In Vitro Activity of Allium cepa Organosulfur Derivatives against Canine Multidrug-Resistant Strains of Staphylococcus spp. and Enterobacteriaceae
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Sensitivity of the Selected Strains to Antibiotics and Allium-Derived Compounds
2.3. Statistical Analysis
3. Results
3.1. Staphylococcus pseudintermedius
3.2. Enterobacteriaceae
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Report on Infection Prevention and Control; World Health Organization: Geneva, Switzerland, 2022; ISBN 9789240051164.
- Ortiz-Díez, G.; López, R.; Sánchez-Díaz, A.M.; Turrientes, M.C.; Baquero, M.R.; Luque, R.; Maroto, A.; Fernández, C.; Ayllón, T. Epidemiology of the Colonization and Acquisition of Methicillin-Resistant Staphylococci and Vancomycin-Resistant Enterococci in Dogs Hospitalized in a Clinic Veterinary Hospital in Spain. Comp. Immunol. Microbiol. Infect. Dis. 2020, 72, 101501. [Google Scholar] [CrossRef] [PubMed]
- Baxter, D.N.; Leck, I. The Deleterious Effects of Dogs on Human Health. Canine zoonoses. Community Med. 1984, 6, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.; Grimprel, E.; Hau, I.; Madhi, F.; Gaudelus, J.; Raymond, J. Principes de l’antibiothérapie Curative. Arch. Pediatr. 2017, 24, S1–S5. [Google Scholar] [CrossRef]
- Hernando-Amado, S.; Coque, T.M.; Baquero, F.; Martínez, J.L. Defining and Combating Antibiotic Resistance from One Health and Global Health Perspectives. Nat. Microbiol. 2019, 4, 1432–1442. [Google Scholar] [CrossRef] [PubMed]
- Yudhanto, S.; Hung, C.C.; Maddox, C.W.; Varga, C. Antimicrobial Resistance in Bacteria Isolated From Canine Urine Samples Submitted to a Veterinary Diagnostic Laboratory, Illinois, United States. Front. Vet. Sci. 2022, 9, 867784. [Google Scholar] [CrossRef]
- Provenzani, A.; Hospodar, A.R.; Meyer, A.L.; Leonardi Vinci, D.; Hwang, E.Y.; Butrus, C.M.; Polidori, P. Multidrug-Resistant Gram-Negative Organisms: A Review of Recently Approved Antibiotics and Novel Pipeline Agents. Int. J. Clin. Pharm. 2020, 42, 1016–1025. [Google Scholar] [CrossRef]
- Kaspar, U.; von Lützau, A.; Schlattmann, A.; Roesler, U.; Köck, R.; Becker, K. Zoonotic Multidrug-Resistant Microorganisms among Small Companion Animals in Germany. PLoS ONE 2018, 13, e0208364. [Google Scholar] [CrossRef]
- Wieler, L.H.; Ewers, C.; Guenther, S.; Walther, B.; Lübke-Becker, A. Methicillin-Resistant Staphylococci (MRS) and Extended-Spectrum Beta-Lactamases (ESBL)-Producing Enterobacteriaceae in Companion Animals: Nosocomial Infections as One Reason for the Rising Prevalence of These Potential Zoonotic Pathogens in Clinical Samples. Int. J. Med. Microbiol. 2011, 301, 635–641. [Google Scholar]
- Coates, A.R.; Halls, G.; Hu, Y. Novel Classes of Antibiotics or More of the Same? Br. J. Pharmacol. 2011, 163, 184–194. [Google Scholar] [CrossRef]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Government of the United Kingdom: London, UK, 2016.
- Campigotto, G.; Jaguezeski, A.M.; Alba, D.F.; Giombelli, L.C.D.; da Rosa, G.; Souza, C.F.; Baldissera, M.D.; Petrolli, T.G.; da Silva, A.S. Microencapsulated Phytogenic in Dog Feed Modulates Immune Responses, Oxidative Status and Reduces Bacterial (Salmonella and Escherichia coli) Counts in Feces. Microb. Pathog. 2021, 159, 105113. [Google Scholar] [CrossRef]
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2018, 6, ARBA-0009-2017. [Google Scholar] [CrossRef] [PubMed]
- Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules 2020, 25, 1340. [Google Scholar] [CrossRef] [PubMed]
- Mulat, M.; Pandita, A.; Khan, F. Medicinal Plant Compounds for Combating the Multi-Drug Resistant Pathogenic Bacteria: A Review. Curr. Pharm. Biotechnol. 2019, 20, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Arip, M.; Selvaraja, M.; Mogana, R.; Tan, L.F.; Leong, M.Y.; Tan, P.L.; Yap, V.L.; Chinnapan, S.; Tat, N.C.; Abdullah, M.; et al. Review on Plant-Based Management in Combating Antimicrobial Resistance—Mechanistic Perspective. Front. Pharmacol. 2022, 13, 879495. [Google Scholar] [CrossRef] [PubMed]
- Tresch, M.; Mevissen, M.; Ayrle, H.; Melzig, M.; Roosje, P.; Walkenhorst, M. Medicinal Plants as Therapeutic Options for Topical Treatment in Canine Dermatology? A Systematic Review. BMC Vet. Res. 2019, 15, 174. [Google Scholar] [CrossRef]
- Petrovska, B.; Cekovska, S. Extracts from the History and Medical Properties of Garlic. Pharmacogn. Rev. 2010, 4, 106–110. [Google Scholar] [CrossRef]
- Shobana, S.; Vidhya, V.G.; Ramya, M. Antibacterial Activity of Garlic Varieties (Ophioscordon and Sativum) on Enteric Pathogens. Curr. Res. J. Biol. Sci. 2009, 1, 123–126. [Google Scholar]
- Rivlin, R.S. Recent Advances on the Nutritional Effects Associated with the Use of Garlic as a Supplement Historical Perspective on the Use of Garlic 1,2. J. Nutr. 2001, 131, 951s–954s. [Google Scholar] [CrossRef]
- Salem, W.M.; Shibat El-hamed, D.M.W.; Sayed, W.F.; Elamary, R.B. Alterations in Virulence and Antibiotic Resistant Genes of Multidrug-Resistant Salmonella Serovars Isolated from Poultry: The Bactericidal Efficacy of Allium sativum. Microb. Pathog. 2017, 108, 91–100. [Google Scholar] [CrossRef]
- Magryś, A.; Olender, A.; Tchórzewska, D. Antibacterial Properties of Allium sativum L. against the Most Emerging Multidrug-Resistant Bacteria and Its Synergy with Antibiotics. Arch. Microbiol. 2021, 203, 2257–2268. [Google Scholar] [CrossRef]
- Ross, Z.M.; O’Gara, E.A.; Hill, D.J.; Sleightholme, H.V.; Maslin, D.J. Antimicrobial Properties of Garlic Oil against Human Enteric Bacteria: Evaluation of Methodologies and Comparisons with Garlic Oil Sulfides and Garlic Powder. Appl. Environ. Microbiol. 2001, 67, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Zucca, P.; Orhan, I.E.; Azzini, E.; Adetunji, C.O.; Mohammed, S.A.; Banerjee, S.K.; Sharopov, F.; Rigano, D.; Sharifi-Rad, J.; et al. Allicin and Health: A Comprehensive Review. Trends Food Sci. Technol. 2019, 86, 502–516. [Google Scholar] [CrossRef]
- Choo, S.; Chin, V.K.; Wong, E.H.; Madhavan, P.; Tay, S.T.; Yong, P.V.C.; Chong, P.P. Review: Antimicrobial Properties of Allicin Used Alone or in Combination with Other Medications. Folia Microbiol. 2020, 65, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Chester Cavallito, B.J.; Hays Bailey, J. Allicin, the Antibacterial Principle of Allium sativum. I. Isolation, Physical Properties and Antibacterial Action. J. Am. Chem. 1941, 66, 45–46. [Google Scholar]
- Batiha, G.E.S.; Beshbishy, A.M.; Wasef, L.G.; Elewa, Y.H.A.; Al-Sagan, A.A.; El-Hack, M.E.A.; Taha, A.E.; Abd-Elhakim, Y.M.; Devkota, H.P. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients 2020, 12, 872. [Google Scholar] [CrossRef]
- Anwar, A.; Gould, E.; Tinson, R.; Groom, M.; Hamilton, C.J. Think Yellow and Keep Green—Role of Sulfanes from Garlic in Agriculture. Antioxidants 2017, 6, 3. [Google Scholar] [CrossRef]
- Satyal, P.; Craft, J.D.; Dosoky, N.S.; Setzer, W.N. The Chemical Compositions of the Volatile Oils of Garlic (Allium sativum) and Wild Garlic (Allium vineale). Foods 2017, 6, 63. [Google Scholar] [CrossRef]
- Hu, Q.; Yang, Q.; Yamato, O.; Yamasaki, M.; Maede, Y.; Yoshihara, T. Isolation and Identification of Organosulfur Compounds Oxidizing Canine Erythrocytes from Garlic (Allium sativum). J. Agric. Food Chem. 2002, 50, 1059–1062. [Google Scholar] [CrossRef]
- Cortinovis, C.; Caloni, F. Household Food Items Toxic to Dogs and Cats. Front. Vet. Sci. 2016, 3, 26. [Google Scholar] [CrossRef]
- Lans, C. Do Recent Research Studies Validate the Medicinal Plants Used in British Columbia, Canada for Pet Diseases and Wild Animals Taken into Temporary Care? J. Ethnopharmacol. 2019, 236, 366–392. [Google Scholar] [CrossRef]
- Yamato, O.; Tsuneyoshi, T.; Ushijima, M.; Jikihara, H.; Yabuki, A. Safety and Efficacy of Aged Garlic Extract in Dogs: Upregulation of the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Signaling Pathway and Nrf2-Regulated Phase II Antioxidant Enzymes. BMC Vet. Res. 2018, 14, 373. [Google Scholar] [CrossRef] [PubMed]
- Mellado-García, P.; Maisanaba, S.; Puerto, M.; Prieto, A.I.; Marcos, R.; Pichardo, S.; Cameán, A.M. In Vitro Toxicological Assessment of an Organosulfur Compound from Allium Extract: Cytotoxicity, Mutagenicity and Genotoxicity Studies. Food Chem. Toxicol. 2017, 99, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Cascajosa Lira, A.; Isabel Prieto, A.; Baños, A.; Guillamón, E.; Moyano, R.; Jos, A.; Cameán, A.M.; Jos Gallego, Á. Safety Assessment of Propyl-Propane-Thiosulfonate (PTSO): 90-Days Oral Subchronic Toxicity Study in Rats. Food Chem. Toxicol. 2020, 144, 111612. [Google Scholar] [CrossRef] [PubMed]
- Llana-Ruiz-Cabello, M.; Pichardo, S.; Maisanaba, S.; Puerto, M.; Prieto, A.I.; Gutiérrez-Praena, D.; Jos, A.; Cameán, A.M. In Vitro Toxicological Evaluation of Essential Oils and Their Main Compounds Used in Active Food Packaging: A Review. Food Chem. Toxicol. 2015, 81, 9–27. [Google Scholar] [CrossRef]
- Pastor-Belda, M.; Arroyo-Manzanares, N.; Yavir, K.; Abad, P.; Campillo, N.; Hernández-Córdoba, M.; Vinãs, P. A Rapid Dispersive Liquid-Liquid Microextraction of Antimicrobial Onion Organosulfur Compounds in Animal Feed Coupled to Gas Chromatography-Mass Spectrometry. Anal. Methods 2020, 12, 2668–2673. [Google Scholar] [CrossRef] [PubMed]
- Peinado, M.J.; Ruiz, R.; Echávarri, A.; Rubio, L.A. Garlic Derivative Propyl Propane Thiosulfonate Is Effective against Broiler Enteropathogens In Vivo. Poult. Sci. 2012, 91, 2148–2157. [Google Scholar] [CrossRef]
- Ruiz, R.; García, M.P.; Lara, A.; Rubio, L.A. Garlic Derivatives (PTS and PTS-O) Differently Affect the Ecology of Swine Faecal Microbiota. Vet. Microbiol. 2009, 144, 110. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, C.J.; Martínez-Miró, S.; Ariza, J.J.; Madrid, J.; Orengo, J.; Aguinaga, M.A.; Baños, A.; Hernández, F. Effect of Alliaceae Extract Supplementation on Performance and Intestinal Microbiota of Growing-Finishing Pig. Animals 2020, 10, 1557. [Google Scholar] [CrossRef]
- Sorlozano-Puerto, A.; Albertuz-Crespo, M.; Lopez-Machado, I.; Ariza-Romero, J.J.; Baños-Arjona, A.; Exposito-Ruiz, M.; Gutierrez-Fernandez, J. In Vitro Antibacterial Activity of Propyl-Propane-Thiosulfinate and Propyl-Propane-Thiosulfonate Derived from Allium Spp. Against Gram-Negative and Gram-Positive Multidrug-Resistant Bacteria Isolated from Human Samples. Biomed. Res. Int. 2018, 2018, 7861207. [Google Scholar] [CrossRef]
- Abreu-Salinas, F.; Díaz-Jiménez, D.; García-Meniño, I.; Lumbreras, P.; López-Beceiro, A.M.; Fidalgo, L.E.; Rodicio, M.R.; Mora, A.; Fernández, J. High Prevalence and Diversity of Cephalosporin-Resistant Enterobacteriaceae Including Extraintestinal Pathogenic E. coli Cc648 Lineage in Rural and Urban Dogs in Northwest Spain. Antibiotics 2020, 9, 468. [Google Scholar] [CrossRef]
- Ortiz-Díez, G.; Mengíbar, R.L.; Turrientes, M.C.; Artigao, M.R.B.; Gallifa, R.L.; Tello, A.M.; Pérez, C.F.; Santiago, T.A. Prevalence, Incidence and Risk Factors for Acquisition and Colonization of Extended-Spectrum Beta-Lactamase- and Carbapenemase-Producing Enterobacteriaceae from Dogs Attended at a Veterinary Hospital in Spain. Comp. Immunol. Microbiol. Infect. Dis. 2023, 92, 101922. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, M.P.; Lewis, J.S.; Bobenchick, A.M.; Campeau, S.; Cullen, S.K.; Galas, M.F.; Gold, H.; Humphries, R.M.; Kirn, T.J.; Limbago, B.; et al. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Standard M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Turnidge, J.; Paterson, D.L. Setting and Revising Antibacterial Susceptibility Breakpoints. Clin. Microbiol. Rev. 2007, 20, 391–408. [Google Scholar] [CrossRef] [PubMed]
- Alós, J.I. Antibiotic Resistance: A Global Crisis. Enferm. Infecc. Microbiol. Clin. 2015, 33, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Davies, J. Origins and Evolution of Antibiotic Resistance. Microbiologia 1996, 12, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Cowan, M.M. Plant Products as Antimicrobial Agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [PubMed]
- Guglielmi, P.; Pontecorvi, V.; Rotondi, G. Natural Compounds and Extracts as Novel Antimicrobial Agents. Expert Opin. Ther. Pat. 2020, 30, 949–962. [Google Scholar] [CrossRef] [PubMed]
- Bastaki, S.M.A.; Ojha, S.; Kalasz, H.; Adeghate, E. Chemical Constituents and Medicinal Properties of Allium Species. Mol. Cell Biochem. 2021, 476, 4301–4321. [Google Scholar] [CrossRef]
- Suleria, H.A.R.; Butt, M.S.; Anjum, F.M.; Saeed, F.; Khalid, N. Onion: Nature Protection Against Physiological Threats. Crit. Rev. Food Sci. Nutr. 2015, 55, 50–66. [Google Scholar] [CrossRef]
- Bhatwalkar, S.B.; Mondal, R.; Krishna, S.B.N.; Adam, J.K.; Govender, P.; Anupam, R. Antibacterial Properties of Organosulfur Compounds of Garlic (Allium sativum). Front. Microbiol. 2021, 12, 613077. [Google Scholar] [CrossRef]
- Xu, Z.; Qiu, Z.; Liu, Q.; Huang, Y.; Li, D.; Shen, X.; Fan, K.; Xi, J.; Gu, Y.; Tang, Y.; et al. Converting Organosulfur Compounds to Inorganic Polysulfides against Resistant Bacterial Infections. Nat. Commun. 2018, 9, 3713. [Google Scholar] [CrossRef]
- Rybap, M.J.; Mcgrath, B.J. Combination Antimicrobial Therapy for Bacterial Infections Guidelines for the Clinician. Drugs 1996, 52, 390–405. [Google Scholar]
- Lázár, V.; Snitser, O.; Barkan, D.; Kishony, R. Antibiotic Combinations Reduce Staphylococcus Aureus Clearance. Nature 2022, 610, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Gibson, J.S.; Morton, J.M.; Cobbold, R.N.; Sidjabat, H.E.; Filippich, L.J.; Trott, D.J. Multidrug-Resistant E. coli and Enterobacter Extraintestinal Infection in 37 Dogs. J. Vet. Intern. Med. 2008, 22, 844–850. [Google Scholar] [CrossRef] [PubMed]
- van Duijkeren, E.; Moleman, M.; Sloet van Oldruitenborgh-Oosterbaan, M.M.; Multem, J.; Troelstra, A.; Fluit, A.C.; van Wamel, W.J.B.; Houwers, D.J.; de Neeling, A.J.; Wagenaar, J.A. Methicillin-Resistant Staphylococcus Aureus in Horses and Horse Personnel: An Investigation of Several Outbreaks. Vet. Microbiol. 2010, 141, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Bannoehr, J.; Guardabassi, L. Staphylococcus pseudintermedius in the Dog: Taxonomy, Diagnostics, Ecology, Epidemiology and Pathogenicity. Vet. Dermatol. 2012, 23, 253.e52. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Sanz, E.; Torres, C.; Lozano, C.; Zarazaga, M. High Diversity of Staphylococcus Aureus and Staphylococcus pseudintermedius Lineages and Toxigenic Traits in Healthy Pet-Owning Household Members. Underestimating Normal Household Contact? Comp. Immunol. Microbiol. Infect. Dis. 2013, 36, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Lozano, C.; Rezusta, A.; Ferrer, I.; Pérez-Laguna, V.; Zarazaga, M.; Ruiz-Ripa, L.; Revillo, M.J.; Torres, C. Staphylococcus pseudintermedius Human Infection Cases in Spain: Dog-to-Human Transmission. Vector-Borne Zoonotic Dis. 2017, 17, 268–270. [Google Scholar] [CrossRef]
- Ribeiro, M.G.; de Morais, A.B.C.; Alves, A.C.; Bolaños, C.A.D.; de Paula, C.L.; Portilho, F.V.R.; de Nardi Júnior, G.; Lara, G.H.B.; de Souza Araújo Martins, L.; Moraes, L.S.; et al. Klebsiella-Induced Infections in Domestic Species: A Case-Series Study in 697 Animals (1997–2019). Braz. J. Microbiol. 2022, 53, 455–464. [Google Scholar] [CrossRef]
- Johnstone, T. A Clinical Approach to Multidrug-Resistant Urinary Tract Infection and Subclinical Bacteriuria in Dogs and Cats. N. Z. Vet. J. 2020, 68, 69–83. [Google Scholar] [CrossRef]
- Balcão, V.M.; Belline, B.G.; Silva, E.C.; Almeida, P.F.F.B.; Baldo, D.; Amorim, L.R.P.; Oliveira Júnior, J.M.; Vila, M.M.D.C.; Del Fiol, F.S. Isolation and Molecular Characterization of Two Novel Lytic Bacteriophages for the Biocontrol of Escherichia coli in Uterine Infections: In Vitro and Ex Vivo Preliminary Studies in Veterinary Medicine. Pharmaceutics 2022, 14, 2344. [Google Scholar] [CrossRef]
- Meroni, G.; Cardin, E.; Rendina, C.; Millar, V.R.H.; Filipe, J.F.S.; Martino, P.A. In Vitro Efficacy of Essential Oils from Melaleuca Alternifolia and Rosmarinus Officinalis, Manuka Honey-Based Gel, and Propolis as Antibacterial Agents against Canine Staphylococcus pseudintermedius Strains. Antibiotics 2020, 9, 344. [Google Scholar] [CrossRef] [PubMed]
- Moodley, A.; Damborg, P.; Nielsen, S.S. Antimicrobial Resistance in Methicillin Susceptible and Methicillin Resistant Staphylococcus pseudintermedius of Canine Origin: Literature Review from 1980 to 2013. Vet. Microbiol. 2014, 171, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Larsuprom, L.; Rungroj, N.; Lekcharoensuk, C.; Pruksakorn, C.; Kongkiatpaiboon, S.; Chen, C.; Sukatta, U. In Vitro Antibacterial Activity of Mangosteen (Garcinia mangostana Linn.) Crude Extract against Staphylococcus pseudintermedius Isolates from Canine Pyoderma. Vet. Dermatol. 2019, 30, 487.e145. [Google Scholar] [CrossRef] [PubMed]
- Moulari, B.; Pellequer, Y.; Chaumont, J.P.; Guillaume, Y.C.; Millet, J. In Vitro Antimicrobial Activity of the Leaf Extract of Harungana Madagascariensis Lam. Ex Poir. (Hypericaceae) against Strains Causing Otitis Externa in Dogs and Cats. Acta Vet. Hung 2007, 55, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, J.G.; McAleer, J.P.; Saralkar, P.; Geldenhuys, W.J.; Long, T.E. Allicin-Inspired Pyridyl Disulfides as Antimicrobial Agents for Multidrug-Resistant Staphylococcus Aureus. Eur. J. Med. Chem. 2018, 143, 1185–1195. [Google Scholar] [CrossRef]
- Kawakami, T.; Shibata, S.; Murayama, N.; Nagata, M.; Nishifuji, K.; Iwasaki, T.; Fukata, T. Antimicrobial Susceptibility and Methicillin Resistance in Staphylococcus pseudintermedius and Staphylococcus Schleiferi Subsp. Coagulans Isolated from Dogs with Pyoderma in Japan. J. Vet. Med. Sci. 2010, 72, 1615–1619. [Google Scholar] [CrossRef] [PubMed]
- Hauschild, T.; Wójcik, A. Species Distribution and Properties of Staphylococci from Canine Dermatitis. Res. Vet. Sci. 2007, 82, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Frank, L.A.; Loeffler, A. Meticillin-Resistant Staphylococcus pseudintermedius: Clinical Challenge and Treatment Options. Vet. Dermatol. 2012, 23, 283.e56. [Google Scholar] [CrossRef]
- Penna, B.; Varges, R.; Medeiros, L.; Martins, G.M.; Martins, R.R.; Lilenbaum, W. Species Distribution and Antimicrobial Susceptibility of Staphylococci Isolated from Canine Otitis Externa. Vet. Dermatol. 2010, 21, 292–296. [Google Scholar] [CrossRef]
- Hanselman, B.A.; Kruth, S.A.; Rousseau, J.; Weese, J.S. Article Coagulase Positive Staphylococcal Colonization of Humans and Their Household Pets. Can. Vet. J. 2009, 50, 954–958. [Google Scholar]
- Talan, D.A.; Staatz, D.; Staatz, A.; Goldstein, E.J.C.; Singer, K.; Overturf5, G.D.; Alden, R.M. Staphylococcus Intermedius in Canine Gingiva and Canine-Inflicted Human Wound Infections: Laboratory Characterization of a Newly Recognized Zoonotic Pathogen. J. Clin. Microbiol. 1989, 27, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Mahoudeau, I.; Delabranche, X.; Prevost, G.; Monteil, H.; Piemont, Y. Frequency of Isolation of Staphylococcus Intermedius from Humans. J. Clin. Microbiol. 1997, 35, 2153–2154. [Google Scholar] [CrossRef] [PubMed]
- Goodacre, R.; Harvey, R.; Howell, S.; Greenham, L.; Noble, W. An Epidemiological Study of Staphylococcus Intermedius Strains Isolated from Dogs, Their Owners and Veterinary Surgeons. J. Anal. Appl. Pyrolysis 1997, 44, 49–64. [Google Scholar] [CrossRef]
- Ohara-Nemoto, Y.; Haraga, H.; Kimura, S.; Nemoto, T.K. Occurrence of Staphylococci in the Oral Cavities of Healthy Adults and Nasal-Oral Trafficking of the Bacteria. J. Med. Microbiol. 2008, 57, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Paul, N.C.; Moodley, A.; Ghibaudo, G.; Guardabassi, L. Carriage of Methicillin-Resistant Staphylococcus pseudintermedius in Small Animal Veterinarians: Indirect Evidence of Zoonotic Transmission. Zoonoses Public Health 2011, 58, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Pomba, C.; Rantala, M.; Greko, C.; Baptiste, K.E.; Catry, B.; van Duijkeren, E.; Mateus, A.; Moreno, M.A.; Pyörälä, S.; Ružauskas, M.; et al. Public Health Risk of Antimicrobial Resistance Transfer from Companion Animals. J. Antimicrob. Chemother. 2017, 72, 957–968. [Google Scholar] [CrossRef] [PubMed]
- Loeffler, A.; Lloyd, D.H. Companion Animals: A Reservoir for Methicillin-Resistant Staphylococcus Aureus in the Community? Epidemiol. Infect. 2010, 138, 595–605. [Google Scholar] [CrossRef]
- Ventrella, G.; Moodley, A.; Grandolfo, E.; Parisi, A.; Corrente, M.; Buonavoglia, D.; Guardabassi, L. Frequency, Antimicrobial Susceptibility and Clonal Distribution of Methicillin-Resistant Staphylococcus pseudintermedius in Canine Clinical Samples Submitted to a Veterinary Diagnostic Laboratory in Italy: A 3-Year Retrospective Investigation. Vet. Microbiol. 2017, 211, 103–106. [Google Scholar] [CrossRef]
- Muniz, I.M.; Penna, B.; Lilenbaum, W. Treating Animal Bites: Susceptibility of Staphylococci from Oral Mucosa of Cats. Zoonoses Public Health 2013, 60, 504–509. [Google Scholar] [CrossRef]
- Kizerwetter-Świda, M.; Chrobak-Chmiel, D.; Rzewuska, M.; Binek, M. Resistance of Canine Methicillin-Resistant Staphylococcus pseudintermedius Strains to Pradofloxacin. J. Vet. Diag. Investig. 2016, 28, 514–518. [Google Scholar] [CrossRef]
- Ruscher, C.; Lübke-Becker, A.; Wleklinski, C.G.; Şoba, A.; Wieler, L.H.; Walther, B. Prevalence of Methicillin-Resistant Staphylococcus pseudintermedius Isolated from Clinical Samples of Companion Animals and Equidaes. Vet. Microbiol. 2009, 136, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, M.S.; Tolmasky, M.E. Aminoglycoside Modifying Enzymes. Drug Resist. Updates 2010, 13, 151–171. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, O.W. Aminoglycoside Induced Ototoxicity. Toxicology 2008, 249, 91–96. [Google Scholar] [CrossRef]
- Oliveira, J.F.P.; Silva, C.A.; Barbieri, C.D.; Oliveira, G.M.; Zanetta, D.M.T.; Burdmann, E.A. Prevalence and Risk Factors for Aminoglycoside Nephrotoxicity in Intensive Care Units. Antimicrob. Agents Chemother. 2009, 53, 2887–2891. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Salgado, C.; López-Hernández, F.J.; López-Novoa, J.M. Glomerular Nephrotoxicity of Aminoglycosides. Toxicol. Appl. Pharmacol. 2007, 223, 86–98. [Google Scholar] [CrossRef]
- Perreten, V.; Kadlec, K.; Schwarz, S.; Andersson, U.G.; Finn, M.; Greko, C.; Moodley, A.; Kania, S.A.; Frank, L.A.; Bemis, D.A.; et al. Clonal Spread of Methicillin-Resistant Staphylococcus pseudintermedius in Europe and North America: An International Multicentre Study. J. Antimicrob. Chemother. 2010, 65, 1145–1154. [Google Scholar] [CrossRef]
- Papich, M.G. Antibiotic Treatment of Resistant Infections in Small Animals. Vet. Clin. N. Am. Small Anim. Pract. 2013, 43, 1091–1107. [Google Scholar] [CrossRef]
- Cain, C.L. Antimicrobial Resistance in Staphylococci in Small Animals. Vet. Clin. N. Am. Small Anim. Pract. 2013, 43, 19–40. [Google Scholar] [CrossRef]
- Kern, A.; Perreten, V. Clinical and Molecular Features of Methicillin-Resistant, Coagulase-Negative Staphylococci of Pets and Horses. J. Antimicrob. Chemother. 2013, 68, 1256–1266. [Google Scholar] [CrossRef]
- Kadlec, K.; van Duijkeren, E.; Wagenaar, J.A.; Schwarz, S. Molecular Basis of Rifampicin Resistance in Methicillin-Resistant Staphylococcus pseudintermedius Isolates from Dogs. J. Antimicrob. Chemother. 2011, 66, 1236–1242. [Google Scholar] [CrossRef]
- Lim, Y.J.; Hyun, J.E.; Hwang, C.Y. Identification of Fusidic Acid Resistance in Clinical Isolates of Staphylococcus pseudintermedius from Dogs in Korea. Vet. Dermatol. 2020, 31, 267.e62. [Google Scholar] [CrossRef] [PubMed]
- Frosini, S.M.; Bond, R.; Rantala, M.; Grönthal, T.; Rankin, S.C.; O’Shea, K.; Timofte, D.; Schmidt, V.; Lindsay, J.; Loeffler, A. Genetic Resistance Determinants to Fusidic Acid and Chlorhexidine in Variably Susceptible Staphylococci from Dogs. BMC Microbiol. 2019, 19, 81. [Google Scholar] [CrossRef]
- Maaland, M.; Guardabassi, L. In Vitro Antimicrobial Activity of Nitrofurantoin against Escherichia coli and Staphylococcus pseudintermedius Isolated from Dogs and Cats. Vet. Microbiol. 2011, 151, 396–399. [Google Scholar] [CrossRef]
- Takashima, G.K.; Day, M.J. Setting the One Health Agenda and the Human-Companion Animal Bond. Int. J. Environ. Res. Public Health 2014, 11, 11110–11120. [Google Scholar] [CrossRef] [PubMed]
- Bush, K. Past and Present Perspectives on β-Lactamases. Antimicrob. Agents Chemother. 2018, 62, e01076-18. [Google Scholar] [CrossRef]
- Hong, J.S.; Song, W.; Park, H.M.; Oh, J.Y.; Chae, J.C.; Shin, S.; Jeong, S.H. Clonal Spread of Extended-Spectrum Cephalosporin-Resistant Enterobacteriaceae between Companion Animals and Humans in South Korea. Front. Microbiol. 2019, 10, 1371. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, Z.; Zhang, Y.; Zhang, Z.; Lei, L.; Xia, Z. Increasing Prevalence of ESBL-Producing Multidrug Resistance Escherichia coli From Diseased Pets in Beijing, China From 2012 to 2017. Front. Microbiol. 2019, 10, 2852. [Google Scholar] [CrossRef]
- Suay-García, B.; Galán, F.; Rodríguez-Iglesias, M.A.; Pérez-Gracia, M.T. Detection and Characterization of Extended-Spectrum Beta-Lactamases-Producing Escherichia coli in Animals. Vector-Borne Zoonotic Dis. 2019, 19, 115–120. [Google Scholar] [CrossRef]
- Shimizu, T.; Harada, K.; Tsuyuki, Y.; Kimura, Y.; Miyamoto, T.; Hatoya, S.; Hikasa, Y. In Vitro Efficacy of 16 Antimicrobial Drugs against a Large Collection of β-Lactamase-Producing Isolates of Extraintestinal Pathogenic Escherichia coli from Dogs and Cats. J. Med. Microbiol. 2017, 66, 1085–1091. [Google Scholar] [CrossRef]
- Dupouy, V.; Abdelli, M.; Moyano, G.; Arpaillange, N.; Bibbal, D.; Cadiergues, M.C.; Lopez-Pulin, D.; Sayah-Jeanne, S.; De Gunzburg, J.; Saint-Lu, N.; et al. Prevalence of Beta-Lactam and Quinolone/Fluoroquinolone Resistance in Enterobacteriaceae from Dogs in France and Spain—Characterization of ESBL/PAmpC Isolates, Genes, and Conjugative Plasmids. Front. Vet. Sci. 2019, 6, 279. [Google Scholar] [CrossRef]
- Ortega-Paredes, D.; Haro, M.; Leoro-Garzón, P.; Barba, P.; Loaiza, K.; Mora, F.; Fors, M.; Vinueza-Burgos, C.; Fernández-Moreira, E. Multidrug-Resistant Escherichia coli Isolated from Canine Faeces in a Public Park in Quito, Ecuador. J. Glob. Antimicrob. Resist. 2019, 18, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Leite-Martins, L.R.; Mahú, M.I.M.; Costa, A.L.; Mendes, Â.; Lopes, E.; Mendonça, D.M.V.; Niza-Ribeiro, J.J.R.; de Matos, A.J.F.; da Costa, P.M. Prevalence of Antimicrobial Resistance in Enteric Escherichia coli from Domestic Pets and Assessment of Associated Risk Markers Using a Generalized Linear Mixed Model. Prev. Vet. Med. 2014, 117, 28–39. [Google Scholar] [CrossRef]
- Liakopoulos, A.; Betts, J.; La Ragione, R.; Van Essen-Zandbergen, A.; Ceccarelli, D.; Petinaki, E.; Koutinas, C.K.; Mevius, D.J. Occurrence and Characterization of Extended-Spectrum Cephalosporin-Resistant Enterobacteriaceae in Healthy Household Dogs in Greece. J. Med. Microbiol. 2018, 67, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Pepin-Puget, L.; El Garch, F.; Bertrand, X.; Valot, B.; Hocquet, D. Genome Analysis of Enterobacteriaceae with Non-Wild Type Susceptibility to Third-Generation Cephalosporins Recovered from Diseased Dogs and Cats in Europe. Vet. Microbiol. 2020, 242, 108601. [Google Scholar] [CrossRef] [PubMed]
- Wedley, A.L.; Dawson, S.; Maddox, T.W.; Coyne, K.P.; Pinchbeck, G.L.; Clegg, P.; Nuttall, T.; Kirchner, M.; Williams, N.J. Carriage of Antimicrobial Resistant Escherichia coli in Dogs: Prevalence, Associated Risk Factors and Molecular Characteristics. Vet. Microbiol. 2017, 199, 23–30. [Google Scholar] [CrossRef]
- De Briyne, N.; Atkinson, J.; Borriello, S.P.; Pokludová, L. Antibiotics Used Most Commonly to Treat Animals in Europe. Vet. Rec. 2014, 175, 325. [Google Scholar] [CrossRef]
- Petkov, V. Plants with Hypotensive, Antiatheromatous and Coronarodilatating Action. Am. J. Chin. Med. 1979, 7, 197–236. [Google Scholar] [CrossRef]
n (N = 30) | % | |
---|---|---|
PTS | 13 | 43.3 |
PTSO | 13 | 43.3 |
Erythromycin | 27 | 90.0 |
Ibafloxacin | 25 | 83.3 |
Difloxacin | 25 | 83.3 |
Enrofloxacin | 25 | 83.3 |
Orbifloxacin | 25 | 83.3 |
Clindamycin | 24 | 80.0 |
Sulfamethoxazole Trimethoprim | 24 | 80.0 |
Streptomycin Trimethoprim (TSH) | 24 | 80.0 |
Spiramycin Trimethoprim (TSS) | 24 | 80.0 |
Lincomycin | 23 | 76.7 |
Marbofloxacin | 23 | 76.7 |
Amoxicillin-clavulanic acid | 17 | 56.7 |
Gentamicin | 17 | 56.7 |
Pradofloxacin | 15 | 50 |
Tetracycline | 14 | 46.7 |
Doxycycline | 14 | 46.7 |
Fusidic acid | 13 | 43.3 |
Neomycin | 11 | 36.7 |
Kanamycin | 10 | 33.3 |
Rifampicin | 9 | 30.0 |
Tobramycin | 6 | 20.0 |
Chloramphenicol | 3 | 10.0 |
Nitrofurantoin | 0 | 0.0 |
PTS and PTSO | ||||
---|---|---|---|---|
Sensitive | Resistant | p-Value | ||
Amoxicillin-clavulanic acid | Sensitive | 23.3 | 20.0 | 0.454 |
Resistant | 33.3 | 23.3 | ||
Gentamicin | Sensitive | 30.0 | 13.3 | 0.388 |
Resistant | 26.7 | 30.0 | ||
Neomycin | Sensitive | 40.0 | 23.3 | 0.774 |
Resistant | 16.7 | 20.0 | ||
Kanamycin | Sensitive | 40.0 | 26.7 | 0.581 |
Resistant | 16.7 | 16.7 | ||
Tobramycin | Sensitive | 46.7 | 33.3 | 0.092 |
Resistant | 10.0 | 10.0 | ||
Erythromycin | Sensitive | 6.7 | 3.3 | 0.001 |
Resistant | 50.0 | 40.0 | ||
Clindamycin | Sensitive | 16.7 | 3.3 | 0.003 |
Resistant | 40.0 | 40.0 | ||
Lincomycin | Sensitive | 16.7 | 6.7 | 0.130 |
Resistant | 40.0 | 36.7 | ||
Ibafloxacin | Sensitive | 6.7 | 10.0 | 0.008 |
Resistant | 50.0 | 33.3 | ||
Difloxacin | Sensitive | 6.7 | 10.0 | 0.008 |
Resistant | 50.0 | 33.3 | ||
Enrofloxacin | Sensitive | 6.7 | 10.0 | 0.008 |
Resistant | 50.0 | 33.3 | ||
Marbofloxacin | Sensitive | 13.3 | 10.0 | 0.021 |
Resistant | 43.3 | 33.3 | ||
Pradofloxacin | Sensitive | 36.7 | 13.3 | 0.754 |
Resistant | 20.0 | 30.0 | ||
Orbifloxacin | Sensitive | 6.7 | 10.0 | 0.008 |
Resistant | 50.0 | 33.3 | ||
Tetracycline | Sensitive | 33.3 | 20.0 | >0.999 |
Resistant | 23.3 | 23.3 | ||
Doxycycline | Sensitive | 33.3 | 20.0 | >0.999 |
Resistant | 23.3 | 23.3 | ||
Chloramphenicol | Sensitive | 50.0 | 40.0 | 0.013 |
Resistant | 6.7 | 3.3 | ||
Fusidic acid | Sensitive | 33.3 | 23.3 | >0.999 |
Resistant | 23.3 | 20 | ||
Sulfamethoxazole/Trimethoprim | Sensitive | 16.7 | 3.3 | 0.003 |
Resistant | 40.0 | 40.0 | ||
Nitrofurantoin | Sensitive | 56.7 | 43.3 | - |
Resistant | 0.0 | 0.0 | ||
Rifampicin | Sensitive | 43.3 | 26.7 | 0.388 |
Resistant | 13.3 | 16.7 | ||
Streptomycin/Trimethoprim | Sensitive | 16.7 | 3.3 | 0.003 |
Resistant | 40.0 | 40.0 | ||
Spiramycin/Trimethoprim | Sensitive | 16.7 | 3.3 | 0.003 |
Resistant | 40.0 | 40.0 |
Enterobacteriaceae | n (N = 26) | % |
---|---|---|
PTS | 12 | 46.2 |
PTSO | 12 | 46.2 |
Tetracycline | 25 | 96.2 |
Doxycycline | 25 | 96.2 |
Ibafloxacin | 23 | 88.5 |
Difloxacin | 23 | 88.5 |
Enrofloxacin | 22 | 84.6 |
Marbofloxacin | 22 | 84.6 |
Orbifloxacin | 22 | 84.6 |
Pradofloxacin | 20 | 76.9 |
Colistin | 17 | 65.4 |
Spiramycin/Trimethoprim | 15 | 57.7 |
Gentamicin | 13 | 50.0 |
Sulfamethoxazole/Trimethoprim | 13 | 50.0 |
Streptomycin/Trimethoprim | 13 | 50.0 |
Amoxicillin clavulanic acid | 11 | 42.3 |
Nitrofurantoin | 11 | 42.3 |
Chloramphenicol | 10 | 38.5 |
Tobramycin | 7 | 26.9 |
Neomycin | 3 | 11.5 |
Kanamycin | 3 | 11.5 |
PTS and PTSO | ||||
---|---|---|---|---|
Sensitive | Resistant | p-Value | ||
Amoxicillin-clavulanic acid | Sensitive | 23.1 | 34.6 | >0.009 |
Resistant | 30.8 | 11.5 | ||
Gentamicin | Sensitive | 26.9 | 23.1 | >0.009 |
Resistant | 26.9 | 23.1 | ||
Neomycin | Sensitive | 46.2 | 42.3 | 0.022 |
Resistant | 7.7 | 3.8 | ||
Kanamycin | Sensitive | 46.2 | 42.3 | 0.022 |
Resistant | 7.7 | 3.8 | ||
Tobramycin | Sensitive | 30.8 | 42.3 | 0.332 |
Resistant | 23.1 | 3.8 | ||
Ibafloxacin | Sensitive | 7.7 | 3.8 | 0.003 |
Resistant | 46.2 | 42.3 | ||
Difloxacin | Sensitive | 7.7 | 3.8 | 0.003 |
Resistant | 46.2 | 42.3 | ||
Enrofloxacin | Sensitive | 7.7 | 7.7 | 0.013 |
Resistant | 46.2 | 38.5 | ||
Marbofloxacin | Sensitive | 7.7 | 7.7 | 0.013 |
Resistant | 46.2 | 38.5 | ||
Pradofloxacin | Sensitive | 11.5 | 11.5 | 0.057 |
Resistant | 42.3 | 34.6 | ||
Orbifloxacin | Sensitive | 7.7 | 7.7 | 0.013 |
Resistant | 46.2 | 38.5 | ||
Tetracycline | Sensitive | 3.8 | 0.0 | <0.001 |
Resistant | 50.0 | 46.2 | ||
Doxycycline | Sensitive | 3.8 | 0.0 | <0.001 |
Resistant | 50 | 46.2 | ||
Chloramphenicol | Sensitive | 30.8 | 30.8 | 0.791 |
Resistant | 23.1 | 15.4 | ||
Sulfamethoxazole/Trimethoprim | Sensitive | 30.8 | 19.2 | >0.009 |
Resistant | 23.1 | 26.9 | ||
Colistin | Sensitive | 19.2 | 15.4 | 0.267 |
Resistant | 34.6 | 30.8 | ||
Nitrofurantoin | Sensitive | 30.8 | 26.9 | >0.009 |
Resistant | 23.1 | 19.2 | ||
Streptomycin/Trimethoprim | Sensitive | 30.8 | 19.2 | >0.009 |
Resistant | 23.1 | 26.9 | ||
Spiramycin/Trimethoprim | Sensitive | 26.9 | 15.4 | 0.549 |
Resistant | 26.9 | 30.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maroto-Tello, A.; Ayllón, T.; Aguinaga-Casañas, M.A.; Ariza, J.J.; Penelo, S.; Baños, A.; Ortiz-Díez, G. In Vitro Activity of Allium cepa Organosulfur Derivatives against Canine Multidrug-Resistant Strains of Staphylococcus spp. and Enterobacteriaceae. Vet. Sci. 2024, 11, 26. https://doi.org/10.3390/vetsci11010026
Maroto-Tello A, Ayllón T, Aguinaga-Casañas MA, Ariza JJ, Penelo S, Baños A, Ortiz-Díez G. In Vitro Activity of Allium cepa Organosulfur Derivatives against Canine Multidrug-Resistant Strains of Staphylococcus spp. and Enterobacteriaceae. Veterinary Sciences. 2024; 11(1):26. https://doi.org/10.3390/vetsci11010026
Chicago/Turabian StyleMaroto-Tello, Alba, Tania Ayllón, María Arántzazu Aguinaga-Casañas, Juan José Ariza, Silvia Penelo, Alberto Baños, and Gustavo Ortiz-Díez. 2024. "In Vitro Activity of Allium cepa Organosulfur Derivatives against Canine Multidrug-Resistant Strains of Staphylococcus spp. and Enterobacteriaceae" Veterinary Sciences 11, no. 1: 26. https://doi.org/10.3390/vetsci11010026
APA StyleMaroto-Tello, A., Ayllón, T., Aguinaga-Casañas, M. A., Ariza, J. J., Penelo, S., Baños, A., & Ortiz-Díez, G. (2024). In Vitro Activity of Allium cepa Organosulfur Derivatives against Canine Multidrug-Resistant Strains of Staphylococcus spp. and Enterobacteriaceae. Veterinary Sciences, 11(1), 26. https://doi.org/10.3390/vetsci11010026