.; García-López, J.C.; Lara-Bueno, A.; Roque-Jiménez, J.A. An Indian polyherbal phytogenic source improved blood serum biochemistry and immune response of dairy calves. Food Agric. Immunol. 2022, 33, 97–112. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- AOAC. Official Methods of Analysis of Aoac International, 17th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Cannas, A.; Tedeschi, L.O.; Fox, D.G.; Pell, A.N.; Van Soest, P.J. A mechanistic model for predicting the nutrient requirements and feed biological values for sheep. J. Anim. Sci. 2004, 82, 149–169. [Google Scholar] [CrossRef]
- Estrada-Angulo, A.; Zapata-Ramírez, O.; Castro-Pérez, B.I.; Urías-Estrada, J.D.; Gaxiola-Camacho, S.; Angulo-Montoya, C.; Ríos-Rincón, F.G.; Barreras, A.; Zinn, R.A.; Leyva-Morales, J.B.; et al. The Effects of Single or Combined Supplementation of Probiotics and Prebiotics on Growth Performance, Dietary Energetics, Carcass Traits, and Visceral Mass in Lambs Finished under Subtropical Climate Conditions. Biology 2021, 10, 1137. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirement of Sheep, 6th ed.; National Academy Science (NRC): Washington, DC, USA, 1985. [Google Scholar]
- Duarte, F.; Castro, C.A.S.; Franco, L.A.S.; Tedeschi, L.O.; Santos-Ricalde, R.H. Energy and protein requirements of growing Pelibuey sheep under tropical conditions estimated from a literature database analyses. Trop. Subtrop. Agroec. 2012, 15, 97–103. [Google Scholar]
- Zinn, R.A.; Barreras, A.; Owens, F.N.; Plascencia, A. Performance by feedlot steers and heifers: ADG, mature weight, DMI and dietary energetics. J. Anim. Sci. 2008, 86, 2680–2689. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.R.; Gomes, M.J.; Dias-da-Silva, A.; Gil, L.F.; Azevedo, J.M.T. Estimation in Vivo of the Body and Carcass Chemical Composition of Growing Lambs by Real-Time Ultrasonography1. J. Anim. Sci. 2005, 83, 350–357. [Google Scholar] [CrossRef] [PubMed]
- American Meat Science Association; National Cattlemen’s Beef Association (U.S.); National Pork Producers Council (U.S.). United States Standards for Grades of Beef, Veal, Pork and lamb Carcasses. In Meat Evaluation Handbook; American Meat Science Association: Savoy, IL, USA; National Cattlemen’s Beef Association, National Pork Producers Council: Iowa, IL, USA, 2001; pp. 117–137. [Google Scholar]
- Norma Oficial Mexicana NOM-033-SAG/ZOO-1994. Métodos Para Dar Muerte a Los Animales Domésticos y Silvestres; Norma Oficial Mexiana: Mexico City, México, 1994. [Google Scholar]
- Yáñez, E.A.; Resende, K.T.; Ferreira, A.C.D.; Medeiros, A.N.; da Silva, S.A.G.; Pereira, J.M.F.; Teixeira, I.A.M.A.; Artoni, S.M.B. Utilization of biometric measures for prediction of Saanen goats carcass traits. Rev. Bras. Zootec. 2004, 33, 1564–1572. [Google Scholar] [CrossRef]
- Sierra-Galicia, M.I.; Rodríguez-de Lara, R.; Orzuna-Orzuna, J.F.; Lara-Bueno, A.; García-Muñiz, J.G.; Fallas-López, M.; Hernández-García, P.A. Supplying Bee Pollen and Propolis to Growing Rabbits: Effects on Growth Performance, Blood Metabolites, and Meat Quality. Life 2022, 12, 1987. [Google Scholar] [CrossRef] [PubMed]
- Miltenburg, G.A.; Wensing, T.; Smulders, F.J.M.; Breukink, H.J. Relationship between blood hemoglobin, plasma and tissue iron, muscle heme pigment, and carcass color of veal. J. Anim. Sci. 1992, 70, 2766–2772. [Google Scholar] [CrossRef]
- Anderson, S. Determination of fat, moisture, and protein in meat and meat products by using the FOSS FoodScan near-infrared spectrophotometer with FOSS artificial neural network calibration model and associated database: Collaborative study. J. AOAC Int. 2007, 90, 1073–1083. [Google Scholar] [CrossRef]
- Toni, L.S.; Garcia, A.M.; Jeffrey, D.A.; Jiang, X.; Stauffer, B.L.; Miyamoto, S.D.; Sucharov, C.C. Optimization of Phenol-Chloroform RNA Extraction. MethodsX 2018, 5, 599–608. [Google Scholar] [CrossRef]
- Sherman, T.B.; Lempicki, A.R. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- SAS (Statistical Analysis System). SAS/STAT User’s Guide (Release 6.4); SAS Inst.: Cary, NC, USA, 2017. [Google Scholar]
- Littell, R.C.; Henry, P.R.; Ammerman, C.B. Statistical analysis of repeated measures data using SAS procedures. J. Anim. Sci. 1998, 76, 1216–1231. [Google Scholar] [CrossRef]
- Kaps, M.; Lamberson, W.R. Biostatistics for Animal Science; CABI: Oxfordshire, UK, 2004. [Google Scholar]
- Bento, M.H.; Lewis, E.A.; Santos, R.R.; Molist, F.; McGuire, P.; Richardson, K. Effects of nonanoic acid on performance and hematological and biochemical parameters for weaned piglets. Anim. Feed Sci. Technol. 2022, 289, 115312. [Google Scholar] [CrossRef]
- Bento, M.H.L.; Lewis, E.A.; Ramirez de Arellano, I.; Millán, C.; King, E.; Scott-Baird, E.; Richardson, K. Establishing the tolerability to broiler chickens and laying hens of nonanoic acid at practical levels of use as a feed flavouring. British Poult. Sci. 2022, 63, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, T.; Takahashi, C.; Taniguchi, Y.; Narukawa, M.; Misaka, T.; Ano, Y. Bitter taste receptor activation by hop-derived bitter components induces gastrointestinal hormone production in enteroendocrine cells. Biochem. Biophys. Res. Commun. 2020, 533, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Sánchez, M.; Mendoza-Martínez, G.D.; Martínez-García, J.A.; Torre-Hernández, M.E.; Chamorro-Ramírez, F.H.; Matínez-Aispuro, J.A.; Cordero-Mora, J.L.; Sánchez-Torres, M.T.; Hernández-García, P.A.; Jones, R. Evaluation of polyherbal with vitamin C activity on lamb performance and meat characteristics. R. Bras. Zootec. 2021, 50, e20200166. [Google Scholar] [CrossRef]
- Sieck, R.L.; Treffer, L.K.; Ponte Viana, M.; Khalimonchuk, O.; Schmidt, T.B.; Yates, D.T.; Petersen, J.L. Beta-adrenergic agonists increase maximal output of oxidative phosphorylation in bovine satellite cells. Transl. Anim. Sci. 2020, 4 (Suppl. S1), S94–S97. [Google Scholar] [CrossRef] [PubMed]
- Dorantes-Iturbide, G.; Orzuna-Orzuna, J.F.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Lee-Rangel, H.A. Essential oils as a dietary additive for small ruminants: A meta-analysis on performance, rumen parameters, serum metabolites, and product quality. Vet. Sci. 2022, 9, 475. [Google Scholar] [CrossRef]
- Estrada-Angulo, A.; Verdugo-Insúa, M.; Escobedo-Gallegos, L.d.G.; Castro-Pérez, B.I.; Urías-Estrada, J.D.; Ponce-Barraza, E.; Mendoza-Cortez, D.; Ríos-Rincón, F.G.; Monge-Navarro, F.; Barreras, A.; et al. Influences of a Supplemental Blend of Essential Oils Plus 25-Hydroxy-Vit-D3 and Zilpaterol Hydrochloride (β2 Agonist) on Growth Performance and Carcass Measures of Feedlot Lambs Finished under Conditions of High Ambient Temperature. Animals 2024, 14, 1391. [Google Scholar] [CrossRef]
- Corazzin, M.; Del Bianco, S.; Bovolenta, S.; Piasentier, E. Carcass characteristics and meat quality of sheep and goat. In More than Beef, Pork and Chicken—The Production, Processing, and Quality Traits of Other Sources of Meat for Human Diet; Lorenzo, J.M., Munekata, P.E.S., Barba, F., Toldrá, F., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 119–165. ISBN 978-3-030-05483-0. [Google Scholar]
- Prache, S.; Schreurs, N.; Guillier, L. Review: Factors affecting sheep carcass and meat quality attributes. Animal 2022, 16, 100330. [Google Scholar] [CrossRef]
- Muñoz-Osorio, G.A.; Tırınk, C.; Tyasi, T.L.; Ramirez-Bautista, M.A.; Cruz-Tamayo, A.A.; Dzib-Cauich, D.A.; Chay-Canul, A.J. Using fat thickness and longissimus thoracis traits real-time ultrasound measurements in Black Belly ewe lambs to predict carcass tissue composition through multiresponse multivariate adaptive regression splines algorithm. Meat Sci. 2024, 207, 109369. [Google Scholar] [CrossRef]
- Rosales, N.C.A.; Thompson, A.N.; Macleay, C.A.; Briegel, J.R.; Hedger, M.P.; Ferguson, M.B.; Martin, G.B. Relationships among body composition, circulating concentrations of leptin and follistatin, and the onset of puberty and fertility in young female sheep. Anim. Reprod. Sci. 2014, 151, 148–156. [Google Scholar] [CrossRef]
- Gurgel, A.L.C.; Difante, G.S.; Ítavo, L.C.V.; Emerenciano Neto, J.V.; Ítavo, C.C.F.B.; Fernandes, P.B.; Costa, C.M.; Roberto, F.F.S.; Chay-Canul, A.J. Aspects related to the importance of using predictive models in sheep production. Review. Rev. Mex. Cienc. Pecu. 2023, 14, 204–227. [Google Scholar] [CrossRef]
- Álvarez-Rodríguez, J.; Sanz, A.; Joy, M.; Carrasco, S.; Ripoll, G.; Teixeira, A. Development of organs and tissues in lambs raised on Spanish mountain grassland. Can. J. Anim. Sci. 2009, 89, 37–45. [Google Scholar] [CrossRef]
- De Lima, D.M.; de Carvalho, F.F.R.; da Silva, F.J.S.; Rangel, A.H.; Novaes, L.P.; Difante, G.D.S. Intrinsic factors affecting sheep meat quality: A review. Rev. Colomb. Cienc. Pecu. 2016, 29, 3–15. [Google Scholar] [CrossRef]
- Roland, L.; Drillich, M.; Iwersen, M. Hematology as a diagnostic tool in bovine medicine. J. Vet. Diagn. Investig. 2014, 26, 592–598. [Google Scholar] [CrossRef]
- Méndez-Aguilar, G.; Chay-Canul, A.; García-Herrera, R.; González-Garduño, R.; Macedo-Barragán, R.; García-Casillas, A. Haematological values of Pelibuey lambs under humid tropic conditions. Aban. Vet. 2022, 12, 1–10. [Google Scholar] [CrossRef]
- Razo, O.P.B.; Mendoza, M.G.D.; Vázquez, S.G.; Osorio, T.A.I.; González, S.J.F.; Hernández, G.P.A.; Torre, H.M.E.; Espinosa, A.E. Polyherbal feed additive for lambs: Effects on performance, blood biochemistry and biometry. J. Appl. Anim. Res. 2020, 48, 419–424. [Google Scholar] [CrossRef]
- Braun, J.P.; Trumenl, C.; Bézille, P. Clinical biochemistry in sheep: A selected review. Small Rumin. Res. 2010, 1–3, 10–18. [Google Scholar] [CrossRef]
- Dimauro, C.; Bonelli, P.; Nicolussi, P.; Rassu, S.P.G.; Cappio-Borlino, A.; Pulina, G. Estimating clinical chemistry reference values based on an existing data set of unselected animals. Vet. J. 2008, 178, 278–281. [Google Scholar] [CrossRef]
- Abou-Rjeileh, U.; dos Santos Neto, J.; Chirivi, M.; O’Boyle, N.; Salcedo, D.; Prom, C.; Contreras, G.A. Oleic acid abomasal infusion limits lipolysis and improves insulin sensitivity in adipose tissue from periparturient dairy cows. J. Dairy Sci. 2022, 106, 4306–4323. [Google Scholar] [CrossRef]
- Arabloei, S.M.; Yaghmaei, P.; Hajebrahimi, Z.; Hayati Roodbari, N. Therapeutic Effect of P-Cymene on Lipid Profile, Liver Enzyme, and Akt/Mtor Pathway in Streptozotocin-Induced Diabetes Mellitus in Wistar Rats. J. Obes. 2022, 2022, 1015669. [Google Scholar] [CrossRef]
- Rezaeinasab, M.; Benvidi, A.; Gharaghani, S.; Abbasi, S.; Zare, H.R. Deciphering the inhibition effect of thymoquinone on xanthine oxidase activity using differential pulse voltammetry in combination with theoretical studies. Enz. Microb. Technol. 2019, 121, 29–36. [Google Scholar] [CrossRef]
- Javedan, G.; Shidfar, F.; Davoodi, S.H.; Ajami, M.; Gorjipour, F.; Sureda, A.; Pazoki-Toroudi, H. Conjugated linoleic acid rat pretreatment reduces renal damage in ischemia/reperfusion injury: Unraveling antiapoptotic mechanisms and regulation of phosphorylated mammalian target of rapamycin. Mol. Nutr. Food Res. 2016, 60, 2665–2677. [Google Scholar] [CrossRef] [PubMed]
- Raman, M.; Middleton, R.J.; Kalra, P.A.; Green, D. Estimating renal function in old people: An in-depth review. Int. Urol. Nephrol. 2017, 49, 1979–1988. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.E.F.; Frye, R.F. Inhibitory effects of commonly used herbal extracts on UDP-glucuronosyltransferase 1A4, 1A6, and 1A9 enzyme activities. Drug Met. Disp. 2011, 39, 1522–1528. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Tracy, T.S.; Remmel, R.P. Bilirubin glucuronidation revisited: Proper assay conditions to estimate enzyme kinetics with recombinant UGT1A1. Drug Met. Disp. 2010, 38, 1907–1911. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.Y.; Tang, T.S.; Jiang, Y.G.; He, T.; Qi, L.Y.; Chang, H.K.; Qiao, Y.Y.; Sun, M.M.; Shan, C.L.; Zhu, X.Y.; et al. PRIM2 Promotes Cell Cycle and Tumor Progression in p53-Mutant Lung Cancer. Cancers 2022, 14, 3370. [Google Scholar] [CrossRef]
- Deng, J.; Zhong, F.K.; Gu, W.; Qiu, F. Exploration of prognostic biomarkers among replication factor C family in the hepatocellular carcinoma. Evol. Bioinf. 2021, 17, 1176934321994109. [Google Scholar] [CrossRef]
- Costa, A.; Diffley, J.F.X. The Initiation of Eukaryotic DNA Replication. Annu. Rev. Biochem. 2022, 91, 26.21–26.25. [Google Scholar] [CrossRef]
- Sparks, J.L.; Chon, H.; Cerritelli, S.M.; Kunkel, T.A.; Johansson, E.; Crouch, R.J.; Burgers, P.M. RNase H2-Initiated Ribonucleotide Excision Repair. Mol. Cell 2012, 47, 980–986. [Google Scholar] [CrossRef]
- Palles, C.; Cazier, J.B.; Howarth, K.M.; Domingo, E.; Jones, A.M.; Broderick, P.; Kemp, Z.; Spain, S.L.; Guarino, E.; Guarino Almeida, E.; et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat. Genet. 2013, 45, 136–144. [Google Scholar] [CrossRef]
- Ahmed, L.A.; Younus, H. Aldehyde toxicity and metabolism: The role of aldehyde dehydrogenases in detoxification, drug resistance and carcinogenesis. Drug Metab. Revs. 2018, 51, 42–64. [Google Scholar] [CrossRef]
- Eisenhofer, G.; Kopin, I.J.; Goldstein, D.S. Catecholamine metabolism: A contemporary view with implications for physiology and medicine. Pharm. Rev. 2004, 56, 331–349. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Kong, X.; Zhou, Y.; Lan, L.; Luo, L.; Yin, Z. Glutathione S-transferase P1 suppresses iNOS protein stability in RAW264.7 macrophage-like cells after LPS stimulation. Free. Radic. Res. 2015, 49, 1438–1448. [Google Scholar] [CrossRef] [PubMed]
- Selwyn, F.P.; Cui, J.Y.; Klaassen, C.D. RNA-Seq Quantification of Hepatic Drug Processing Genes in Germ-Free Mice. Drug Metab. Dispos. 2015, 43, 1572–1580. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Liu, W.; Erdene, K.; Du, H.; Ao, C. Effects of dietary supplementation with Allium mongolicum Regel extracts on growth performance, serum metabolites, immune responses, antioxidant status, and meat quality of lambs. Anim. Nutr. 2021, 7, 530–538. [Google Scholar] [CrossRef]
- Inamine, T.; Schnabl, B. Immunoglobulin A and liver diseases. J. Gastr. 2018, 53, 691–700. [Google Scholar] [CrossRef]
- Schnabl, B.; Brenner, D.A. Interactions between the intestinal microbiome and liver diseases. Gastroenterology 2014, 146, 1513–1524. [Google Scholar] [CrossRef]
- Morikawa, M.; Derynck, R.; Miyazono, K. TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harb. Perspect. Biol. 2016, 8, a021873. [Google Scholar] [CrossRef]
- Leite, L.F.B.; Máximo, T.A.; Mosca, T.; Forte, W.C.N. CD40 ligand deficiency. Allerg. Immun. 2020, 48, 409–413. [Google Scholar] [CrossRef]
- Beagley, K.W.; Eldridge, J.H.; Lee, F.; Kiyono, H.; Everson, M.P.; Koopman, W.J.; Hirano, T.; Kishimoto, T.; McGhee, J.R. Interleukins and IgA synthesis. Human and murine interleukin 6 induce high rate IgA secretion in IgA-committed B cells. J. Exp. Med. 1989, 169, 2133–2148. [Google Scholar] [CrossRef]
- Reboldi, A.; Arnon, T.I.; Rodda, L.B.; Atakilit, A.; Sheppard, D.; Cyster, J.G. IgA production requires B cell interaction with subepithelial dendritic cells in Peyer’s patches. Science 2016, 13, aaf4822. [Google Scholar] [CrossRef]
- Utoh, R.; Tateno, C.; Kataoka, M.; Tachibana, A.; Masumoto, N.; Yamasaki, C.; Shimada, T.; Itamoto, T.; Asahara, T.; Yoshizato, K. Hepatic Hyperplasia Associated with Discordant Xenogeneic Parenchymal-Nonparenchymal Interactions in Human Hepatocyte-Repopulated Mice. Amer. J. Pathol. 2010, 177, 654–665. [Google Scholar] [CrossRef] [PubMed]
- Portunato, F.; Bartalucci, C.; Vena, A.; Giacobbe, D.R.; Porcile, E.; Montanelli, P.; Bassetti, M. Amoebic Liver Abscess: Potential Application of New Diagnostic Techniques for an Old Pathogen. Infec. Dis. Ther. 2024, 13, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Villaseñor, E.; Morales-Montor, J.; Rodríguez-Dorantes, M.; Ramos-Martínez, E.; Néquiz-Avendaño, M.; Ostoa-Saloma, P. IL-6 KO Mice Develop Experimental Amoebic Liver Infection with Eosinophilia. J. Parasitol. 2007, 93, 1424–1428. Available online: https://www.jstor.org/stable/40058938 (accessed on 18 July 2024). [CrossRef] [PubMed]
- Stout-Delgado, H.W.; Getachew, Y.; Rogers, T.E.; Miller, B.C.; Thiele, D.L. The role of serpinb9/serine protease inhibitor 6 in preventing granzyme B-dependent hepatotoxicity. Hepatology 2007, 46, 1530–1540. [Google Scholar] [CrossRef] [PubMed]
- Verma, K.; Saito-Nakano, Y.; Nozaki, T.; Datta, S. Insights into endosomal maturation of human holo-transferrin in the enteric parasite Entamoeba histolytica: Essential roles of Rab7A and Rab5 in biogenesis of giant early endocytic vacuoles. Cell Microbiol. 2015, 17, 1779–1796. [Google Scholar] [CrossRef]
- Allen-Vercoe, E.; Strauss, J.; Chase, K. Fusobacterium nucleatum an emerging gut pathogen? Gut Microb. 2011, 5, 294–298. [Google Scholar] [CrossRef]
- Martínez-Uña, M.; López-Mancheño, Y.; Diéguez, C.; Fernández-Rojo, M.A.; Novelle, M.G. Unraveling the Role of Leptin in Liver Function and Its Relationship with Liver Diseases. Int. J. Mol. Sci. 2020, 21, 9368. [Google Scholar] [CrossRef]
- Liu, X.; Henkel, A.S.; LeCuyer, B.E.; Schipma, M.J.; Anderson, K.A.; Green, R.M. Hepatocyte X-box binding protein 1 deficiency increases liver injury in mice fed a high-fat/sugar diet. Am. J. Physiol. Gastr. Liv. Physiol. 2015, 309, G965–G974. [Google Scholar] [CrossRef]
- Lau, J.K.; Zhang, X.; Yu, J. Animal models of non-alcoholic fatty liver disease: Current perspectives and recent advances. J. Pathol. 2017, 241, 36–44. [Google Scholar] [CrossRef]
- Celi, P. The role of oxidative stress in small ruminants’ health and production. Rev. Bras. Zootec. 2010, 39, 348–363. [Google Scholar] [CrossRef]
- Carvajal, C.C. Reactive oxygen species: Training, function and oxidative stress. Rev. Med. Leg. Costa Rica 2019, 36, 91–100. [Google Scholar]
- Weiss, H.; Friedrich, T.; Hofhaus, G.; Preis, D. The Respiratory-Chain NADH Dehydrogenase (Complex I) of Mitochondria. Eu. J. Biochem. 1991, 197, 563–576. [Google Scholar] [CrossRef] [PubMed]
- Bazil, J.N.; Pannala, V.R.; Dash, R.K.; Beard, D.A. Determining the origins of superoxide and hydrogen peroxide in the mammalian NADH:ubiquinone oxidoreductase. Free Rad. Biol. Med. 2014, 77, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Pecorelli, A.; Leoni, G.; Cervellati, F.; Canali, R.; Signorini, C.; Leoncini, S.; Cortelazzo, A.; De Felice, C.; Ciccoli, L.; Hayek, J.; et al. Genes related to mitochondrial functions, protein degradation, and chromatin folding are differentially expressed in lymphomonocytes of Rett syndrome patients. Med. Inflam. 2013, 2013, 137629. [Google Scholar] [CrossRef] [PubMed]
- Kolath, H.W.; Kerley, S.M.; Golden, W.J.; Keisler, H.D. The relationship between mitochondrial function and residual feed intake in Angus steers. J. Anim. Sci. 2006, 84, 861–865. [Google Scholar] [CrossRef]
- Jonckheere, A.I.; Smeitink, J.A.; Rodenburg, R.J. Mitochondrial ATP synthase: Architecture, function and pathology. J. Inherit. Metab. Dis. 2012, 35, 211–225. [Google Scholar] [CrossRef]
Component | Retention Time (min) | Molecular Formula | Molecular Weight (g/mol) | Proportion of Total Area (%) |
---|---|---|---|---|
3-Hexanol | 3.86 | C6H14O | 102.1 | 0.15 |
Pentanoic acid | 5.89 | C5H10O2 | 102.1 | 0.04 |
Hexanoic acid | 7.82 | C6H12O2 | 116 | 0.67 |
Undecane | 9.62 | C11H24 | 156.1 | 0.06 |
Octanoic acid | 10.86 | C8H16O2 | 144.1 | 0.09 |
5-Hydroxymethylfurfural | 11.65 | C6H6O3 | 126 | 0.07 |
Thymoquinone | 11.96 | C10H12O2 | 164.1 | 0.16 |
Nonanoic acid | 12.23 | C9H18O2 | 158.1 | 0.09 |
Carvacrol | 12.57 | C10H14O2 | 150.1 | 1.75 |
n-Decanoic-acid | 13.53 | C10H20O2 | 172.1 | 0.06 |
p-Cymene | 15.98 | C10H14O2 | 166.1 | 0.13 |
Dodecanoic acid | 16.05 | C12H24O2 | 200.2 | 0.46 |
Tetradecanoic acid | 18.31 | C14H28O2 | 228.2 | 1.31 |
Pentadecanoic acid | 19.31 | C15H30O2 | 242.2 | 0.33 |
Hexadecanoic acid, methyl ester | 19.98 | C17H34O2 | 270.3 | 0.65 |
n-Hexadecanoic acid, palmitico | 20.48 | C16H32O2 | 256.2 | 16.24 |
12-Octadecadienoic acid, methyl ester | 21.62 | C19H34O2 | 1.77 | 1.77 |
9-Octadecenoic acid, methyl ester | 21.68 | C19H36O2 | 1.44 | 1.44 |
Oleic acid | 21.90 | C18H34O2 | 282.3 | 0.98 |
12-Octadecanoic acid, linoleico | 22.33 | C18H32O2 | 280.2 | 58.94 |
Parameter | Treatments | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
CON | PPAL | PPAM | PPAH | Per | Trat × Per | Linear | Quadratic | ||
Initial body weight, kg | 23.22 | 23.91 | 23.52 | 23.78 | 0.597 | - | - | - | - |
Final body weight, kg | 40.49 | 41.35 | 41.96 | 44.32 | 1.573 | <0.0001 | 0.99 | 0.08 | 0.73 |
Daily weight gain (DWG), kg/d | 0.308 b | 0.311 b | 0.329 b | 0.367 a | 0.015 | <0.0001 | 0.88 | 0.01 | 0.33 |
Dry matter intake (DMI), kg/d | 1.333 b | 1.328 b | 1.344 ab | 1.407 a | 0.032 | <0.0001 | 0.95 | 0.02 | 0.27 |
DMI variation (%) 1 | 12.24 | 14.01 | 14.10 | 12.09 | 1.268 | <0.0001 | 0.29 | 0.93 | 0.11 |
Feed conversion ratio (FCR), DMI/DWG | 5.06 a | 4.85 ab | 4.37 bc | 4.22 c | 0.218 | <0.0001 | 0.33 | 0.02 | 0.92 |
Observed dietary net energy, Mcal/kg | |||||||||
Maintenance (ObsNEm) | 1.793 b | 1.840 b | 1.892 ab | 2.003 a | 0.080 | <0.0001 | 0.85 | 0.02 | 0.63 |
Gain (ObsNEg) | 1.162 b | 1.204 b | 1.250 ab | 1.346 a | 0.070 | <0.0001 | 0.85 | 0.02 | 0.63 |
Observed to expected diet net energy | |||||||||
Maintenance (OExNEm) | 0.991 b | 1.017 b | 1.046 ab | 1.106 a | 0.044 | <0.0001 | 0.85 | 0.02 | 0.63 |
Gain (OExNEg) | 0.922 b | 0.955 b | 0.992 ab | 1.068 a | 0.039 | <0.0001 | 0.85 | 0.02 | 0.63 |
Observed to expected DMI | 1.128 a | 1.110 a | 1.037 ab | 0.976 b | 0.059 | <0.0001 | 0.75 | 0.01 | 0.65 |
Parameter | Treatments | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | PPAL | PPAM | PPAH | Linear | Quadratic | ||
Back fat thickness (BFT), mm | 4.20 | 4.24 | 4.33 | 4.37 | 0.08 | 0.10 | 0.98 |
Muscle area longissimus dorsi (LDMA), cm2 | 10.11 c | 10.50 bc | 10.73 b | 11.23 a | 0.16 | <0.001 | 0.70 |
Hot carcass weight (HCW), kg | 20.25 | 20.90 | 20.62 | 20.86 | 0.72 | 0.17 | 0.68 |
Hot carcass yield (HCY), % | 50.26 | 50.74 | 49.48 | 29.29 | 0.99 | 0.35 | 0.74 |
Cold carcass weight (CCW), kg | 18.62 | 19.31 | 19.26 | 20.37 | 0.77 | 0.14 | 0.79 |
Cold carcass yield (CCY), % | 46.20 | 46.63 | 46.24 | 45.91 | 0.98 | 0.78 | 0.70 |
Yield grade (YG) | 0.41 | 0.41 | 0.42 | 0.42 | 0.03 | 0.10 | 0.98 |
External length of the carcass (ELC), cm | 57.33 | 57.44 | 57.33 | 58.33 | 0.78 | 0.41 | 0.57 |
Internal length of the carcass (ILC), cm | 53.89 | 55.22 | 55.00 | 54.44 | 0.72 | 0.65 | 0.20 |
Chest girth (CG), cm | 71.78 | 74.44 | 73.44 | 75.11 | 1.21 | 0.67 | 0.34 |
Length of the leg (LL), cm | 32.22 | 33.77 | 33.00 | 33.33 | 0.59 | 0.83 | 0.78 |
Perimeter of the leg (PL), cm | 34.66 | 35.00 | 36.88 | 36.89 | 0.63 | 0.10 | 0.79 |
Compactness index (CI), kg/cm | 0.34 | 0.35 | 0.35 | 0.37 | 0.01 | 0.10 | 0.41 |
Parameter | Treatments | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | PPAL | PPAM | PPAH | Linear | Quadratic | ||
Stomach complex (empty), kg | 1.451 | 1.406 | 1.441 | 1.512 | 0.068 | 0.48 | 0.40 |
Small intestine (empty), kg | 0.887 | 0.896 | 0.926 | 0.965 | 0.054 | 0.08 | 0.28 |
Large intestine (empty), kg | 1.040 | 1.117 | 1.291 | 1.222 | 0.136 | 0.24 | 0.11 |
Lungs and trachea, kg | 0.639 | 0.666 | 0.635 | 0.646 | 0.042 | 0.96 | 0.85 |
Heart, kg | 0.191 | 0.190 | 0.179 | 0.200 | 0.013 | 0.81 | 0.39 |
Liver, kg | 0.898 | 0.897 | 0.899 | 0.882 | 0.049 | 0.84 | 0.87 |
Kidneys, kg | 0.634 | 0.669 | 0.683 | 0.714 | 0.048 | 0.46 | 0.33 |
Spleen, kg | 0.079 | 0.084 | 0.078 | 0.076 | 0.006 | 0.59 | 0.57 |
Testicles, kg | 0.565 | 0.592 | 0.594 | 0.586 | 0.046 | 0.12 | 0.15 |
Skin, kg | 3.305 | 3.197 | 3.077 | 3.436 | 0.157 | 0.70 | 0.14 |
Head, kg | 2.253 | 2.158 | 2.124 | 2.269 | 0.087 | 0.97 | 0.18 |
Feet, kg | 0.965 | 0.889 | 0.913 | 0.987 | 0.045 | 0.96 | 0.11 |
Parameter | Treatments | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | PPAL | PPAM | PPAH | Linear | Quadratic | ||
Cooking loss (CL), % | 17.47 | 16.50 | 16.65 | 18.73 | 1.45 | 0.29 | 0.17 |
Lightness (L*) | 34.95 | 34.02 | 34.57 | 35.69 | 1.23 | 0.96 | 0.26 |
Redness (a*) | 10.47 | 10.45 | 9.40 | 10.60 | 0.50 | 0.76 | 0.22 |
Yellowness (b*) | 10.08 | 9.93 | 10.22 | 10.94 | 0.68 | 0.73 | 0.12 |
Protein, g/100 g | 19.73 | 19.80 | 20.19 | 19.98 | 0.17 | 0.22 | 0.17 |
Fat, g/100 g | 3.29 | 3.44 | 3.19 | 3.03 | 0.27 | 0.77 | 0.10 |
Moisture, g/100 g | 75.05 | 74.68 | 74.62 | 74.85 | 0.33 | 0.41 | 0.16 |
Collagen, g/100 g | 1.71 | 1.64 | 1.62 | 1.71 | 0.06 | 0.88 | 0.11 |
Parameter | Treatments | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | PPAL | PPAM | PPAH | Linear | Quadratic | ||
Hematocrit, % | 35.44 | 38.00 | 36.11 | 36.44 | 1.30 | 0.85 | 0.39 |
Hemoglobin, g/dL | 11.79 | 12.05 | 11.76 | 12.20 | 0.26 | 0.42 | 0.73 |
Red blood cells, 106/mL | 8.27 | 8.38 | 8.63 | 9.15 | 0.34 | 0.08 | 0.36 |
Mean corpuscular volume, Fl | 29.27 | 29.49 | 20.40 | 29.46 | 0.51 | 0.84 | 0.87 |
Mean corpuscular hemoglobin, pg | 14.07 | 15.10 | 13.78 | 13.32 | 0.80 | 0.33 | 0.36 |
Mean corpuscular hemoglobin concentration, g/dL | 48.31 | 51.66 | 47.10 | 45.57 | 2.86 | 0.32 | 0.39 |
Platelets, 103/mL | 936.00 | 986.11 | 826.33 | 1004.67 | 52.22 | 0.84 | 0.22 |
Leukocytes, 103/mL | 9.01 | 9.19 | 8.71 | 8.25 | 0.43 | 0.15 | 0.45 |
Lymphocytes, 103/mL | 45.66 | 46.00 | 47.22 | 48.55 | 3.48 | 0.80 | 0.88 |
Monocytes, 103/mL | 8.19 | 10.67 | 9.33 | 8.89 | 1.36 | 0.29 | 0.07 |
Segmented neutrophils, 103/mL | 43.67 | 42.33 | 43.00 | 45.78 | 3.76 | 0.67 | 0.58 |
Band neutrophils, 103/mL | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Eosinophils, 103/mL | 2.67 | 1.00 | 0.89 | 1.33 | 0.62 | 0.14 | 0.09 |
Basophils, 103/mL | 0.11 | 0.00 | 0.00 | 0.00 | 0.05 | 0.18 | 0.32 |
Plasma protein, g/dL | 6.79 | 6.70 | 6.85 | 6.67 | 0.17 | 0.82 | 0.79 |
Parameter | Treatments | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | PPAL | PPAM | PPAH | Linear | Quadratic | ||
Glucose, mg/dL | 65.44 a | 64.12 ab | 60.00 b | 58.35 b | 1.93 | 0.05 | 0.38 |
Cholesterol, mg/dL | 40.33 | 37.11 | 45.77 | 37.11 | 4.06 | 0.95 | 0.50 |
Triglycerides, mg/dL | 18.77 | 17.88 | 19.89 | 17.33 | 1.81 | 0.77 | 0.55 |
Urea, mg/dL | 42.11 | 44.44 | 47.89 | 40.33 | 3.17 | 0.89 | 0.12 |
Uric acid, mg/dL | 0.47 a | 0.46 a | 0.25 b | 0.32 b | 0.04 | 0.001 | 0.35 |
Creatinine, mg/dL | 0.87 a | 0.78 a | 0.62 b | 0.46 c | 0.05 | <0.0001 | 0.55 |
Total protein, g/dL | 5.45 | 5.23 | 5.48 | 5.19 | 0.35 | 0.74 | 0.91 |
Albumin, g/dL | 2.82 | 2.74 | 2.88 | 2.84 | 0.16 | 0.78 | 0.90 |
Globulin, g/dL | 2.62 | 2.48 | 2.60 | 2.46 | 0.18 | 0.63 | 0.99 |
Albumin/globulin | 1.08 | 1.10 | 1.11 | 1.13 | 0.03 | 0.36 | 0.92 |
Bilirubin, mg/dL | 0.51 a | 0.50 a | 0.39 b | 0.28 b | 0.05 | 0.006 | 0.43 |
Alkaline phosphatase, UI/dL | 463.55 | 451.00 | 481.00 | 486.11 | 48.91 | 0.65 | 0.85 |
Lactate dehydrogenase, UI/dL | 395.78 | 434.67 | 445.89 | 394.78 | 29.59 | 0.89 | 0.11 |
Aspartate aminotransferase, UI/dL | 87.78 | 95.55 | 93.55 | 90.67 | 6.89 | 0.83 | 0.44 |
Calcium, mg/dL | 9.24 | 8.63 | 9.44 | 9.35 | 0.32 | 0.43 | 0.42 |
Phosphorus, mg/dL | 3.84 | 3.69 | 3.87 | 3.99 | 0.15 | 0.36 | 0.38 |
DNA Replication (FC = 4.7; p-Value = 0.003) | Tyrosine Metabolism (FC = 4.1; p-Value = 0.006) | ||||
Symbol | Gene Name | FC | Symbol | Gene Name | FC |
Prim2 | DNA primase, p58 subunit | −2.81 | Aldh3a1 | Aldehyde dehydrogenase family 3, subfamily A1 | −2.62 |
Rfc1 | Replication factor C (activator 1) 1 | −2.31 | Adh4 | Alcohol dehydrogenase 4 (class II), pi polypeptide | −2.15 |
Mcm4 | Minichromosome maintenance complex component 4 | −2.01 | Aox1 | Aldehyde oxidase 1 | −2.14 |
Rnaseh2b | Ribonuclease H2, subunit B | −1.94 | Fahd1 | Fumarylacetoacetate hydrolase domain containing 1 | −2.09 |
Pold1 | Polymerase (DNA directed), delta 1, catalytic subunit | −1.83 | Got2 | Glutamatic-oxaloacetic transaminase 2, mitochondrial | −1.86 |
Rfc4 | Replication factor C (activator 1) 4 | −1.55 | Maoa | Monoamine oxidase A | −1.77 |
Rfc3 | Replication factor C (activator 1) 3 | −1.54 | 4930438A08Rik | RIKEN cDNA 4930438A08 gene | −1.60 |
Drug metabolism—Cytochromo P450 (FC = 3.3; p-Value = 0.003) | TGF-β Signaling Pathway (FC = 2.7; p-Value = 0.007) | ||||
Symbol | Gene Name | FC | Symbol | Gene Name | FC |
Gsta3 | Glutathione S-transferase, alpha 3 | −2.86 | Acvr2a | Activin receptor IIA | −2.78 |
Aldh3a1 | Aldehyde dehydrogenase family 3, subfamily A1 | −2.62 | Tgfbr2 | Transforming growth factor, beta receptor II | |
Gsta4 | Glutathione S-transferase, alpha 4 | −2.56 | Ltbp1 | Latent transforming growth factor beta binding protein 1 | −2.50 |
Gstm3 | Glutathione S-transferase, mu 3 | −2.50 | Tgfb1 | Transforming growth factor, beta 1 | −3.31 |
Adh4 | Alcohol dehydrogenase 4 (class II), pi polypeptide | −2.15 | E2f5 | E2F transcription factor 5 | −1.93 |
Aox1 | Aldehyde oxidase 1 | −2.14 | Inhba | Inhibin beta-A | −1.80 |
Fmo1 | Flavin containing monooxygenase 1 | −1.91 | Acvr1b | Activin A receptor, type 1B | −1.79 |
Maoa | Monoamine oxidase A | −1.77 | Rbl1 | RB transcriptional corepressor like 1 | −1.76 |
Fmo2 | Flavin containing monooxygenase 2 | −1.60 | Bmpr1a | Bone morphogenetic protein receptor, type 1A | −1.69 |
Tgfb2 | Transforming growth factor, beta 2 | −1.64 | |||
Intestinal Immune Network for Immunoglobulin A Production (FC = 3.8; p-Value = 0.009) | Amoebiasis (FC = 2.6; p-Value = 0.006) | ||||
Symbol | Gene Name | FC | Symbol | Gene Name | FC |
Tgfb1 | Transforming growth factor, beta 1 | −3.31 | Il6 | Interleukin 6 | −2.30 |
Cd40lg | CD40 ligand | −2.84 | Serpinb9c | Serine (or cysteine) peptidase inhibitor, clade B, member 9c | −2.28 |
Il6 | Interleukin 6 | −2.30 | Rab5a | RAB5A, member RAS oncogene family | −2.21 |
Tnfsf13 | Tumor necrosis factor (ligand) superfamily, member 13 | −1.93 | Tgfb1 | Transforming growth factor, beta 1 | −3.31 |
H2-Oa | Histocompatibility 2, O region alpha locus | −1.77 | Gnaq | Guanine nucleotide-binding protein, alpha q polypeptide | −1.75 |
Cxcl12 | Chemokine (C-X-C motif) ligand 12 | −1.62 | Muc2 | Mucin 2 | −1.99 |
Tnfrsf13b | Tumor necrosis factor receptor superfamily, member 13b | −1.55 | Rab7 | RAB7, member RAS oncogene family | −1.84 |
Lamb1 | Laminin B1 | −1.69 | |||
Gna11 | Guanine nucleotide-binding protein, alpha 11 | −1.67 | |||
Tgfb2 | Transforming growth factor, beta 2 | −1.64 | |||
Lama1 | Laminin, alpha 1 |
Non-Alcoholic Fatty Liver Disease (FC = 3.5; p-Value = 0.00003) | Oxidative Phosphorylation (FC = 2.8; p-Value = 0.003) | ||||
Symbol | Gene Name | FC | Symbol | Gene Name | FC |
Ndufc1 | NADH:ubiquinone oxidoreductase subunit C1 | 2.66 | Ndufc1 | NADH:ubiquinone oxidoreductase subunit C1 | 2.66 |
Ndufa1 | NADH:ubiquinone oxidoreductase subunit A1 | 2.47 | Ndufa1 | NADH:ubiquinone oxidoreductase subunit A1 | 2.47 |
Jun | Jun proto-oncogene | 2.25 | Cyct | Cytochrome c, testis | 2.22 |
Cyct | Cytochrome c, testis | 2.22 | Uqcr10 | Ubiquinol-cytochrome c reductase, complex III subunit X | 1.99 |
Rxra | Retinoid X receptor alpha | 2.06 | Ndufb4 | NADH:ubiquinone oxidoreductase subunit B4 | 1.90 |
Uqcr10 | Ubiquinol-cytochrome c reductase, complex III subunit X | 1.99 | Uqcrfs1 | Ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1 | 1.87 |
Ndufb4 | NADH:ubiquinone oxidoreductase subunit B4 | 1.90 | Ndufv2 | NADH:ubiquinone oxidoreductase core subunit V2 | 1.85 |
Uqcrfs1 | Ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1 | 1.87 | Uqcrq | Ubiquinol-cytochrome c reductase, complex III subunit VII | 1.78 |
Ndufv2 | NADH:ubiquinone oxidoreductase core subunit V2 | 1.85 | Ndufa3 | NADH:ubiquinone oxidoreductase subunit A3 | 1.77 |
Pik3cd | Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta | 1.83 | Atp5l | ATP synthase, H+ transporting, mitochondrial F0 complex, subunit G | 1.70 |
Xbp1 | X-box binding protein 1 | 1.79 | Cox7a2l | Cytochrome c oxidase subunit 7A2-like | 1.55 |
Uqcrq | Ubiquinol-cytochrome c reductase, complex III subunit VII | 1.78 | Cox6b1 | Cytochrome c oxidase, subunit 6B1 | 1.51 |
Ndufa3 | NADH:ubiquinone oxidoreductase subunit A3 | 1.77 | |||
Lep | Leptin | 1.59 | |||
Cox7a2l | Cytochrome c oxidase subunit 7A2-like | 1.55 | |||
Cox6b1 | Cytochrome c oxidase, subunit 6B1 | 1.51 | |||
Chemical Carcinogenesis–Reactive Oxygen Species (FC = 2.4; p-Value = 0.002) | |||||
Symbol | Gene Name | FC | |||
Ndufc1 | NADH:ubiquinone oxidoreductase subunit C1 | 2.66 | |||
Sos2 | SOS Ras/Rho guanine nucleotide exchange factor 2 | 2.50 | |||
Ndufa1 | NADH:ubiquinone oxidoreductase subunit A1 | 2.47 | |||
Raf1 | V-raf-leukemia viral oncogene 1 | 2.46 | |||
Mapk9 | Mitogen-activated protein kinase 9 | 2.42 | |||
Jun | Jun proto-oncogene | 2.25 | |||
Uqcr10 | Ubiquinol-cytochrome c reductase, complex III subunit X | 1.99 | |||
Gstm2 | Glutathione S-transferase, mu 2 | 1.94 | |||
Ndufb4 | NADH:ubiquinone oxidoreductase subunit B4 | 1.90 | |||
Uqcrfs1 | Ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1 | 1.87 | |||
Ndufv2 | NADH:ubiquinone oxidoreductase core subunit V2 | 1.85 | |||
Pik3cd | Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta | 1.83 | |||
Uqcrq | Ubiquinol-cytochrome c reductase, complex III subunit VII | 1.78 | |||
Ndufa3 | NADH:ubiquinone oxidoreductase subunit A3 | 1.77 | |||
Ptpn11 | Protein tyrosine phosphatase, non-receptor type 11 | 1.58 | |||
Cox7a2l | Cytochrome c oxidase subunit 7A2-like | 1.55 | |||
Cox6b1 | Cytochrome c oxidase, subunit 6B1 | 1.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orzuna-Orzuna, J.F.; Lara-Bueno, A.; Gloria-Trujillo, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Hernández-García, P.A. Growth Performance, Dietary Energetics, Blood Metabolites, Carcass Traits, Meat Quality, and Gene Expression of Lambs Supplemented with a Polyherbal Phytogenic Additive. Vet. Sci. 2024, 11, 520. https://doi.org/10.3390/vetsci11110520
Orzuna-Orzuna JF, Lara-Bueno A, Gloria-Trujillo A, Mendoza-Martínez GD, Miranda-Romero LA, Hernández-García PA. Growth Performance, Dietary Energetics, Blood Metabolites, Carcass Traits, Meat Quality, and Gene Expression of Lambs Supplemented with a Polyherbal Phytogenic Additive. Veterinary Sciences. 2024; 11(11):520. https://doi.org/10.3390/vetsci11110520
Chicago/Turabian StyleOrzuna-Orzuna, José Felipe, Alejandro Lara-Bueno, Adrián Gloria-Trujillo, Germán David Mendoza-Martínez, Luis Alberto Miranda-Romero, and Pedro Abel Hernández-García. 2024. "Growth Performance, Dietary Energetics, Blood Metabolites, Carcass Traits, Meat Quality, and Gene Expression of Lambs Supplemented with a Polyherbal Phytogenic Additive" Veterinary Sciences 11, no. 11: 520. https://doi.org/10.3390/vetsci11110520
APA StyleOrzuna-Orzuna, J. F., Lara-Bueno, A., Gloria-Trujillo, A., Mendoza-Martínez, G. D., Miranda-Romero, L. A., & Hernández-García, P. A. (2024). Growth Performance, Dietary Energetics, Blood Metabolites, Carcass Traits, Meat Quality, and Gene Expression of Lambs Supplemented with a Polyherbal Phytogenic Additive. Veterinary Sciences, 11(11), 520. https://doi.org/10.3390/vetsci11110520