Effect of an Enteroprotective Complementary Feed on Faecal Markers of Inflammation and Intestinal Microbiota Composition in Weaning Puppies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Feeding
2.2. In Vitro Digestibility Assay
2.3. Data and Faecal Samples Collection
2.4. Faecal Calprotectin and Zonulin Concentration
2.5. Faecal DNA Extraction and 16S rRNA Amplicon Sequencing Analysis
2.6. Bioinformatics and Statistical Analysis
3. Results
3.1. Growth of Participant Puppies
3.2. Diet Digestibility
3.3. Faecal Score
3.4. Faecal Calprotectin and Zonulin Concentration
3.5. Faecal Microbiota Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Apanavicius, C.J.; Powell, K.L.; Vester, B.M.; Karr-Lilienthal, L.K.; Pope, L.L.; Fastinger, N.D.; Wallig, M.A.; Tappenden, K.A.; Swanson, K.S. Fructan supplementation and infection affect food intake, fever, and epithelial sloughing from Salmonella challenge in weanling puppies. J. Nutr. 2007, 137, 1923–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grellet, A.; Feugier, A.; Chastant-Maillard, S.; Carrez, B.; Boucraut-Baralon, C.; Casseleux, G.; Grandjean, D. Validation of a fecal scoring scale in puppies during the weaning period. Prev. Vet. Med. 2012, 106, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Day, M.J. Immune system development in the dog and cat. J. Comp. Pathol. 2007, 137, S10–S15. [Google Scholar] [CrossRef] [PubMed]
- Kelman, M.; Barrs, V.R.; Norris, J.M.; Ward, M.P. Canine parvovirus prevention and prevalence: Veterinarian perceptions and behaviors. Prev. Vet. Med. 2020, 174, 104817. [Google Scholar] [CrossRef]
- Garrigues, Q.; Apper, E.; Chastant, S.; Mila, H. Gut microbiota development in the growing dog: A dynamic process influenced by maternal, environmental and host factors. Front. Vet. Sci. 2022, 1323, 964649. [Google Scholar] [CrossRef]
- Grellet, A.; Chastant-Maillard, S.; Robin, C.; Feugier, A.; Boogaerts, C.; Boucraut-Baralon, C.; Grandjean, D.; Polack, B. Risk factors of weaning diarrhea in puppies housed in breeding kennels. Prev. Vet. Med. 2014, 117, 260–265. [Google Scholar] [CrossRef] [Green Version]
- Grellet, A.; Mila, H.; Heilmann, R.M.; Feugier, A.; Gruetzner, N.; Suchodolski, J.S.; Steiner, J.M.; Chastant-Maillard, S. Effect of age, gestation and lactation on faecal IgA and calprotectin concentrations in dogs. J. Nutr. Sci. 2014, 3, e41. [Google Scholar] [CrossRef] [Green Version]
- Grellet, A.; Heilmann, R.M.; Polack, B.; Feugier, A.; Boucraut-Baralon, C.; Grandjean, D.; Grützner, N.; Suchodolski, J.S.; Steiner, J.M.; Chastant-Maillard, S. Influence of breed size, age, fecal quality, and enteropathogen shedding on fecal calprotectin and immunoglobulin A concentrations in puppies during the weaning period. J. Vet. Intern. Med. 2016, 30, 1056–1064. [Google Scholar] [CrossRef] [Green Version]
- Weber, M.P.; Stambouli, F.; Martin, L.J.; Dumon, H.J.; Biourge, V.C.; Nguyen, P.G. Influence of age and body size on gastrointestinal transit time of radiopaque markers in healthy dogs. Am. J. Vet. Res. 2002, 63, 677–682. [Google Scholar] [CrossRef]
- Weber, M.; Martin, L.; Biourge, V.; Nguyen, P.; Dumon, H. Influence of age and body size on the digestibility of a dry expanded diet in dogs. J. Anim. Physiol. Anim. Nutr. 2003, 87, 21–31. [Google Scholar] [CrossRef]
- Hernot, D.C.; Dumon, H.J.; Biourge, V.C.; Martin, L.J.; Nguyen, P.G. Evaluation of association between body size and large intestinal transit time in healthy dogs. Am. J. Vet. Res. 2006, 67, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Herschel, D.A.; Argenzio, R.A.; Southworth, M.; Stevens, C.E. Absorption of volatile fatty acid, Na, and H2O by the colon of the dog. Am. J. Vet. Res. 1981, 42, 1118–1124. [Google Scholar] [PubMed]
- Kirkwood, J. The influence of size on the biology of the dog. J. Small Anim. Pract. 1985, 26, 97–110. [Google Scholar] [CrossRef]
- Rolfe, V.E.; Adams, C.A.; Butterwick, R.E.; Batt, R.M. Relationships between fecal consistency and colonic microstructure and absorptive function in dogs with and without nonspecific dietary sensitivity. Am. J. Vet. Res. 2002, 63, 617–622. [Google Scholar] [CrossRef]
- Zaine, L.; Ferreira, C.; de OS Gomes, M.; Monti, M.; Tortola, L.; Vasconcellos, R.S.; Carciofi, A.C. Faecal IgA concentration is influenced by age in dogs. Br. J. Nutr. 2011, 106, S183–S186. [Google Scholar] [CrossRef] [Green Version]
- Heilmann, R.M.; Steiner, J.M. Clinical utility of currently available biomarkers in inflammatory enteropathies of dogs. J. Vet. Intern. Med. 2018, 32, 1495–1508. [Google Scholar] [CrossRef]
- Grellet, A.; Heilmann, R.M.; Lecoindre, P.; Feugier, A.; Day, M.J.; Peeters, D.; Freiche, V.; Hernandez, J.; Grandjean, D.; Suchodolski, J.S.; et al. Fecal calprotectin concentrations in adult dogs with chronic diarrhea. Am. J. Vet. Res. 2013, 74, 706–711. [Google Scholar] [CrossRef]
- Heilmann, R.M.; Berghoff, N.; Mansell, J.; Grützner, N.; Parnell, N.K.; Gurtner, C.; Suchodolski, J.S.; Steiner, J.M. Association of fecal calprotectin concentrations with disease severity, response to treatment, and other biomarkers in dogs with chronic inflammatory enteropathies. J. Vet. Intern. Med. 2018, 32, 679–692. [Google Scholar] [CrossRef]
- Fasano, A. Zonulin and its regulation of intestinal barrier function: The biological door to inflammation, autoimmunity, and cancer. Physiol. Rev. 2011, 91, 151–175. [Google Scholar] [CrossRef] [Green Version]
- Rossi, G.; Gavazza, A.; Vincenzetti, S.; Mangiaterra, S.; Galosi, L.; Marchegiani, A.; Pengo, G.; Sagratini, G.; Ricciutelli, M.; Cerquetella, M. Clinicopathological and fecal proteome evaluations in 16 dogs presenting chronic diarrhea associated with lymphangiectasia. Vet. Sci. 2021, 8, 242. [Google Scholar] [CrossRef]
- Sturgeon, C.; Fasano, A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers 2016, 4, e1251384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borrelli, F.; Romano, B.; Petrosino, S.; Pagano, E.; Capasso, R.; Coppola, D.; Battista, G.; Orlando, P.; Di Marzo, V.; Izzo, A.A. Palmitoylethanolamide, a naturally occurring lipid, is an orally effective intestinal anti-inflammatory agent. Br. J. Pharmacol. 2015, 172, 142–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Italian Law. Decreto legislativo 26 marzo 2001, n.146 di attuazione della Direttiva 98/58/CE del Consiglio del 20 luglio 1998 riguardante la protezione degli animali negli allevamenti. Gazz. Uff. 2001, 95, 24–04-2001. [Google Scholar]
- Day, M.J.; Horzinek, M.C.; Schultz, R.D.; Squires, R.A.; Vaccination Guidelines Group (VGG) of the World Small Animal Veterinary Association (WSAVA). WSAVA Guidelines for the vaccination of dogs and cats. J. Small Anim. Pract. 2016, 57, E1–E45. [Google Scholar] [CrossRef] [Green Version]
- Nutritional Guidelines for Complete and Complementary Pet Food for Cats and Dogs; The European Pet Food Industry Federation: Bruxelles, Belgium, 2021; Available online: https://europeanpetfood.org/wp-content/uploads/2022/03/Updated-Nutritional-Guidelines.pdf (accessed on 24 February 2023).
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isidori, M.; Corbee, R.J.; Trabalza-Marinucci, M. Nonpharmacological treatment strategies for the management of canine chronic inflammatory enteropathy-a narrative review. Vet. Sci. 2022, 9, 37. [Google Scholar] [CrossRef]
- Walsham, N.E.; Sherwood, R.A. Fecal calprotectin in inflammatory bowel disease. Clin. Exp. Gastroenterol. 2016, 9, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Ohlsson, B.; Roth, B.; Larsson, E.; Höglund, P. Calprotectin in serum and zonulin in serum and feces are elevated after introduction of a diet with lower carbohydrate content and higher fiber, fat and protein contents. Biomed. Rep. 2017, 6, 411–422. [Google Scholar] [CrossRef] [Green Version]
- Otoni, C.C.; Heilmann, R.M.; García-Sancho, M.; Sainz, A.; Ackermann, M.R.; Suchodolski, J.S.; Steiner, J.M.; Jergens, A.E. Serologic and fecal markers to predict response to induction therapy in dogs with idiopathic inflammatory bowel disease. J. Vet. Intern. Med. 2018, 32, 999–1008. [Google Scholar] [CrossRef] [PubMed]
- Heilmann, R.M.; Guard, M.M.; Toresson, L.; Unterer, S.; Grellet, A.; Grützner, N.; Suchodolski, J.S.; Steiner, J.M. Association of clinical characteristics and lifestyle factors with fecal S100/calgranulin concentrations in healthy dogs. Vet. Med. Sci. 2021, 7, 1131–1143. [Google Scholar] [CrossRef] [PubMed]
- Wood Heickman, L.K.; DeBoer, M.D.; Fasano, A. Zonulin as a potential putative biomarker of risk for shared type 1 diabetes and celiac disease autoimmunity. Diabetes/Metab. Res. Rev. 2020, 36, e3309. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Uyama, T.; Rahman, S.M.K.; Sikder, M.M.; Hussain, Z.; Tsuboi, K.; Miyake, M.; Ueda, N. Involvement of the gamma Isoform of cPLA 2 in the Biosynthesis of Bioactive N- Acylethanolamines. Molecules 2021, 26, 5213. [Google Scholar] [CrossRef] [PubMed]
- Re, G.; Barbero, R.; Miolo, A.; Di Marzo, V. Palmitoylethanolamide, Endocannabinoids and Related Cannabimimetic Compounds in Protection against Tissue Inflammation and Pain: Potential Use in Companion Animals. Vet. J. 2007, 173, 21–30. [Google Scholar] [CrossRef]
- Gugliandolo, E.; Peritore, A.F.; Piras, C.; Cuzzocrea, S.; Crupi, R. Palmitoylethanolamide and related ALIAmides: Pro-homeostatic lipid compounds for animal health and wellbeing. Vet. Sci. 2020, 7, 78. [Google Scholar] [CrossRef]
- della Rocca, G.; Re, G. Palmitoylethanolamide and related ALIAmides for small animal health: State of the art. Biomolecules 2022, 12, 1186. [Google Scholar] [CrossRef]
- Satyaraj, E.; Reynolds, A.; Pelker, R.; Labuda, J.; Zhang, P.; Sun, P. Supplementation of diets with bovine colostrum influences immune function in dogs. Br. J. Nutr. 2013, 110, 2216–2221. [Google Scholar] [CrossRef] [Green Version]
- Mila, H.; Grellet, A.; Mariani, C.; Feugier, A.; Guard, B.; Suchodolski, J.; Steiner, J.; Chastant-Maillard, S. Natural and artificial hyperimmune solutions: Impact on health in puppies. Reprod. Domest. Anim. 2017, 52, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Lian, J.; Casari, I.; Falasca, M. Modulatory role of the endocannabinoidome in the pathophysiology of the gastrointestinal tract. Pharmacol. Res. 2022, 175, 106025. [Google Scholar] [CrossRef]
- Esposito, G.; Capoccia, E.; Turco, F.; Lu, J.; Steardo, A.; Cuomo, R.; Samelli, G.; Steardo, L. Palmitoylethanolamide improves colon inflammation through an enteric glia/toll like receptor 4-dependent PPAR-α activation. Gut 2014, 63, 1300–1312. [Google Scholar] [CrossRef] [PubMed]
- Couch, D.G.; Tasker, C.; Theophilidou, E.; Lund, J.N.; O’Sullivan, S.E. Cannabidiol and palmitoylethanolamide are anti-inflammatory in the acutely inflamed human colon. Clin. Sci. 2017, 131, 2611–2626. [Google Scholar] [CrossRef] [PubMed]
- Capasso, R.; Orlando, P.; Pagano, E.; Aveta, T.; Buono, L.; Borrelli, F.; Di Marzo, V.; Izzo, A.A. Palmitoylethanolamide normalizes intestinal motility in a model of post-inflammatory accelerated transit: Involvement of CB1 receptors and TRPV1 channels. Br. J. Pharmacol. 2014, 171, 4026–4037. [Google Scholar] [CrossRef] [Green Version]
- Impellizzeri, D.; Bruschetta, G.; Cordaro, M.; Crupi, R.; Siracusa, R.; Esposito, E.; Cuzzocrea, S. Ultramicronized Palmitoylethanolamide reduces inflammation in a Th1-mediated model of colitis. Eur. J. Inflamm. 2015, 13, 14–31. [Google Scholar] [CrossRef] [Green Version]
- Schiano Moriello, A.; Di Marzo, V.; Petrosino, S. Mutual links between the endocannabinoidome and the gut microbiome, with special reference to companion animals: A nutritional viewpoint. Animals 2022, 12, 348. [Google Scholar] [CrossRef]
- Giffard, C.J.; Seino, M.M.; Markwell, P.J.; Bektash, R.M. Benefits of bovine colostrum on fecal quality in recently weaned puppies. J. Nutr. 2004, 134, 2126S–2127S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagwe, S.; Tharappel, L.J.; Kaur, G.; Buttar, H.S. Bovine colostrum: An emerging nutraceutical. J. Complement. Integr. Med. 2015, 12, 175–185. [Google Scholar] [CrossRef]
- Menchetti, L.; Traina, G.; Tomasello, G.; Casagrande-Proietti, P.; Leonardi, L.; Barbato, O.; Brecchia, G. Potential benefits of colostrum in gastrointestinal diseases. Front. Biosci. (Schol. Ed.) 2016, 8, 331–351. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; Bastos, M.L.; Bories, G.; Chesson, A.; Cocconcelli, P.S.; Flachowsky, G.; et al. Safety and efficacy of Calsporin® (Bacillus subtilis DSM 15544) as a feed additive for dogs. EFSA J. 2017, 15, e04760. [Google Scholar] [CrossRef] [Green Version]
- Silley, P. Do bacteria need to be regulated? J. Appl. Microbiol. 2006, 101, 607–615. [Google Scholar] [CrossRef]
- Vogt, C.M.; Armúa-Fernández, M.T.; Tobler, K.; Hilbe, M.; Aguilar, C.; Ackermann, M.; Deplazes, P.; Eichwald, C. Oral application of recombinant Bacillus subtilis spores to dogs results in a humoral response against specific Echinococcus granulosus paramyosin and tropomyosin antigens. Infect. Immun. 2018, 86, e00495-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herstad, H.K.; Nesheim, B.B.; L’Abée-Lund, T.; Larsen, S.; Skancke, E. Effects of a probiotic intervention in acute canine gastroenteritis--a controlled clinical trial. J. Small Anim. Pract. 2010, 51, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Hatanaka, M.; Nakamura, Y.; Maathuis, A.J.; Venema, K.; Murota, I.; Yamamoto, N. Influence of Bacillus subtilis C-3102 on microbiota in a dynamic in vitro model of the gastrointestinal tract simulating human conditions. Benef. Microbes 2012, 3, 229–236. [Google Scholar] [CrossRef]
- Paap, P.M.; Van der Laak, J.H.; Smit, J.I.; Nakamura, N.; Beynen, A.C. Administration of Bacillus Subtilis C-3102 (Calsporin®) may improve feces consistency in dogs with chronic diarrhea. Res. Opin. Anim. Vet. Sci. 2016, 6, 256–260. [Google Scholar]
- Schauf, S.; Nakamura, N.; Castrillo, C. Effect of Calsporin® (Bacillus subtilis C-3102) addition to the diet on faecal quality and nutrient digestibility in healthy adult dogs. J. Appl. Anim. Nutr. 2019, 7, E3. [Google Scholar] [CrossRef]
- de Lima, D.C.; Souza, C.M.M.; Nakamura, N.; Mesa, D.; de Oliveira, S.G.; Félix, A.P. Dietary supplementation with Bacillus subtilis C-3102 improves gut health indicators and fecal microbiota of dogs. Anim. Feed. Sci. Technol. 2020, 270, 114672. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, C.; Yuan, Z.; Li, W.; Zhang, M.; Cui, N.; Duan, Y.; Zhang, X.; Zhang, P. Dietary Bacillus subtilis supplementation alleviates alcohol-induced liver injury by maintaining intestinal integrity and gut microbiota homeostasis in mice. Exp. Ther. Med. 2021, 22, 1312. [Google Scholar] [CrossRef]
- Isidori, M.; Rueca, F.; Massacci, F.R.; Diaferia, M.; Giontella, A.; Caldin, M.; Furlanello, T.; Corbee, R.J.; Mannucci, G.; Pezzotti, G.; et al. The use of Ascophyllum nodosum and Bacillus subtilis C-3102 in the management of canine chronic inflammatory enteropathy: A pilot study. Animals 2021, 11, 3417. [Google Scholar] [CrossRef]
- Gryaznova, M.; Dvoretskaya, Y.; Burakova, I.; Syromyatnikov, M.; Popov, E.; Kokina, A.; Mikhaylov, E.; Popov, V. Dynamics of changes in the gut microbiota of healthy mice fed with lactic acid bacteria and bifidobacteria. Microorganisms 2022, 10, 1020. [Google Scholar] [CrossRef]
- Casado, J.; Lanas, Á.; González, A. Two-component regulatory systems in Helicobacter pylori and Campylobacter jejuni: Attractive targets for novel antibacterial drugs. Front. Cell. Infect. Microbiol. 2022, 12, 977944. [Google Scholar] [CrossRef]
- Ochoa, S.; Ojeda, J.; Martínez, O.A.; Vidal-Veuthey, B.; Collado, L. Exploring the role of healthy dogs as hosts of enterohepatic Helicobacter species using cultivation-dependent and -independent approaches. Zoonoses Public Health 2021, 68, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Husnik, R.; Klimes, J.; Kovarikova, S.; Kolorz, M. Helicobacter species and their association with gastric pathology in a cohort of dogs with chronic gastrointestinal signs. Animals 2022, 12, 1254. [Google Scholar] [CrossRef] [PubMed]
- Thépault, A.; Rose, V.; Queguiner, M.; Chemaly, M.; Rivoal, K. Dogs and cats: Reservoirs for highly diverse Campylobacter jejuni and a potential source of human exposure. Animals 2020, 10, 838. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Hänninen, M.L.; Revez, J.; Hannula, M.; Zanoni, R.G. Occurrence and species level diagnostics of Campylobacter spp., enteric Helicobacter spp. and Anaerobiospirillum spp. in healthy and diarrheic dogs and cats. Vet. Microbiol. 2008, 129, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Riviere, A.; Selak, M.; Lantin, D.; Leroy, F.; De Vuyst, L. Bifidobacteria and butyrate-producing colon bacteria: Importance and strategies for their stimulation in the human gut. Front. Microbiol. 2016, 7, 979. [Google Scholar] [CrossRef] [Green Version]
- Shaw, K.A.; Bertha, M.; Hofmekler, T.; Chopra, P.; Vatanen, T.; Srivatsa, A.; Prince, J.; Kumar, A.; Sauer, C.; Zwick, M.E.; et al. Dysbiosis, inflammation, and response to treatment: A longitudinal study of pediatric subjects with newly diagnosed inflammatory bowel disease. Genome Med. 2016, 8, 75. [Google Scholar] [CrossRef]
- Chen, M.; Tian, S.; Li, S.; Pang, X.; Sun, J.; Zhu, X.; Lv, F.; Lu, Z.; Li, X. β-Glucan extracted from highland barley alleviates dextran sulfate sodium-induced ulcerative colitis in C57BL/6J mice. Molecules 2021, 26, 5812. [Google Scholar] [CrossRef]
- Kim, C.H.; Lee, Y.U.; Kim, K.H.; Kang, S.; Kang, G.H.; Chu, H.; Lee, S. Comparison of metabolites and gut microbes between patients with ulcerative colitis and healthy individuals for an integrative medicine approach to ulcerative colitis-A pilot observational clinical study (STROBE compliant). Diagnostics 2022, 12, 1969. [Google Scholar] [CrossRef]
- Valles-Colomer, M.; Falony, G.; Darzi, Y.; Tigchelaar, E.F.; Wang, J.; Tito, R.Y.; Schiweck, C.; Kurilshikov, A.; Joossens, M.; Wijmenga, C.; et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 2019, 4, 623–632. [Google Scholar] [CrossRef]
- Blake, A.B.; Cigarroa, A.; Klein, H.L.; Khattab, M.R.; Keating, T.; Van De Coevering, P.; Lidbury, J.A.; Steiner, J.M.; Suchodolski, J.S. Developmental stages in microbiota, bile acids, and clostridial species in healthy puppies. J. Vet. Intern. Med. 2020, 34, 2345–2356. [Google Scholar] [CrossRef]
- Ephraim, E.; Jackson, M.I.; Cochrane, C.Y.; Brockel, C.E.; Jewell, D.E. Developmental changes in the canine gut microbiome during breastfeeding, weaning, socialization and maturation to adulthood. FASEB J. 2020, 34, 1. [Google Scholar] [CrossRef]
- Chaitman, J.; Ziese, A.L.; Pilla, R.; Minamoto, Y.; Blake, A.B.; Guard, B.C.; Isaiah, A.; Lidbury, J.A.; Steiner, J.M.; Unterer, S.; et al. Fecal microbial and metabolic profiles in dogs with acute diarrhea receiving either fecal microbiota transplantation or oral metronidazole. Front. Vet. Sci. 2020, 7, 192. [Google Scholar] [CrossRef]
- Werner, M.; Suchodolski, J.S.; Lidbury, J.A.; Steiner, J.M.; Hartmann, K.; Unterer, S. Diagnostic value of fecal cultures in dogs with chronic diarrhea. J. Vet. Intern. Med. 2021, 35, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Marclay, M.; Dwyer, E.; Suchodolski, J.S.; Lidbury, J.A.; Steiner, J.M.; Gaschen, F.P. Recovery of fecal microbiome and bile acids in healthy dogs after tylosin administration with and without fecal microbiota transplantation. Vet. Sci. 2022, 9, 324. [Google Scholar] [CrossRef] [PubMed]
- Guard, B.C.; Honneffer, J.B.; Jergens, A.E.; Jonika, M.M.; Toresson, L.; Lawrence, Y.A.; Webb, C.B.; Hill, S.; Lidbury, J.A.; Steiner, J.M.; et al. Longitudinal assessment of microbial dysbiosis, fecal unconjugated bile acid concentrations, and disease activity in dogs with steroid-responsive chronic inflammatory enteropathy. J. Vet. Intern. Med. 2019, 33, 1295–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giaretta, P.R.; Suchodolski, J.S.; Jergens, A.E.; Steiner, J.M.; Lidbury, J.A.; Cook, A.K.; Hanifeh, M.; Spillmann, T.; Kilpinen, S.; Syrjä, P.; et al. Bacterial biogeography of the colon in dogs with chronic inflammatory enteropathy. Vet. Pathol. 2020, 57, 258–265. [Google Scholar] [CrossRef]
- Weese, J.S.; Jalali, M. Evaluation of the impact of refrigeration on next generation sequencing-based assessment of the canine and feline fecal microbiota. BMC Vet. Res. 2014, 10, 230. [Google Scholar] [CrossRef] [Green Version]
- Bowman, J.P.; Cavanagh, J.; Austin, J.J.; Sanderson, K. Novel Psychrobacter species from Antarctic ornithogenic soils. Int. J. Syst. Bacteriol. 1996, 46, 841–848. [Google Scholar] [CrossRef] [Green Version]
- Meason-Smith, C.; Older, C.E.; Ocana, R.; Dominguez, B.; Lawhon, S.D.; Wu, J.; Patterson, A.P.; Rodrigues Hoffmann, A. Novel association of Psychrobacter and Pseudomonas with malodour in bloodhound dogs, and the effects of a topical product composed of essential oils and plant-derived essential fatty acids in a randomized, blinded, placebo-controlled study. Vet. Dermatol. 2018, 29, 465-e158. [Google Scholar] [CrossRef]
- Chermprapai, S.; Ederveen, T.H.A.; Broere, F.; Broens, E.M.; Schlotter, Y.M.; van Schalkwijk, S.; Boekhorst, J.; van Hijum, S.A.F.T.; Rutten, V.P.M.G. The bacterial and fungal microbiome of the skin of healthy dogs and dogs with atopic dermatitis and the impact of topical antimicrobial therapy, an exploratory study. Vet. Microbiol. 2019, 229, 90–99. [Google Scholar] [CrossRef]
- Flancman, R.; Singh, A.; Weese, J.S. Evaluation of the impact of dental prophylaxis on the oral microbiota of dogs. PLoS ONE 2018, 13, e0199676. [Google Scholar] [CrossRef] [PubMed]
- Mironovich, M.A.; Mitchell, M.S.; Liu, C.C.; Carter, R.T.; Lewin, A.C. The effect of topical ophthalmic proparacaine, fluorescein, and tropicamide on subsequent bacterial cultures in healthy dogs. Vet. Ophthalmol. 2022, 25, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Hesse, C.; Schulz, F.; Bull, C.T.; Shaffer, B.T.; Yan, Q.; Shapiro, N.; Hassan, K.A.; Varghese, N.; Elbourne, L.D.H.; Paulsen, I.T.; et al. Genome-based evolutionary history of Pseudomonas spp. Environ. Microbiol. 2018, 20, 2142–2159. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wei, J.; Yuan, Y.; Yue, T. Diversity and characterization of spoilage-associated psychrotrophs in food in cold chain. Int. J. Food Microbiol. 2019, 290, 86–95. [Google Scholar] [CrossRef]
- Suchodolski, J.S.; Xenoulis, P.G.; Paddock, C.G.; Steiner, J.M.; Jergens, A.E. Molecular analysis of the bacterial microbiota in duodenal biopsies from dogs with idiopathic inflammatory bowel disease. Vet. Microbiol. 2010, 142, 394–400. [Google Scholar] [CrossRef]
- Del Carro, A.; Corrò, M.; Bertero, A.; Colitti, B.; Banchi, P.; Bertolotti, L.; Rota, A. The evolution of dam-litter microbial flora from birth to 60 days of age. BMC Vet. Res. 2022, 18, 95. [Google Scholar] [CrossRef]
- Vilson, Å.; Ramadan, Z.; Li, Q.; Hedhammar, Å.; Reynolds, A.; Spears, J.; Labuda, J.; Pelker, R.; Björkstén, B.; Dicksved, J.; et al. Disentangling factors that shape the gut microbiota in German Shepherd dogs. PLoS ONE 2018, 13, e0193507. [Google Scholar] [CrossRef]
- Guard, B.C.; Mila, H.; Steiner, J.M.; Mariani, C.; Suchodolski, J.S.; Chastant-Maillard, S. Characterization of the fecal microbiome during neonatal and early pediatric development in puppies. PLoS ONE 2017, 12, e0175718. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.D.F.; Salavati Schmitz, S.; Schoenebeck, J.J.; Clements, D.N.; Campbell, S.M.; Gaylor, D.E.; Mellanby, R.J.; Gow, A.G.; Salavati, M. Lactulose drives a reversible reduction and qualitative modulation of the faecal microbiota diversity in healthy dogs. Sci. Rep. 2019, 9, 13350. [Google Scholar] [CrossRef] [Green Version]
- Tanprasertsuk, J.; Jha, A.R.; Shmalberg, J.; Jones, R.B.; Perry, L.M.; Maughan, H.; Honaker, R.W. The microbiota of healthy dogs demonstrates individualized responses to synbiotic supplementation in a randomized controlled trial. Anim. Microbiome 2021, 3, 36. [Google Scholar] [CrossRef]
CG | TG | p | |||
---|---|---|---|---|---|
Mean ± SD | Range | Mean ± SD | Range | ||
week 4 | 5.4 ± 0.31 | 4.7–5.8 | 5.5 ± 0.23 | 5.1–5.8 | 0.96 |
week 5 | 5.7 ± 0.41 | 5–6.0 | 4.5 ± 0.34 | 4–5 | <0.0001 |
week 6 | 5.3 ± 0.31 | 4.9–5.9 | 3.9 ± 0.36 | 3.2–4.7 | <0.0001 |
week 7 | 5.4 ± 0.51 | 4.7–6.1 | 3.5 ± 0.43 | 2.9–4.1 | <0.0001 |
week 8 | 5.7 ± 0.43 | 4.9–6.3 | 2.9 ± 0.38 | 2.4–3.7 | <0.0001 |
CG | TG | p | |||
---|---|---|---|---|---|
Mean ± SD | Range | Mean ± SD | Range | ||
week 4 | 55.1 ± 0.62 | 53.7–56.0 | 54.8 ± 1.30 | 51.1–56.1 | 1 |
week 5 | 54.7 ± 1.51 | 52.0–57.0 | 49.5 ± 3.39 | 44.2–55.5 | 0.0018 |
week 6 | 54.9 ± 1.75 | 51.3–57.2 | 48.1 ± 3.82 | 40.1–54.9 | 0.0002 |
week 7 | 55.6 ± 1.39 | 53.4–58.7 | 44.8 ± 2.77 | 40.30–49.9 | <0.0001 |
week 8 | 55.3 ± 1.20 | 53.9–57.8 | 42.8 ± 1.54 | 40.1–45.4 | <0.0001 |
Week 4 | Week 6 | Week 8 | ||||
---|---|---|---|---|---|---|
CG | TG | CG | TG | CG | TG | |
Actinobacteriota | 0 (0–0.1) | 0.0 (0–0.3) | 0.2 (0.0–0.8) | 0.1 (0.0–0.4) | 0.5 (0.3–0.8) | 0.1 (0.0–1.7) |
Bacteroidota | 3.3 (0.7–5.2) | 4.7 (0.2–11.1) | 2.6 (0.6–12.8) | 1.1 (0.2–2.4) | 1.2 (0.6–2.9) | 0.4 (0.1–6.9) |
Campylobacterota | 0 (0–0) | 0 (0–0.1) | 0 (0–0) | 0 (0–0.0) | 0 (0–0) | 0 (0–0.0) |
Firmicutes | 42.3 (24.1–61.3) | 47.8 (34.5–57.7) | 34.2 (26.4–66.0) | 38.4 (29.2–59.1) | 53.6 (37.5–61.7) | 52.6 (43.0–59.8) |
Fusobacteriota | 6.1 (0.1–7.7) | 6.0 (3.3–12.2) | 10.8 (2.8–30.1) | 7.0 (1.0–22.0) | 8.9 (3.3–13.5) | 3.6 (1.3–9.2) |
Proteobacteria | 44.3 (26.1–57.7) | 37.0 (24.7–46.4) | 30.4 (20.2–33.6) | 40.1 (32.0–50.4) | 28.4 (18.5–40.7) | 38.8 (30.4–46.5) |
Week 4 | Week 6 | Week 8 | ||||
---|---|---|---|---|---|---|
CG | TG | CG | TG | CG | TG | |
Unclassified Muribaculaceae (f) (p = 0.020) | 0.00 (0.00–0.00) | 0.00 (0.00–0.01) | 0.00 (0.00–0.00) | 0.00 (0.00–0.01) | 0.00 (0.00–0.03) | 0.00 (0.00–0.00) |
Coprococcus (p = 0.011) | 0.04 (0.00–0.11) | 0.00 (0.00–0.00) | 0.03 (0.00–0.08) | 0.00 (0.00–0.03) | 0.00 (0.00–0.03) | 0.02 (0.00–0.07) |
Faecalibacterium (p = 0.034) | 0.00 (0.00–0.00) | 0.00 (0.00–0.00) | 0.00 (0.00–0.07) | 0.00 (0.00–0.02) | 0.07 (0.04–0.22) | 0.00 (0.00–0.00) |
Psychrobacter (p = 0.034) | 0.00 (0.00–0.00) | 0.00 (0.00–0.09) | 0.00 (0.00–0.16) | 0.00 (0.00–0.00) | 0.00 (0.00–0.34) | 0.00 (0.00–0.18) |
Pseudomonas (p = 0.037) | 38.09 (13.41–50.51) | 24.51 (17.05–31.29) | 21.30 (13.41–24.91) | 36.33 (26.26–41.29) | 19.94 (12.93–37.62) | 31.15 (19.64–38.46) |
Week 4 | Week 6 | Week 8 | ||||
---|---|---|---|---|---|---|
CG | TG | CG | TG | CG | TG | |
Phylum | ||||||
Observed richness (sobs) (p = 0.016) | 4.4 ± 0.65 | 5.0 ± 0.82 | 5.2 ± 0.69 | 4.8 ± 0.83 | 5.4 ± 0.96 | 4.6 ± 0.50 |
Chao1 (p = 0.015) | 4.4 ± 0.65 | 5.0 ± 0.82 | 5.2 ± 0.73 | 4.8 ± 0.83 | 5.4 ± 0.96 | 4.6 ± 0.50 |
Shannon index (p = 0.216) | 0.9 ± 0.24 | 1.0 ± 0.20 | 1.0 ± 0.30 | 1.0 ± 0.22 | 1.0 ± 0.25 | 0.9 ± 0.17 |
Pielou (p = 0.630) | 0.6 ± 0.16 | 0.6 ± 0.14 | 0.6 ± 0.19 | 0.6 ± 0.11 | 0.6 ± 0.11 | 0.6 ± 0.11 |
Genus | ||||||
Observed richness (p = 0.058) | 22.8 ± 5.42 | 26.1 ± 8.81 | 32.3 ± 7.63 | 28.1 ± 5.92 | 33.9 ± 7.60 | 28.3 ± 8.14 |
Chao1 (p = 0.102) | 23.5 ± 5.58 | 26.3 ± 8.84 | 33.0 ± 7.30 | 28.7 ± 6.01 | 34.3 ± 7.91 | 29.0 ± 8.59 |
Shannon index (p = 0.014) | 1.8 ± 0.42 | 2.0 ± 0.47 | 2.2 ± 0.42 | 2.0 ± 0.32 | 2.2 ± 0.45 | 2.0 ± 0.34 |
Pielou (p = 0.080) | 1.8 ± 0.42 | 2.0 ± 0.47 | 2.2 ± 0.42 | 2.0 ± 0.32 | 2.2 ± 0.45 | 2.0 ± 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meineri, G.; Cocolin, L.; Morelli, G.; Schievano, C.; Atuahene, D.; Ferrocino, I. Effect of an Enteroprotective Complementary Feed on Faecal Markers of Inflammation and Intestinal Microbiota Composition in Weaning Puppies. Vet. Sci. 2023, 10, 434. https://doi.org/10.3390/vetsci10070434
Meineri G, Cocolin L, Morelli G, Schievano C, Atuahene D, Ferrocino I. Effect of an Enteroprotective Complementary Feed on Faecal Markers of Inflammation and Intestinal Microbiota Composition in Weaning Puppies. Veterinary Sciences. 2023; 10(7):434. https://doi.org/10.3390/vetsci10070434
Chicago/Turabian StyleMeineri, Giorgia, Luca Cocolin, Giada Morelli, Carlo Schievano, David Atuahene, and Ilario Ferrocino. 2023. "Effect of an Enteroprotective Complementary Feed on Faecal Markers of Inflammation and Intestinal Microbiota Composition in Weaning Puppies" Veterinary Sciences 10, no. 7: 434. https://doi.org/10.3390/vetsci10070434