A Supplement with Bromelain, Lentinula edodes, and Quercetin: Antioxidant Capacity and Effects on Morphofunctional and Fecal Parameters (Calprotectin, Cortisol, and Intestinal Fermentation Products) in Kennel Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. In Vitro Study
2.1.1. Materials
2.1.2. Chemicals and Reagents
2.1.3. Antioxidant Assays
2.1.4. Statistical Analysis—In Vitro Study
2.2. Feed Supplement Formulation
2.3. In Vivo Study
2.3.1. Animals and Study Design
2.3.2. Nutritional Parameters
2.3.3. Fecal Parameters
2.3.4. Statistical Analysis—In Vivo Study
3. Results
3.1. In Vitro Study
3.2. In Vivo Study
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Semba, R.D.; Tang, A.M. Micronutrients and the pathogenesis of human immunodeficiency virus infection. Br. J. Nutr. 1999, 81, 181–189. [Google Scholar] [CrossRef]
- Lee, S.H. Intestinal Permeability Regulation by Tight Junction: Implication on inflammatory bowel diseases. Intest. Res 2015, 13, 11–18. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev. 2014, 94, 329–354. [Google Scholar] [CrossRef]
- Romao, S. Therapeutic value of oral supplementation with melon superoxide dismutase and wheat gliadin combination. Nutrition 2015, 31, 430–436. [Google Scholar] [CrossRef]
- Panda, D.; Patra, R.; Nandi, S.; Swarup, D. Oxidative stress indices in gastroenteritis in dogs with canine parvoviral infection. Res. Vet. Sci. 2009, 86, 36–42. [Google Scholar] [CrossRef]
- Candellone, A.; Girolami, F.; Badino, P.; Jarriyawattanachaikul, W.; Odore, R. Changes in the oxidative stress status of dogs affected by acute enteropathies. Vet. Sci. 2022, 9, 276. [Google Scholar] [CrossRef] [PubMed]
- Chong, W.C.; Shastri, M.D.; Eri, R. Endoplasmic Reticulum Stress and Oxidative Stress: A Vicious nexus implicated in bowel disease pathophysiology. Int. J. Mol. Sci. 2017, 18, 771. [Google Scholar] [CrossRef] [PubMed]
- Inokuma, T.; Haraguchi, M.; Fujita, F.; Tajima, Y.; Kanematsu, T. Oxidative stress and tumor progression in colorectal cancer. Hepato-Gastroenterol. 2009, 56, 343–347. [Google Scholar]
- Kekec, Y.; Paydas, S.; Tuli, A.; Zorludemir, S.; Sakman, G.; Seydaoglu, G. Antioxidant enzyme levels in cases with gastrointesinal cancer. Eur. J. Intern. Med. 2009, 20, 403–406. [Google Scholar] [CrossRef]
- Grisham, M.B. Oxidants and free radicals in inflammatory bowel disease. Lancet 1994, 344, 859–861. [Google Scholar] [CrossRef] [PubMed]
- Diakowska, D.; Krzystek-Korpacka, M.; Lewandowski, A.; Grabowski, K.; Diakowski, W. Evaluation of 8-hydroxydeoxyguanosine, thiobarbituric acid-reactive substances and total antioxidant status as possible disease markers in oesophageal malignancies. Clin. Biochem. 2008, 41, 796–803. [Google Scholar] [CrossRef]
- Holmes, R.S.; Vaughan, T.L. Epidemiology and pathogenesis of esophageal cancer. Semin. Radiat. Oncol. 2007, 17, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Gart, E.V.; Suchodolski, J.S.; Welsh, T.H.J.; Alaniz, R.C.; Randel, R.D.; Lawhon, S.D. Salmonella Typhimurium and multidirectional communication in the gut. Front. Microbiol. 2016, 7, 1827. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-J.; Hase, K. Gut microbiota–generated metabolites in animal health and disease. Nat. Chem. Biol. 2014, 10, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Suchodolski, J.S. Intestinal microbiota of dogs and cats: A bigger world than we thought. Vet. Clin. N. Am. Small Anim. Pract. 2011, 41, 261–272. [Google Scholar] [CrossRef]
- Ziese, A.-L.; Suchodolski, J.S. Impact of changes in gastrointestinal microbiota in canine and feline digestive diseases. Vet. Clin. N. Am. Small Anim. Pract. 2021, 51, 155–169. [Google Scholar] [CrossRef]
- Ay, C.D. Neutrophil to lymphocyte ratio as a prognostic biomarker in puppies with acute diarrhea. J. Vet. Emerg. Crit. Care 2022, 32, 83–89. [Google Scholar] [CrossRef]
- Collins, S.M.; Bercik, P. The Relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology 2009, 136, 2003–2014. [Google Scholar] [CrossRef]
- Beerda, B.; Schilder, M.B.; Van Hooff, J.A.; De Vries, H.W.; Mol, J.A. Behavioural and hormonal indicators of enduring environmental stress in dogs. Anim. Welf. 2000, 9, 49–62. [Google Scholar] [CrossRef]
- Gazzano, A.; Mariti, C.; Notari, L.; Sighieri, C.; Mcbride, A. Effects of early gentling and early environment on emotional development of puppies. Appl. Anim. Behav. Sci. 2007, 110, 294–304. [Google Scholar] [CrossRef]
- Broom, D.M.; Kirkden, R.D. Welfare, stress, behaviour and pathophysiology. In Veterinary Pathophysiology; Dunlop, R.H., Malbert, C.-H., Eds.; Blackwell: Ames, IA, USA, 2004; pp. 337–369. [Google Scholar]
- Krauss, J.; Klein, A.; Steffan-Dewenter, I.; Tscharntke, T. Effects of habitat area, isolation, and landscape diversity on plant species richness of calcareous grasslands. Biodivers. Conserv. 2004, 13, 1427–1439. [Google Scholar] [CrossRef]
- Meineri, G.; Martello, E.; Radice, E.; Bruni, N.; Saettone, V.; Atuahene, D.; Armandi, A.; Testa, G.; Ribaldone, D.G. Chronic intestinal disorders in humans and pets: Current management and the potential of nutraceutical antioxidants as alternatives. Animals 2022, 12, 812. [Google Scholar] [CrossRef]
- Jewell, D.E.; Toll, P.; Wedekind, K.J.; Zicker, S.C. Effect of increasing dietary antioxidants on concentrations of vitamin E and total alkenals in serum of dogs and cats. Vet. Ther. 2000, 1, 264–272. [Google Scholar]
- Tizard, I.R.; Jones, S.W. The microbiota regulates immunity and immunologic diseases in dogs and cats. Vet. Clin. N. Am. Small Anim. Pract. 2018, 48, 307–322. [Google Scholar] [CrossRef] [PubMed]
- Kamada, N.; Seo, S.U.; Chen, G.Y.; Núñez, G. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 2013, 13, 321–335. [Google Scholar] [CrossRef] [PubMed]
- Kamada, N.; Chen, G.Y.; Inohara, N.; Núñez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 2013, 14, 685–690. [Google Scholar] [CrossRef]
- Candellone, A.; Cerquetella, M.; Girolami, F.; Badino, P.; Odore, R. Acute diarrhea in dogs: Current management and potential role of dietary polyphenols supplementation. Antioxidants 2020, 9, 725. [Google Scholar] [CrossRef] [PubMed]
- Finimundy, T.; Gambato, G.; Fontana, R.; Camassola, M.; Salvador, M.; Moura, S.; Hess, J.; Henriques, J.; Dillon, A.; Roesch-Ely, M. Aqueous extracts of Lentinula edodes and Pleurotus sajor-caju exhibit high antioxidant capability and promising in vitro antitumor activity. Nutr. Res. 2013, 33, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Sande, D.; de Oliveira, G.P.; e Moura, M.A.F.; de Almeida Martins, B.; Lima, M.T.N.S.; Takahashi, J.A. Edible mushrooms as a ubiquitous source of essential fatty acids. Int. Food Res.J. 2019, 125, 108524. [Google Scholar] [CrossRef]
- Orsine, J.V.C.; da Costa, R.V.; Novaes, M.R.C.G. Mushrooms of the genus Agaricus as functional foods. Nutr. Hosp. 2012, 27, 1017–1024. [Google Scholar]
- Manzoor, Z.; Nawaz, A.; Mukhtar, H.; Haq, I. Bromelain: Methods of extraction, purification and therapeutic applications. Braz. Arch. Biol. Technol. 2016, 59, e16150010. [Google Scholar] [CrossRef]
- Reinboth, M.; Wolffram, S.; Abraham, G.; Ungemach, F.R.; Cermak, R. Oral bioavailability of quercetin from different quercetin glycosides in dogs. BJN 2010, 104, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Dodda, D.; Chhajed, R.; Mishra, J. Protective effect of quercetin against acetic acid induced inflammatory bowel disease (IBD) like symptoms in rats: Possible morphological and biochemical alterations. Pharmacol. Rep. 2014, 66, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.-Y.; Shieh, D.-E.; Ho, C.-T. Antioxidant and free radical scavenging activities of edible mushrooms. J. Food Lipids 2002, 9, 35–46. [Google Scholar] [CrossRef]
- Fediaf Labelling Code. FEDIAF. 2019. Available online: https://europeanpetfood.org/ (accessed on 13 November 2021).
- Understanding Pet Food Labels. Pet Companion Magazine. 2022. Available online: www.petcompanionmag.com (accessed on 13 November 2021).
- Karamać, M.; Gai, F.; Longato, E.; Meineri, G.; Janiak, M.A.; Amarowicz, R.; Peiretti, P.G. Antioxidant activity and phenolic composition of amaranth (Amaranthus caudatus) during plant growth. Antioxidants 2019, 8, 173. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.-E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Kusaba, A. Effects of supplementation with Shiitake powder, Lentinula edodes, on anti-oxidative activities and energy/lipid metabolism in healthy dogs. 2022; 1–10, Preprint. [Google Scholar] [CrossRef]
- Hussein, H.; Sunvold, G. Dietary strategies to decrease dog and cat faecal odour components. In Recent Advances in Canine and Feline Nutrition; Reinhart, G., Carey, D., Eds.; Orange Frazer Press: Wilmington, OH, USA, 2000; pp. 153–168. [Google Scholar]
- Bottega, R.; Persico, I.; De Seta, F.; Romano, F.; Di Lorenzo, G. Anti-inflammatory properties of a proprietary bromelain extract (Bromeyal™) after in vitro simulated gastrointestinal digestion. Int. J. Immunopathol. Pharmacol. 2021, 35, 20587384211034686. [Google Scholar] [CrossRef] [PubMed]
- Meineri, G.; Martello, E.; Atuahene, D.; Miretti, S.; Stefanon, B.; Sandri, M.; Biasato, I.; Corvaglia, M.R.; Ferrocino, I.; Cocolin, L.S. Effects of Saccharomyces boulardii Supplementation on Nutritional Status, Fecal Parameters, Microbiota, and Mycobiota in Breeding Adult Dogs. Vet. Sci. 2022, 9, 389. [Google Scholar] [CrossRef]
- Flickinger, E.A.; Schreijen, E.M.W.C.; Patil, A.R.; Hussein, H.S.; Grieshop, C.M.; Merchen, N.R.; Fahey, G.C. Nutrient digestibilities, microbial populations, and protein catabolites as affected by fructan supplementation of dog diets. J. Anim. Sci. 2003, 81, 2008–2018. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Montserrat, D.; Surco-Laos, F.; González-Manzano, S.; González-Paramás, A.M.; Santos-Buelga, C. Antioxidant properties of major metabolites of quercetin. Eur. Food Res. Technol. 2011, 232, 103–111. [Google Scholar]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Kane, S.; Goldberg, M.J. Use of bromelain for mild ulcerative colitis. Ann. Intern. Med. 2000, 132, 680. [Google Scholar] [CrossRef]
- Alagbaoso, C.A.; Mizuno, M. Lentinula edodes polysaccharides suppressed pro-inflammatory cytokines expression and colitis in mice. Arq. Gastroenterol. 2022, 59, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Huamán-Leandro, L.R.; González-Muñoz, M.J.; Fernández-de-Ana, C.; Rodríguez-Blanco, A.; Torres, M.D.; Domínguez, H. Autohydrolysis of Lentinus edodes for obtaining extracts with antiradical properties. Foods 2020, 9, 74. [Google Scholar] [CrossRef]
- Arabbi, P.R.; Genovese, M.I.; Lajolo, F.M. Flavonoids in vegetable foods commonly consumed in Brazil and estimated ingestion by the Brazilian population. J. Agric. Food Chem. 2004, 52, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Sasidharan, S.; Aravindran, S.; Latha, L.Y.; Vijenthi, R.; Saravanan, D.; Amutha, S. In vitro antioxidant activity and hepatoprotective effects of Lentinula edodes against paracetamol-induced hepatotoxicity. Molecules 2010, 15, 4478–4489. [Google Scholar] [CrossRef]
- Hirano, R.; Sasamoto, W.; Matsumoto, A.; Itakura, H.; Igarashi, O.; Kondo, K. Antioxidant ability of various flavonoids against DPPH radicals and LDL oxidation. J. Nutr. Sci. Vitaminol. 2001, 47, 357–362. [Google Scholar] [CrossRef]
- Pollard, S.E.; Kuhnle, G.G.; Vauzour, D.; Vafeiadou, K.; Tzounis, X.; Whiteman, M.; Rice-Evans, C.; Spencer, J.P. The reaction of flavonoid metabolites with peroxynitrite. Biochem. Biophys. Res. Commun. 2006, 350, 960–968. [Google Scholar] [CrossRef]
- Foell, D.; Wittkowski, H.; Vogl, T.; Roth, J. S100 proteins expressed in phagocytes: A novel group of damage-associated molecular pattern molecules. J. Leukoc. Biol. 2007, 81, 28–37. [Google Scholar] [CrossRef]
- Mumolo, M.G.; Bertani, L.; Ceccarelli, L.; Laino, G.; Di Fluri, G.; Albano, E.; Tapete, G.; Costa, F. From bench to bedside: Fecal calprotectin in inflammatory bowel diseases clinical setting. World J. Gastroenterol. 2018, 24, 3681–3694. [Google Scholar] [CrossRef]
- Grellet, A.; Heilmann, R.M.; Lecoindre, P.; Feugier, A.; Day, M.J.; Peeters, D.; Freiche, V.; Hernandez, J.; Grandjean, D.; Suchodolski, J.S.; et al. Fecal calprotectin concentrations in adult dogs with chronic diarrhea. Am. J. Vet. Res. 2013, 74, 706–711. [Google Scholar] [CrossRef]
- Heilmann, R.M.; Steiner, J.M. Clinical utility of currently available biomarkers in inflammatory enteropathies of dogs. J. Vet. Intern. Med. 2018, 32, 1495–1508. [Google Scholar] [CrossRef]
- Heilmann, R.M.; Berghoff, N.; Mansell, J.; Grützner, N.; Parnell, N.K.; Gurtner, C.; Suchodolski, J.S.; Steiner, J.M. Association of fecal calprotectin concentrations with disease severity, response to treatment, and other biomarkers in dogs with chronic inflammatory enteropathies. J. Vet. Intern. Med. 2018, 32, 679–692. [Google Scholar] [CrossRef] [PubMed]
- El-Zahar, H.; El-Rahman, Z.A.; El-Naggar, A. Fecal Calprotectin Concentrations and Other Indicators in Dogs with Idiopathic Inflammatory Bowel Disease. J. Anim. Health Prod. 2022, 10, 88–96. [Google Scholar] [CrossRef]
- Khater, S.I.; Lotfy, M.M.; Alandiyjany, M.N.; Alqahtani, L.S.; Zaglool, A.W.; Althobaiti, F.; Ismail, T.A.; Soliman, M.M.; Saad, S.; Ibrahim, D. Therapeutic potential of quercetin loaded nanoparticles: Novel insights in alleviating colitis in an experimental DSS induced colitis model. Biomedicines 2022, 10, 1654. [Google Scholar] [CrossRef] [PubMed]
- Førland, D.T.; Johnson, E.; Saetre, L.; Lyberg, T.; Lygren, I.; Hetland, G. Effect of an extract based on the medicinal mushroom Agaricus blazei Murill on expression of cytokines and calprotectin in patients with ulcerative colitis and Crohn’s disease. Scand. J. Immunol. 2011, 73, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Zannoni, A.; Pietra, M.; Gaspardo, A.; Accorsi, P.A.; Barone, M.; Turroni, S.; Laghi, L.; Zhu, C.; Brigidi, P.; Forni, M. Non-invasive Assessment of Fecal Stress Biomarkers in Hunting Dogs during Exercise and at Rest. Front. Vet. Sci. 2020, 7, 126. [Google Scholar] [CrossRef]
- Chen, P.Z.; Chong, S.Q.; Chong, Q.; Chan, A.H.; Fernandez, C.J.; Chen, A.G.; Chang, S.F.; Yap, H.H.; Er, K.B. The use of fecal cortisol for enrolment of free-roaming dogs in Singapore to a national rehabilitation-rehoming program: A possible indicator of allostasis. J. Vet. Behav. 2022, 58, 37–44. [Google Scholar] [CrossRef]
- Fan, Z.; Bian, Z.; Huang, H.; Liu, T.; Ren, R.; Chen, X.; Zhang, X.; Wang, Y.; Deng, B.; Zhang, L. Dietary Strategies for Relieving Stress in Pet Dogs and Cats. Antioxidants 2023, 12, 545. [Google Scholar] [CrossRef]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277. [Google Scholar] [CrossRef]
- Lan, H.; Hong, W.; Qian, D.; Peng, F.; Li, H.; Liang, C.; Du, M.; Gu, J.; Mai, J.; Bai, B.; et al. Quercetin modulates the gut microbiota as well as the metabolome in a rat model of osteoarthritis. Bioengineered 2021, 12, 6240–6250. [Google Scholar] [CrossRef]
- Minamoto, Y.; Minamoto, T.; Isaiah, A.; Sattasathuchana, P.; Buono, A.; Rangachari, V.R.; McNeely, I.H.; Lidbury, J.; Steiner, J.M.; Suchodolski, J.S. Fecal short-chain fatty acid concentrations and dysbiosis in dogs with chronic enteropathy. J Vet. Intern. Med. 2019, 33, 1608–1618. [Google Scholar] [CrossRef]
- Parsons, M.E.; Ganellin, C.R. Histamine and its receptors. Br. J. Pharmacol. 2006, 147, S127–S135. [Google Scholar] [CrossRef] [PubMed]
- Kleinschmidt, S.; Meneses, F.; Nolte, I.; Hewicker Trautwein, M. Distribution of mast cell subtypes and immune cell populations in canine intestines: Evidence for age-related decline in T cells and macrophages and increase of IgA-positive plasma cells. Res. Vet. Sci. 2008, 84, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Sommerhoff, C.P.; Osborne, M.L.; Lazarus, S.C. Effect of inhibitors on histamine release from mast cells recovered by bronchoalveolar lavage in Basenji-Greyhound and Mongrel dogs. Agents Actions 1990, 31, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Beynen, A.C. Quercetin for dogs. Bonny Canteen 2020, 1, 30–37. [Google Scholar]
- Chakraborty, A.J.; Mitra, S.; Tallei, T.E.; Tareq, A.M.; Nainu, F.; Cicia, D.; Dhama, K.; Emran, T.B.; Simal-Gandara, J.; Capasso, R. Bromelain a Potential Bioactive Compound: A Comprehensive Overview from a Pharmacological Perspective. Life 2021, 11, 317. [Google Scholar] [CrossRef] [PubMed]
- You, I.; Kim, M.J. Comparison of Gut Microbiota of 96 Healthy Dogs by Individual Traits: Breed, Age, and Body Condition Score. Animals 2021, 11, 2432. [Google Scholar] [CrossRef]
New Formulation Ingredients | mg/g |
---|---|
Lentinula edodes | 10.0 |
Quercetin | 13.5 |
Bromelain | 13.5 |
Maltodextrin | 583.4 |
Appetite stimulants | 379.6 |
Total | 1000.0 |
Placebo ingredients | |
Maltodextrin | 1000.0 |
Assays Performed | Bromelain (B) | Quercetin (Q) | Lentinula edodes (LE) | Mixture (B + Q + LE) |
---|---|---|---|---|
TPC (mg GAE/g DM) | 4.42 a | 1.68 c | 2.99 b | 4.34 a |
DPPH (EC50 µg/mL) | 433.61 a | 0.82 d | 230.90 b | 137.57 c |
ABTS (µmol TE/g DM) | 17.55 b | 10.73 b | 21.71 b | 124.91 a |
Time | Group | Fecal Parameter | |||||
---|---|---|---|---|---|---|---|
Calprotectin (µg/g) Mean ± S.E.M | Cortisol (pg/mg) Mean ± S.E.M | Short-chain fatty acids (μmol/g) Mean ± S.E.M | Indole/scatole (μmol/g) Mean ± S.E.M | N-methylhistamine (ng/g) Mean ± S.E.M | pH Mean ± S.E.M | ||
T0 | CTR | 5.75 ± 0.18 | 0.62 ± 0.01 | 199.9 ± 1.0 | 1.68 ± 0.06 | 108.5 ± 1.6 | 6.51 ± 0.06 |
TRT | 5.79 ± 0.26 | 0.63 ± 0.01 | 200.0 ± 0.7 | 1.69 ± 0.08 | 109.6 ± 1.4 | 6.52 ± 0.04 | |
p-value | 0.9 | 0.7 | >0.9 | 0.9 | 0.6 | >0.9 | |
T7 | CTR | 5.76 ± 0.18 | 0.65 ± 0.01 | 199 ± 1 | 1.86 ± 0.06 | 110 ± 2 | 6.47 ± 0.06 |
TRT | 5.22 ± 0.28 | 0.59 ± 0.02 | 218 ± 4 | 1.48 ± 0.05 | 104 ± 2 | 6.48 ± 0.06 | |
p-value | 0.12 | 0.003 | <0.001 | <0.001 | 0.007 | >0.9 | |
T14 | CTR | 5.88 ± 0.19 | 0.63 ± 0.01 | 197 ± 3 | 1.78 ± 0.07 | 112 ± 1 | 6.48 ± 0.06 |
TRT | 4.43 ± 0.23 | 0.51 ± 0.01 | 247 ± 4 | 1.23 ± 0.05 | 89 ± 3 | 6.49 ± 0.05 | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.9 | |
T21 | CTR | 5.81 ± 0.20 | 0.65 ± 0.01 | 198 ± 3 | 1.75 ± 0.05 | 111 ± 2 | 6.51 ± 0.07 |
TRT | 3.92 ± 0.15 | 0.44 ± 0.01 | 259 ± 4 | 1.11 ± 0.08 | 80 ± 3 | 6.48 ± 0.04 | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.7 | |
T28 | CTR | 5.72 ± 0.18 | 0.63 ± 0.01 | 199 ± 1 | 1.80 ± 0.06 | 111 ± 2 | 6.52 ± 0.07 |
TRT | 3.14 ± 0.20 | 0.40 ± 0.01 | 270 ± 4 | 0.91 ± 0.03 | 67 ± 1 | 6.45 ± 0.06 | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.5 | |
Treatment * time interaction effect on each fecal parameter | −0.22 *** | −0.02 ** | 4.85 ** | −0.06 ** | −3.57 *** | −0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atuahene, D.; Costale, A.; Martello, E.; Mannelli, A.; Radice, E.; Ribaldone, D.G.; Chiofalo, B.; Stefanon, B.; Meineri, G. A Supplement with Bromelain, Lentinula edodes, and Quercetin: Antioxidant Capacity and Effects on Morphofunctional and Fecal Parameters (Calprotectin, Cortisol, and Intestinal Fermentation Products) in Kennel Dogs. Vet. Sci. 2023, 10, 486. https://doi.org/10.3390/vetsci10080486
Atuahene D, Costale A, Martello E, Mannelli A, Radice E, Ribaldone DG, Chiofalo B, Stefanon B, Meineri G. A Supplement with Bromelain, Lentinula edodes, and Quercetin: Antioxidant Capacity and Effects on Morphofunctional and Fecal Parameters (Calprotectin, Cortisol, and Intestinal Fermentation Products) in Kennel Dogs. Veterinary Sciences. 2023; 10(8):486. https://doi.org/10.3390/vetsci10080486
Chicago/Turabian StyleAtuahene, David, Annalisa Costale, Elisa Martello, Alessandro Mannelli, Elisabetta Radice, Davide Giuseppe Ribaldone, Biagina Chiofalo, Bruno Stefanon, and Giorgia Meineri. 2023. "A Supplement with Bromelain, Lentinula edodes, and Quercetin: Antioxidant Capacity and Effects on Morphofunctional and Fecal Parameters (Calprotectin, Cortisol, and Intestinal Fermentation Products) in Kennel Dogs" Veterinary Sciences 10, no. 8: 486. https://doi.org/10.3390/vetsci10080486