In Vitro Effect of Eucalyptus Essential Oils and Antiseptics (Chlorhexidine Gluconate and Povidone-Iodine) against Bacterial Isolates from Equine Wounds
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Selection and Clinical Information
2.2. Bacteria Sample Collection
2.3. Sample Processing
2.4. Bacteria Identification
2.5. Antibacterial Testing
2.6. Statistical Analysis
3. Results
3.1. Clinical Information
3.2. Antimicrobial Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization and Antimicrobial Resistance. Available online: https://www.who.int/health-topics/antimicrobial-resistance (accessed on 20 July 2023).
- World Organization for Animal Health-OIE and Antimicrobial Resistance. Available online: https://www.woah.org/en/what-we-do/global-initiatives/antimicrobial-resistance/ (accessed on 20 July 2023).
- Ferri, M.; Ranucci, E.; Romagnoli, P.; Giaccone, V. Antimicrobial Resistance: A Global Emerging Threat to Public Health Systems. Crit. Rev. Food Sci. Nutr. 2017, 57, 2857–2876. [Google Scholar] [CrossRef] [PubMed]
- Palma, E.; Tilocca, B.; Roncada, P. Antimicrobial Resistance in Veterinary Medicine: An Overview. Int. J. Mol. Sci. 2020, 21, 1914. [Google Scholar] [CrossRef] [PubMed]
- Theoret, C.; Schumacher, J. Equine Wound Management. In Equine Wound Management; Theoret, C., Schumacher, J., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 2017; pp. 47–74. [Google Scholar]
- Hanson, R.R. Medical Therapy in Equine Wound Management. Vet. Clin. N. Am.-Equine Pract. 2018, 34, 591–603. [Google Scholar] [CrossRef] [PubMed]
- Frees, K.E. Equine Practice on Wound Management: Wound Cleansing and Hygiene. Vet. Clin. N. Am.-Equine Pract. 2018, 34, 473–484. [Google Scholar] [CrossRef]
- Westgate, S.J.; Percival, S.L.; Knottenbelt, D.C.; Clegg, P.D.; Cochrane, C.A. Microbiology of Equine Wounds and Evidence of Bacterial Biofilms. Vet. Microbiol. 2011, 150, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Afonso, A.C.; Sousa, M.; Pinto, A.R.; Cotovio, M.; Simões, M.; Saavedra, M.J. Biofilm Production by Critical Antibiotic-Resistant Pathogens from an Equine Wound. Animals 2023, 13, 1342. [Google Scholar] [CrossRef] [PubMed]
- Isgren, C.M.; Williams, N.J.; Fletcher, O.D.; Timofte, D.; Newton, R.J.; Maddox, T.W.; Clegg, P.D.; Pinchbeck, G.L. Antimicrobial Resistance in Clinical Bacterial Isolates from Horses in the UK. Equine Vet. J. 2022, 54, 390–414. [Google Scholar] [CrossRef] [PubMed]
- Leise, B.S. Topical Wound Medications. Vet. Clin. N. Am.-Equine Pract. 2018, 34, 485–498. [Google Scholar] [CrossRef]
- Jørgensen, E.; Bjarnsholt, T.; Jacobsen, S. Biofilm and Equine Limb Wounds. Animals 2021, 11, 2825. [Google Scholar] [CrossRef]
- Maillard, J.Y.; Kampf, G.; Cooper, R. Antimicrobial Stewardship of Antiseptics That Are Pertinent to Wounds: The Need for a United Approach. JAC Antimicrob. Resist. 2021, 3, dlab027. [Google Scholar] [CrossRef]
- Alves, P.J.; Barreto, R.T.; Barrois, B.M.; Gryson, L.G.; Meaume, S.; Monstrey, S.J. Update on the Role of Antiseptics in the Management of Chronic Wounds with Critical Colonisation and/or Biofilm. Int. Wound J. 2021, 18, 342–358. [Google Scholar] [CrossRef] [PubMed]
- Roberts, C.D.; Leaper, D.J.; Assadian, O. The Role of Topical Antiseptic Agents within Antimicrobial Stewardship Strategies for Prevention and Treatment of Surgical Site and Chronic Open Wound Infection. Adv. Wound Care 2017, 6, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Bigliardi, P.L.; Alsagoff, S.A.L.; El-Kafrawi, H.Y.; Pyon, J.K.; Wa, C.T.C.; Villa, M.A. Povidone Iodine in Wound Healing: A Review of Current Concepts and Practices. Int. J. Surg. 2017, 44, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Lachapelle, J.M.; Castel, O.; Casado, A.F.; Leroy, B.; Micali, G.; Tennstedt, D.; Lambert, J. Antiseptics in the Era of Bacterial Resistance: A Focus on Povidone Iodine. Clin. Pract. 2013, 10, 579–592. [Google Scholar] [CrossRef]
- Williamson, D.A.; Carter, G.P.; Howden, B.P. Current and Emerging Topical Antibacterials and Antiseptics: Agents, Action, and Resistance Patterns. Clin. Microbiol. Rev. 2017, 30, 827–860. [Google Scholar] [CrossRef] [PubMed]
- Barrigah-Benissan, K.; Ory, J.; Sotto, A.; Salipante, F.; Lavigne, J.P.; Loubet, P. Antiseptic Agents for Chronic Wounds: A Systematic Review. Antibiotics 2022, 11, 350. [Google Scholar] [CrossRef] [PubMed]
- Nicodim, L.; Rapuntean, G.; Rapuntean, S.; Chirila, F.; Nadas, G. Antibacterial Effect of Essential Vegetal Extracts on Staphylococcus aureus Compared to Antibiotics. Hort. Agrobot. Cluj 2009, 37, 117–123. [Google Scholar]
- Teixeira, I.D.; Carvalho, E.; Leal, E.C. Green Antimicrobials as Therapeutic Agents for Diabetic Foot Ulcers. Antibiotics 2023, 12, 467. [Google Scholar] [CrossRef]
- Azzam, N.F.A.E.M. Antibacterial Effect of Eucalyptus Essential Oil. Indian J. Sci. Technol. 2020, 13, 799–804. [Google Scholar] [CrossRef]
- Aleksic Sabo, V.; Knezevic, P. Antimicrobial Activity of Eucalyptus camaldulensis Dehn. Plant Extracts and Essential Oils: A Review. Ind. Crops Prod. 2019, 132, 413–429. [Google Scholar] [CrossRef]
- Apreja, M.; Sharma, A.; Balda, S.; Kataria, K.; Capalash, N.; Sharma, P. Antibiotic Residues in Environment: Antimicrobial Resistance Development, Ecological Risks, and Bioremediation. Environ. Sci. Pollut. Res. 2022, 29, 3355–3371. [Google Scholar] [CrossRef] [PubMed]
- Luís, Â.; Duarte, A.; Gominho, J.; Domingues, F.; Duarte, A.P. Chemical Composition, Antioxidant, Antibacterial and Anti-Quorum Sensing Activities of Eucalyptus globulus and Eucalyptus radiata Essential Oils. Ind. Crops Prod. 2016, 79, 274–282. [Google Scholar] [CrossRef]
- Bachir, R.G.; Benali, M. Antibacterial Activity of the Essential Oils from the Leaves of Eucalyptus globulus against Escherichia coli and Staphylococcus aureus. Asian Pac. J. Trop. Biomed. 2012, 2, 739–742. [Google Scholar] [CrossRef] [PubMed]
- Müller-Heupt, L.K.; Vierengel, N.; Groß, J.; Opatz, T.; Deschner, J.; von Loewenich, F.D. Antimicrobial Activity of Eucalyptus globulus, Azadirachta indica, Glycyrrhiza glabra, Rheum palmatum Extracts and Rhein against Porphyromonas gingivalis. Antibiotics 2022, 11, 186. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.; Dias, C.; Vasconcelos, M.C.; Rosa, E.; Saavedra, M.J. Antibacterial Activity and Synergistic Effects between Eucalyptus globulus Leaf Residues (Essential Oils and Extracts) and Antibiotics against Several Isolates of Respiratory Tract Infections (Pseudomonas aeruginosa). Ind. Crops Prod. 2014, 52, 1–7. [Google Scholar] [CrossRef]
- Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Am. J. Clin. Pathol. 1966, 45, 493–496. [CrossRef]
- The Jamovi Project. Jamovi (Version 2.3) [Computer Software]. 2023. Available online: https://www.jamovi.org (accessed on 1 January 2023).
- Harkins, C.P.; McAleer, M.A.; Bennett, D.; McHugh, M.; Fleury, O.M.; Pettigrew, K.A.; Oravcová, K.; Parkhill, J.; Proby, C.M.; Dawe, R.S.; et al. The Widespread Use of Topical Antimicrobials Enriches for Resistance in Staphylococcus aureus Isolated from Patients with Atopic Dermatitis. Br. J. Dermatol. 2018, 179, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Debebe, N.; Gelaye, A.; Fesseha, H. Open Wound in Equine and Its Management-Review. CPQ Med. 2020, 10, 1–12. [Google Scholar]
- Aftab, R.; Dodhia, V.H.; Jeanes, C.; Wade, R.G. Bacterial Sensitivity to Chlorhexidine and Povidone-Iodine Antiseptics over Time: A Systematic Review and Meta-Analysis of Human-Derived Data. Sci. Rep. 2023, 13, 347. [Google Scholar] [CrossRef]
- Mumtaz, R.; Zubair, M.; Khan, M.A.; Muzammil, S.; Siddique, M.H. Extracts of Eucalyptus alba Promote Diabetic Wound Healing by Inhibiting α-Glucosidase and Stimulating Cell Proliferation. Evid.-Based Complement. Altern. Med. 2022, 2022, 4953105. [Google Scholar] [CrossRef]
- Mulyaningsih, S.; Sporer, F.; Reichling, J.; Wink, M. Antibacterial Activity of Essential Oils from Eucalyptus and of Selected Components against Multidrug-Resistant Bacterial Pathogens. Pharm. Biol. 2011, 49, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Knezevic, P.; Aleksic, V.; Simin, N.; Svircev, E.; Petrovic, A.; Mimica-Dukic, N. Antimicrobial Activity of Eucalyptus camaldulensis Essential Oils and Their Interactions with Conventional Antimicrobial Agents against Multi-Drug Resistant Acinetobacter baumannii. J. Ethnopharmacol. 2016, 178, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Horvathova, E.; Navarova, J.; Galova, E.; Sevcovicova, A.; Chodakova, L.; Snahnicanova, Z.; Melusova, M.; Kozics, K.; Slamenova, D. Assessment of Antioxidative, Chelating, and DNA-Protective Effects of Selected Essential Oil Components (Eugenol, Carvacrol, Thymol, Borneol, Eucalyptol) of Plants and Intact Rosmarinus Officinalis Oil. J. Agric. Food Chem. 2014, 62, 6632–6639. [Google Scholar] [CrossRef] [PubMed]
- Goldbeck, J.C.; do Nascimento, J.E.; Jacob, R.G.; Fiorentini, Â.M.; da Silva, W.P. Bioactivity of Essential Oils from Eucalyptus globulus and Eucalyptus urograndis against Planktonic Cells and Biofilms of Streptococcus mutans. Ind. Crops Prod. 2014, 60, 304–309. [Google Scholar] [CrossRef]
- Karbach, J.; Ebenezer, S.; Warnke, P.; Behrens, E.; Al-Nawas, B. Antimicrobial Effect of Australian Antibacterial Essential Oils as Alternative to Common Antiseptic Solutions against Clinically Relevant Oral Pathogens. Clin. Lab. 2015, 61, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.; Lane, S.; Harniman, S. An In Vitro Investigation into the Efficacies of Chlorhexidine Gluconate, Povidone Iodine and Green Tea (Camellia sinensis) to Prevent Surgical Site Infection in Animals. Vet. Nurse 2016, 7, 485–492. [Google Scholar] [CrossRef]
- Rafferty, R.; Robinson, V.H.; Harris, J.; Argyle, S.A.; Nuttall, T.J. A Pilot Study of the In Vitro Antimicrobial Activity and In Vivo Residual Activity of Chlorhexidine and Acetic Acid/Boric Acid Impregnated Cleansing Wipes. BMC Vet. Res. 2019, 15, 382. [Google Scholar] [CrossRef]
- Thongrueang, N.; Liu, S.S.; Hsu, H.Y.; Lee, H.H. An In Vitro Comparison of Antimicrobial Efficacy and Cytotoxicity between Povidone iodine and Chlorhexidine for Treating Clinical Endometritis in Dairy Cows. PLoS ONE 2022, 17, e0271274. [Google Scholar] [CrossRef]
- McLure, A.; Gordon, J. In Vitro Evaluation of Povidone-Iodine and Chlorhexidine against Methicillin-Resistant Staphylococcus aureus. J. Hosp. Infect. 1992, 21, 291–299. [Google Scholar] [CrossRef]
- Wang, W.; Weng, Y.; Luo, T.; Wang, Q.; Yang, G.; Jin, Y. Antimicrobial and the Resistances in the Environment: Ecological and Health Risks, Influencing Factors, and Mitigation Strategies. Toxics 2023, 11, 185. [Google Scholar] [CrossRef]
- Basiry, D.; Heravi, N.; Uluseker, C.; Kaster, K.; Kommedal, R.; Ozkok, P. The Effect of Disinfectants and Antiseptics on Co- and Cross-Selection of Resistance to Antibiotics in Aquatic Environments and Wastewater Treatment Plants. Front. Microbiol. 2022, 13, 1050558. [Google Scholar] [CrossRef] [PubMed]
Antiseptic/Essential Oils | Mean ± Standard Deviation (mm) | Statistical Significance * |
---|---|---|
ER | 27 ± 5.1 | A |
EG + ER | 23 ± 5.1 | A |
CG + ER | 17.3 ± 5.3 | B |
CG + EG | 15.4 ± 2.2 | BC |
CG | 15.1 ± 2.1 | BCD |
CG + EG + ER | 13.7 ± 4.2 | BCDE |
EG | 13.4 ± 2.8 | BCDE |
PI + ER | 11.7 ± 3.1 | CDE |
PI + EG + ER | 11 ± 2.6 | CDE |
PI + EG | 10.7 ± 1 | DE |
PI | 10.2 ± 1.2 | E |
Bacterial Stains | Povidone-Iodine (PI) | Chlorhexidine Gluconate (CG) | Eucalyptus globulus (EG) | Eucalyptus radiata (ER) | EG + ER | PI + EG | CG + EG | PI + ER | CG + ER | PI + EG + ER | CG + EG + ER |
---|---|---|---|---|---|---|---|---|---|---|---|
E. coli E01 | 11.7 ± 0.5 | 14.7 ± 0.5 | 11.3 ± 0.5 | 34.7 ± 0.5 | 17.7 ± 0.5 | 10.7 ± 0.5 | 16.7 ± 0.5 | 10.3 ± 0.9 | 14.7 ± 0.5 | 11.0 ± 0.8 | 16.3 ± 0.5 |
E. coli E02 | 11.0 ± 0.8 | 15.7 ± 0.5 | 10.7 ± 0.5 | 21.0 ± 0.8 | 25.7 ± 0.5 | 9.7 ± 0.5 | 15.7 ± 0.5 | 12.3 ± 0.5 | 14.7 ± 0.5 | 11.7 ± 0.5 | 8.7 ± 0.5 |
E. coli E03 | 11.7 ± 0.5 | 16.7 ± 0.5 | 17.3 ± 0.5 | 22.3 ± 0.5 | 18.7 ± 0.5 | 11.7 ± 0.9 | 17.7 ± 0.5 | 15.7 ± 0.5 | 13.7 ± 0.5 | 16.3 ± 0.5 | 14.7 ± 0.5 |
E. coli E04 | 10.7 ± 0.5 | 17.3 ± 0.5 | 10.7 ± 0.5 | 28.7 ± 0.5 | 20.7 ± 0.5 | 10.3 ± 0.9 | 14.3 ± 0.5 | 16.7 ± 0.5 | 12.3 ± 0.5 | 10.3 ± 0.5 | 9.7 ± 0.9 |
E. coli E05 | 9.7 ± 0.5 | 18.7 ± 0.5 | 18.7 ± 0.5 | 20.3 ± 0.5 | 26.3 ± 0.5 | 10.7 ± 0.5 | 14.7 ± 0.5 | 7.7 ± 0.5 | 25.7 ± 0.5 | 7.3 ± 0.5 | 21.7 ± 0.5 |
E. coli E06 | 9.7 ± 0.5 | 14.7 ± 0.5 | 11.3 ± 0.5 | 35.3 ± 0.5 | 20.7 ± 0.5 | 11.7 ± 0.5 | 18.7 ± 0.5 | 9.3 ± 0.9 | 15.7 ± 0.5 | 9.0 ± 0.8 | 14.3 ± 0.5 |
E. coli E07 | 9.0 ± 0.8 | 11.7 ± 0.5 | 11.7 ± 0.5 | 27.0 ± 0.8 | 35.7 ± 0.5 | 10.0 ± 0.5 | 18.3 ± 0.5 | 9.7 ± 0.5 | 16.7 ± 0.5 | 9.7 ± 0.5 | 8.7 ± 0.5 |
E. coli E08 | 10.7 ± 0.5 | 13.7 ± 0.5 | 11.3 ± 0.5 | 30.7 ± 0.5 | 20.7 ± 0.5 | 9.7 ± 0.5 | 15.7 ± 0.5 | 9.3 ± 0.9 | 15.7 ± 0.5 | 11.0 ± 0.8 | 13.3 ± 0.5 |
E. coli E09 | 11.0 ± 0.8 | 11.7 ± 0.5 | 12.7 ± 0.5 | 26.0 ± 0.8 | 18.7 ± 0.5 | 11.7 ± 0.5 | 13.7 ± 0.5 | 11.3 ± 0.5 | 15.7 ± 0.5 | 10.7 ± 0.5 | 9.7 ± 0.5 |
E. coli E10 | 8.7 ± 0.5 | 13.7 ± 0.5 | 16.3 ± 0.5 | 25.3 ± 0.5 | 20.7 ± 0.5 | 9.7 ± 0.9 | 15.7 ± 0.5 | 15.7 ± 0.5 | 16.7 ± 0.5 | 15.3 ± 0.5 | 15.7 ± 0.5 |
E. coli E11 | 8.7 ± 0.5 | 15.3 ± 0.5 | 12.7 ± 0.5 | 30.7 ± 0.5 | 22.7 ± 0.5 | 10.3 ± 0.9 | 11.3 ± 0.5 | 14.7 ± 0.5 | 15.3 ± 0.5 | 11.3 ± 0.5 | 11.7 ± 0.9 |
E. coli E12 | 9.7 ± 0.5 | 16.7 ± 0.5 | 15.7 ± 0.5 | 22.3 ± 0.5 | 27.3 ± 0.5 | 11.7 ± 0.5 | 12.7 ± 0.5 | 8.7 ± 0.5 | 30.7 ± 0.5 | 8.0 ± 0.5 | 19.7 ± 0.5 |
Antiseptic/Essential Oils | Mean ± Standard Deviation (mm) | Statistical Significance * |
---|---|---|
CG | 22.9 ± 6.5 | A |
EG | 21.2 ± 8.0 | AB |
CG + EG | 17.1 ± 4.5 | ABC |
CG + EG + ER | 16.3 ± 6.0 | ABC |
EG + ER | 16.1 ± 6.6 | ABC |
PI + EG + ER | 14.2 ± 3.3 | ABC |
PI | 14.0 ± 4.4 | BC |
PI + EG | 13.7 ± 3.6 | BC |
ER | 13.6 ± 5.9 | BC |
CG + ER | 13.1 ± 4.4 | BC |
PI + ER | 10.7 ± 1.1 | C |
Bacterial Stains | Povidone-Iodine (PI) | Chlorhexidine Gluconate (CG) | Eucalyptus globulus (EG) | Eucalyptus radiata (ER) | EG + ER | PI + EG | CG + EG | PI + ER | CG + ER | PI + EG + ER | CG + EG + ER |
---|---|---|---|---|---|---|---|---|---|---|---|
S. aureus E13 | 20.3 ± 0.5 | 17.7 ± 0.5 | 41.7 ± 0.5 | 23.7 ± 0.5 | 31.3 ± 0.9 | 17.7 ± 0.5 | 19.3 ± 0.5 | 10.3 ± 0.9 | 10 ± 0.0 | 15.3 ± 0.5 | 16.3 ± 0.9 |
S. aureus E14 | 11.3 ± 0.8 | 23 ± 0.5 | 11.0 ± 0.5 | 11.7 ± 0.8 | 14.3 ± 0.5 | 11.7 ± 0.5 | 19.7 ± 0.5 | 13.3 ± 0.5 | 20.7 ± 0.9 | 21.7 ± 0.5 | 20 ± 0.0 |
S. aureus E15 | 19.7 ± 0.5 | 20.3 ± 0.5 | 40.7 ± 0.5 | 15.3 ± 0.5 | 24.7 ± 0.5 | 15.7 ± 0.5 | 19.3 ± 0.5 | 10.3 ± 0.5 | 8 ± 0.5 | 15.7 ± 0.5 | 30.7 ± 0.5 |
S. aureus E16 | 11 ± 0.5 | 17 ± 0.5 | 35.7 ± 0.5 | 20.7 ± 0.8 | 20.3 ± 0.5 | 20.3 ± 0.5 | 9 ± 0.5 | 9 ± 0.5 | 9.3 ± 0.5 | 11 ± 0.5 | 15 ± 0.5 |
S. aureus E17 | 12.7 ± 0.8 | 25 ± 0.5 | 30.0 ± 0.5 | 22 ± 0.5 | 16 ± 0.5 | 12.3 ± 0.5 | 12.7 ± 0.9 | 11 ± 0.5 | 9.0 ± 0.5 | 10 ± 0.5 | 18 ± 0.5 |
S. aureus E18 | 19.7 ± 0.5 | 20 ± 0.5 | 42.7 ± 0.5 | 17.3 ± 0.8 | 19 ± 0.5 | 18 ± 0.5 | 11 ± 0.5 | 10 ± 0.5 | 9.0 ± 0.5 | 10 ± 0.5 | 18.7 ± 0.8 |
S. aureus E19 | 9.0 ± 0.5 | 25.3 ± 0.5 | 8.0 ± 0.5 | 9 ± 0.5 | 10.7 ± 0.5 | 10.3 ± 0.9 | 20.7 ± 0.5 | 10 ± 0.5 | 14.7 ± 0.5 | 12.7 ± 0.5 | 17.7 ± 0.5 |
S. aureus E20 | 19.7 ± 0.5 | 30.3 ± 0.5 | 8.0 ± 0.5 | 10 ± 0.5 | 11.7 ± 0.5 | 12.3 ± 0.5 | 21.3 ± 0.5 | 11.3 ± 0.9 | 17.7 ± 0.5 | 15.7 ± 0.5 | 9.0 ± 0.5 |
S. pseudintermedius E21 | 11.0 ± 0.5 | 15.3 ± 0.8 | 9.0 ± 0.5 | 8.3 ± 0.5 | 10.7 ± 0.5 | 9.3 ± 0.9 | 15.7 ± 0.5 | 11.3 ± 0.5 | 12.7 ± 0.5 | 13.7 ± 0.5 | 14.7 ± 0.5 |
S. pseudintermedius E22 | 11.7 ± 0.5 | 35.3 ± 0.5 | 10.0 ± 0.5 | 9 ± 0.5 | 12.7 ± 0.5 | 15.3 ± 0.5 | 22.3 ± 0.5 | 10.3 ± 0.9 | 12.7 ± 0.5 | 16.7 ± 0.5 | 10.0 ± 0.5 |
S. vitulinus E23 | 10.0 ± 0.5 | 15.3 ± 0.5 | 9.0 ± 0.5 | 8.3 ± 0.5 | 10.7 ± 0.5 | 9.3 ± 0.9 | 13.7 ± 0.5 | 11.7 ± 0.5 | 13.7 ± 0.5 | 12.7 ± 0.5 | 17.7 ± 0.5 |
S. saprophyticus E24 | 11.7 ± 0.5 | 30.3 ± 0.5 | 8.0 ± 0.5 | 8 ± 0.5 | 10.7 ± 0.5 | 12.3 ± 0.5 | 20.3 ± 0.5 | 10.3 ± 0.9 | 19.7 ± 0.5 | 14.7 ± 0.5 | 8.3 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pimenta, J.; Dias, C.; Cotovio, M.; Saavedra, M.J. In Vitro Effect of Eucalyptus Essential Oils and Antiseptics (Chlorhexidine Gluconate and Povidone-Iodine) against Bacterial Isolates from Equine Wounds. Vet. Sci. 2024, 11, 12. https://doi.org/10.3390/vetsci11010012
Pimenta J, Dias C, Cotovio M, Saavedra MJ. In Vitro Effect of Eucalyptus Essential Oils and Antiseptics (Chlorhexidine Gluconate and Povidone-Iodine) against Bacterial Isolates from Equine Wounds. Veterinary Sciences. 2024; 11(1):12. https://doi.org/10.3390/vetsci11010012
Chicago/Turabian StylePimenta, José, Carla Dias, Mário Cotovio, and Maria José Saavedra. 2024. "In Vitro Effect of Eucalyptus Essential Oils and Antiseptics (Chlorhexidine Gluconate and Povidone-Iodine) against Bacterial Isolates from Equine Wounds" Veterinary Sciences 11, no. 1: 12. https://doi.org/10.3390/vetsci11010012
APA StylePimenta, J., Dias, C., Cotovio, M., & Saavedra, M. J. (2024). In Vitro Effect of Eucalyptus Essential Oils and Antiseptics (Chlorhexidine Gluconate and Povidone-Iodine) against Bacterial Isolates from Equine Wounds. Veterinary Sciences, 11(1), 12. https://doi.org/10.3390/vetsci11010012