Laminaria japonica Polysaccharides Improves the Growth Performance and Faecal Digestive Enzyme Activity of Weaned Piglets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Sample Collection
2.3. Growth Performance
2.4. Determination of Enzymatic Activity in Faeces
2.5. Determination of Serum Amino Acid Content and Blood Ammonia
2.6. Determination of Serum Biochemical Indicators
2.7. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Faecal Enzyme Activity
3.3. Amino Acid Content in Serum
3.4. Serum Biochemical Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heo, J.M.; Opapeju, F.O.; Pluske, J.R.; Kim, J.C.; Hampson, D.J.; Nyachoti, C.M. Gastrointestinal health and function in weaned pigs: A review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. J. Anim. Physiol. Anim. Nutr. 2013, 97, 207–237. [Google Scholar] [CrossRef] [PubMed]
- Pié, S.; Lallès, J.P.; Blazy, F.; Laffitte, J.; Sève, B.; Oswald, I.P. Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. J. Nutr. 2004, 134, 641–647. [Google Scholar] [PubMed]
- Lin, Z.; Zhang, Y.; Li, F.; Tan, X.; Luo, P.; Liu, H. Preventive Effects of Three Polysaccharides on the Oxidative Stress Induced by Acrylamide in a Saccharomyces cerevisiae Model. Mar. Drugs 2020, 18, 395. [Google Scholar] [CrossRef] [PubMed]
- Park, H.Y.; Han, M.H.; Kim, G.Y.; Kim, N.D.; Nam, T.J.; Choi, Y.H. Inhibitory effects of glycoprotein isolated from Laminaria japonica on lipopolysaccharide-induced pro-inflammatory mediators in BV2 microglial cells. J. Food Sci. 2011, 76, T156–T162. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Yang, J.; Wang, Z.; Liu, R.; Xie, R. Polysaccharides from Laminaria japonica show hypoglycemic and hypolipidemic activities in mice with experimentally induced diabetes. Exp. Biol. Med. 2014, 239, 1663–1670. [Google Scholar] [CrossRef] [PubMed]
- Gazha, A.K.; Zaporozhets, T.S.; Kuznetsova, T.A.; Zvyaguintseva, T.N.; Besednova, N.N. Effect of Sulfated Polysaccharides from Brown Algae on Apoptosis of Human Peripheral Blood Lymphocytes. Bull. Exp. Biol. Med. 2015, 159, 617–619. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Cao, Y.; Meng, Y.; Luo, H.; Gao, X.; Shan, F. Maturation of mouse bone marrow dendritic cells (BMDCs) induced by Laminaria japonica polysaccharides (LJP). Int. J. Biol. Macromol. 2014, 69, 388–392. [Google Scholar] [CrossRef] [PubMed]
- Ai, C.; Jiang, P.; Liu, Y.; Duan, M.; Sun, X.; Luo, T.; Jiang, G.; Song, S. The specific use of alginate from Laminaria japonica by Bacteroides species determined its modulation of the Bacteroides community. Food Funct. 2019, 10, 4304–4314. [Google Scholar] [CrossRef]
- Lynch, M.B.; Sweeney, T.; Callan, J.J.; O’Sullivan, J.T.; O’Doherty, J.V. The effect of dietary Laminaria derived laminarin and fucoidan on intestinal microflora and volatile fatty acid concentration in pigs. Livest. Sci. 2010, 133, 157–160. [Google Scholar] [CrossRef]
- Murphy, P.; Dal Bello, F.; O’Doherty, J.; Arendt, E.K.; Sweeney, T.; Coffey, A. Analysis of bacterial community shifts in the gastrointestinal tract of pigs fed diets supplemented with β-glucan from Laminaria digitata, Laminaria hyperborea and Saccharomyces cerevisiae. Animal 2013, 7, 1079–1087. [Google Scholar] [CrossRef]
- O’Shea, C.J.; O’Doherty, J.V.; Callanan, J.J.; Doyle, D.; Thornton, K.; Sweeney, T. The effect of algal polysaccharides laminarin and fucoidan on colonic pathology, cytokine gene expression and Enterobacteriaceae in a dextran sodium sulfate-challenged porcine model. J. Nutr. Sci. 2016, 5, e15. [Google Scholar] [CrossRef] [PubMed]
- Leonard, S.G.; Sweeney, T.; Bahar, B.; O’Doherty, J.V. Effect of maternal seaweed extract supplementation on suckling piglet growth, humoral immunity, selected microflora, and immune response after an ex vivo lipopolysaccharide challenge1. J. Anim. Sci. 2012, 90, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.W.; Jiang, Y.; Chen, W.N.; Liu, Q.B.; Cheng, X.; Zhang, Y.H.; Yuan, D.; Jiang, X.R. Dietary Laminaria japonica Polysaccharide Regulates Systemic Defence Property of Weaned Piglets Improving Growth Performance under High Temperature Condition. Indian J. Anim. Res. 2021, 55, 827–830. [Google Scholar] [CrossRef]
- Bach Knudsen, K.E.; Lærke, H.N.; Steenfeldt, S.; Hedemann, M.S.; Jørgensen, H. In vivo methods to study the digestion of starch in pigs and poultry. Anim. Feed Sci. Technol. 2006, 130, 114–135. [Google Scholar] [CrossRef]
- Gray, G.M. Starch digestion and absorption in nonruminants. Proc. J. Nutr. 1992, 122, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Kidder, D.E.; Manners, M.J. The level and distribution of carbohydrases in the small intestine mucosa of pigs from 3 weeks of age to maturity. Br. J. Nutr. 1980, 43, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Moran, E.T. Digestion and Absorption of Carbohydrates in Fowl and Events through Perinatal Development. J. Nutr. 1985, 115, 665–674. [Google Scholar] [CrossRef]
- Yin, C.G.; Comi, M.; Cai, L.; Chen, W.N.; Perricone, V.; Xiao, J.F.; Agazzi, A.; Li, X.L.; Jiang, X.R. Hydrolysed yeast from Kluyveromyces fragilis improves plasma antioxidant efficiency and immunoglobulin concentration, and faecal microbiota of weaned piglets. Ital. J. Anim. Sci. 2023, 22, 578–588. [Google Scholar] [CrossRef]
- Jiang, Y.Q. Causes and preventive measures of diarrhea in early weaned piglets. Chin. Livest. Poult. Breed. 2019, 15, 98–99. (In Chinese) [Google Scholar]
- Wu, S. Effect of dietary Astragalus membranaceus polysaccharide on the growth performance and immunity of juvenile broilers. Poult. Sci. 2018, 97, 3489–3493. [Google Scholar] [CrossRef]
- Long, L.N.; Kang, B.J.; Jiang, Q.; Chen, J.S. Effects of dietary Lycium barbarum polysaccharides on growth performance, digestive enzyme activities, antioxidant status, and immunity of broiler chickens. Poult. Sci. 2020, 99, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Che, J.; Ye, S.; Liu, B.; Deng, Y.; Chen, Q.; Ge, C.; Liu, G.; Wang, J. Effects of Brevibacillus brevis FJAT-1501-BPA on growth performance, faecal microflora, faecal enzyme activities and blood parameters of weaned piglets. Antonie Van Leeuwenhoek 2016, 109, 1545–1553. [Google Scholar] [CrossRef] [PubMed]
- Walsh, A.M.; Sweeney, T.; O’Shea, C.J.; Doyle, D.N.; O’Doherty, J.V. Effect of supplementing different ratios of laminarin and fucoidan in the diet of the weanling piglet on performance, nutrient digestibility, and fecal scoring. J. Anim. Sci. 2012, 90, 215–217. [Google Scholar] [CrossRef] [PubMed]
- Heim, G.; Walsh, A.M.; Sweeney, T.; Doyle, D.N.; O’Shea, C.J.; Ryan, M.T.; O’Doherty, J.V. Effect of seaweed-derived laminarin and fucoidan and zinc oxide on gut morphology, nutrient transporters, nutrient digestibility, growth performance and selected microbial populations in weaned pigs. Br. J. Nutr. 2014, 111, 1577–1585. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, P.; Figat, S.; O’Doherty, J.V. The effect of dietary laminarin and fucoidan in the diet of the weanling piglet on performance, selected faecal microbial populations and volatile fatty acid concentrations. Animal 2010, 4, 579–585. [Google Scholar] [CrossRef]
- Yang, H.; Xiong, X.; Wang, X.; Tan, B.; Li, T.; Yin, Y. Effects of Weaning on Intestinal Upper Villus Epithelial Cells of Piglets. PLoS ONE 2016, 11, e0150216. [Google Scholar] [CrossRef]
- Gao, X.; Yu, B.; Yu, J.; Mao, X.; Huang, Z.; Luo, Y.; Luo, J.; Zheng, P.; He, J.; Chen, D. Influences of dietary starch structure on intestinal morphology, barrier functions, and epithelium apoptosis in weaned pigs. Food Funct. 2020, 11, 4446–4455. [Google Scholar] [CrossRef]
- Yin, F.; Yin, Y.; Zhang, Z.; Xie, M.; Huang, J.; Huang, R.; Li, T. Digestion rate of dietary starch affects the systemic circulation of lipid profiles and lipid metabolism-related gene expression in weaned pigs. Br. J. Nutr. 2011, 106, 369–377. [Google Scholar] [CrossRef]
- Sasaki, T.; Yasui, T.; Matsuki, J. Effect of Amylose Content on Gelatinization, Retrogradation, and Pasting Properties of Starches from Waxy and Nonwaxy Wheat and Their F1 Seeds. Cereal Chem. 2000, 77, 58–63. [Google Scholar] [CrossRef]
- Siddhuraju, P.; Becker, K. Nutritional and antinutritional composition, in vitro amino acid availability, starch digestibility and predicted glycemic index of differentially processed mucuna beans (Mucuna pruriens var. utilis): An under-utilised legume. Food Chem. 2005, 91, 275–286. [Google Scholar] [CrossRef]
- Siddhuraju, P.; Becker, K.; Makkar, H.P. Studies on the nutritional composition and antinutritional factors of three different germplasm seed materials of an under-utilized tropical legume, Mucuna pruriens var. utilis. J. Agric. Food Chem. 2000, 48, 6048–6060. [Google Scholar] [CrossRef] [PubMed]
- Owens, F.N.; Zinn, R.A.; Kim, Y.K. Limits to starch digestion in the ruminant small intestine. J. Anim. Sci. 1986, 63, 1634–1648. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.; Zhang, Z.; Huang, J.; Yin, Y. Digestion rate of dietary starch affects systemic circulation of amino acids in weaned pigs. Br. J. Nutr. 2010, 103, 1404–1412. [Google Scholar] [CrossRef] [PubMed]
- Davis, T.A.; Burrin, D.G.; Fiorotto, M.L.; Reeds, P.J.; Jahoor, F. Roles of Insulin and Amino Acids in the Regulation of Protein Synthesis in the Neonate. J. Nutr. 1998, 128, 347S–350S. [Google Scholar] [CrossRef]
- Frank, J.W.; Escobar, J.; Nguyen, H.V.; Jobgen, S.C.; Jobgen, W.S.; Davis, T.A.; Wu, G. Oral N-carbamylglutamate supplementation increases protein synthesis in skeletal muscle of piglets. J. Nutr. 2007, 137, 315–319. [Google Scholar] [CrossRef]
- Jobgen, W.S.; Fried, S.K.; Fu, W.J.; Meininger, C.J.; Wu, G. Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J. Nutr. Biochem. 2006, 17, 571–588. [Google Scholar] [CrossRef]
- Davis, T.A.; Nguyen, H.V.; Suryawan, A.; Bush, J.A.; Jefferson, L.S.; Kimball, S.R. Developmental changes in the feeding-induced stimulation of translation initiation in muscle of neonatal pigs. Am. J. Physiol. Endocrinol. Metab. 2000, 279, E1226–E1234. [Google Scholar] [CrossRef]
Items | Composition |
---|---|
Ingredients | |
Expanded corn | 57.50 |
Expanded soybean | 12.00 |
Soybean meal | 8.00 |
Whey powder | 8.00 |
Lactose | 8.00 |
Fish meal | 3.00 |
Limestone | 0.70 |
Calcium hydrogen phosphate | 1.50 |
Salt | 0.30 |
Premix 1 | 1.00 |
Analysed nutrient content, % | |
Crude protein | 20.50 |
Calcium | 0.94 |
Phosphorus | 0.75 |
Calculated nutrient content, % | |
ME, MJ/kg | 14.30 |
Lysine | 1.45 |
Methionine | 0.45 |
Items | LJP, mg/kg | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
0 | 100 | 200 | 400 | SEM | ANOVA | Linear 1 | Quadratic 1 | |
Body weight, lg | ||||||||
Day 0 | 6.13 | 6.13 | 6.13 | 6.13 | 0.35 | 1.000 | 0.998 | 0.999 |
Day 21 | 9.31 | 9.72 | 10.28 | 10.32 | 0.44 | 0.340 | 0.109 | 0.444 |
ADG, g/d | 151 b | 171 ab | 197 a | 200 a | 9 | 0.007 | 0.002 | 0.103 |
ADFI, g/d | 254 b | 282 ab | 306 a | 318 a | 10 | 0.002 | <0.001 | 0.114 |
G:F ratio | 0.59 | 0.60 | 0.64 | 0.63 | 0.02 | 0.544 | 0.329 | 0.399 |
Items | LJP, mg/kg | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
0 | 100 | 200 | 400 | SEM | ANOVA | Linear 1 | Quadratic 1 | |
Amylase activity, U/mg | 45.02 b | 44.41 b | 55.83 a | 53.10 a | 1.60 | <0.001 | 0.001 | 0.063 |
Lipase activity, U/mg | 5.27 | 4.19 | 7.50 | 10.45 | 1.89 | 0.146 | 0.037 | 0.613 |
Items | LJP, mg/kg | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
0 | 100 | 200 | 400 | SEM | ANOVA | Linear 1 | Quadratic 1 | |
EAA | ||||||||
Histidine | 12.99 b | 13.21 b | 14.47 b | 17.50 a | 0.73 | 0.002 | <0.001 | 0.299 |
Isoleucine | 12.82 | 15.46 | 12.74 | 14.08 | 1.20 | 0.375 | 0.821 | 0.812 |
Leucine | 25.85 | 26.54 | 26.62 | 26.45 | 2.08 | 0.993 | 0.868 | 0.822 |
Lysine | 39.83 | 48.38 | 53.31 | 53.19 | 4.61 | 0.223 | 0.084 | 0.239 |
Methionine | 6.75 xy | 10.65 x | 6.64 y | 7.62 xy | 1.07 | 0.075 | 0.766 | 0.470 |
Phenylalanine | 22.61 xy | 26.33 x | 21.28 y | 22.87 xy | 1.29 | 0.076 | 0.519 | 0.856 |
Threonine | 24.26 | 32.35 | 27.77 | 26.02 | 3.65 | 0.555 | 0.921 | 0.325 |
Valine | 27.71 | 30.07 | 29.35 | 31.61 | 2.00 | 0.633 | 0.253 | 0.908 |
NEAA | ||||||||
Alanine | 87.72 | 88.76 | 97.90 | 92.89 | 5.77 | 0.605 | 0.448 | 0.420 |
Arginine | 15.36 | 9.55 | 9.56 | 16.72 | 3.57 | 0.439 | 0.610 | 0.132 |
Asparagine | 11.95 | 14.51 | 14.58 | 16.30 | 1.27 | 0.187 | 0.046 | 0.572 |
Glutamic acid | 113 | 133 | 130 | 128 | 11 | 0.698 | 0.535 | 0.395 |
Glycine | 102 | 111 | 118 | 117 | 7 | 0.423 | 0.179 | 0.342 |
Proline | 22.24 | 28.77 | 27.57 | 25.56 | 4.93 | 0.822 | 0.802 | 0.429 |
Serine | 22.92 | 28.28 | 27.90 | 24.39 | 2.32 | 0.397 | 0.945 | 0.110 |
Tyrosine | 18.21 | 18.88 | 12.95 | 15.30 | 1.80 | 0.132 | 0.148 | 0.299 |
Items | LJP, mg/kg | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
0 | 100 | 200 | 400 | SEM | ANOVA | Linear 1 | Quadratic 1 | |
GLU, mmol/L | 4.00 | 4.41 | 4.68 | 4.61 | 0.30 | 0.492 | 0.228 | 0.346 |
TC, mmol/L | 2.45 | 2.43 | 2.29 | 2.48 | 0.15 | 0.830 | 0.922 | 0.436 |
TG, mmol/L | 0.57 | 0.80 | 0.74 | 0.66 | 0.12 | 0.553 | 0.838 | 0.226 |
LDL-C, mmol/L | 1.03 | 0.99 | 0.95 | 0.88 | 0.15 | 0.908 | 0.472 | 0.989 |
HDL-C, mmol/L | 1.04 | 1.49 | 1.21 | 1.28 | 0.14 | 0.255 | 0.606 | 0.313 |
BUN, mmol/L | 2.18 | 2.65 | 2.47 | 2.33 | 0.31 | 0.780 | 0.964 | 0.414 |
NH3, mmol/L | 47.66 | 33.92 | 41.16 | 47.33 | 8.84 | 0.707 | 0.779 | 0.381 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Chen, W.; Xu, Y.; Fu, S.; Fu, J.; Huang, X.; Xiao, J.; Liu, T.; Jiang, X. Laminaria japonica Polysaccharides Improves the Growth Performance and Faecal Digestive Enzyme Activity of Weaned Piglets. Vet. Sci. 2024, 11, 11. https://doi.org/10.3390/vetsci11010011
Wang C, Chen W, Xu Y, Fu S, Fu J, Huang X, Xiao J, Liu T, Jiang X. Laminaria japonica Polysaccharides Improves the Growth Performance and Faecal Digestive Enzyme Activity of Weaned Piglets. Veterinary Sciences. 2024; 11(1):11. https://doi.org/10.3390/vetsci11010011
Chicago/Turabian StyleWang, Chengwei, Wenning Chen, Yun Xu, Shaomeng Fu, Jiamin Fu, Xiaohong Huang, Junfeng Xiao, Tao Liu, and Xianren Jiang. 2024. "Laminaria japonica Polysaccharides Improves the Growth Performance and Faecal Digestive Enzyme Activity of Weaned Piglets" Veterinary Sciences 11, no. 1: 11. https://doi.org/10.3390/vetsci11010011