Porcine Sapovirus in Northern Vietnam: Genetic Detection and Characterization Reveals Co-Circulation of Multiple Genotypes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Samples
2.3. Total RNA Extraction and cDNA Synthesis
2.4. PCR and Nucleotide Sequencing
2.5. Data Analysis
2.6. Statistical Analysis
3. Results
3.1. Identification of the PoSaV RdRp Gene in Fecal Samples
3.2. Genetic and Phylogenetic Characterization of the Vietnamese PoSaV Strains
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oka, T.; Wang, Q.; Katayama, K.; Saif, L.J. Comprehensive review of human sapoviruses. Clin. Microbiol. Rev. 2015, 28, 32–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiba, S.; Sakuma, Y.; Kogasaka, R.; Akihara, M.; Horino, K.; Nakao, T.; Fukui, S. An outbreak of gastroenteritis associated with calicivirus in an infant home. J. Med. Virol. 1979, 4, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Flewett, T.H.; Davies, H. Letter: Caliciviruses in man. Lancet 1976, 1, 311. [Google Scholar]
- Saif, L.J.; Bohl, E.H.; Theil, K.W.; Cross, R.F.; House, J.A. Rotavirus-like, calicivirus-like, and 23-nm virus-like particles associated with diarrhea in young pigs. J. Clin. Microbiol. 1980, 12, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Katsuta, R.; Sunaga, F.; Oi, T.; Doan, Y.H.; Tsuzuku, S.; Suzuki, Y.; Sano, K.; Katayama, Y.; Omatsu, T.; Oba, M.; et al. First identification of Sapoviruses in wild boar. Virus Res. 2019, 271, 197680. [Google Scholar] [CrossRef]
- Yinda, C.K.; Conceicao-Neto, N.; Zeller, M.; Heylen, E.; Maes, P.; Ghogomu, S.M.; Van Ranst, M.; Matthijnssens, J. Novel highly divergent sapoviruses detected by metagenomics analysis in straw-colored fruit bats in Cameroon. Emerg. Microbes Infect. 2017, 6, e38. [Google Scholar] [CrossRef] [Green Version]
- Bodnar, L.; Di Martino, B.; Di Profio, F.; Melegari, I.; Lanave, G.; Lorusso, E.; Cavalli, A.; Elia, G.; Banyai, K.; Marsilio, F.; et al. Detection and molecular characterization of sapoviruses in dogs. Infect. Genet. Evol. 2016, 38, 8–12. [Google Scholar] [CrossRef]
- Mombo, I.M.; Berthet, N.; Bouchier, C.; Fair, J.N.; Schneider, B.S.; Renaud, F.; Leroy, E.M.; Rougeron, V. Characterization of a genogroup I sapovirus isolated from chimpanzees in the republic of congo. Genome Announc. 2014, 2, e00680-14. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Tohya, Y.; Ogawa, Y.; Numazawa, D.; Kato, K.; Akashi, H. Genetic analysis of calicivirus genomes detected in intestinal contents of piglets in Japan. Arch. Virol. 2006, 151, 1749–1759. [Google Scholar] [CrossRef]
- Lu, Z.; Yokoyama, M.; Chen, N.; Oka, T.; Jung, K.; Chang, K.O.; Annamalai, T.; Wang, Q.; Saif, L.J. Mechanism of Cell Culture Adaptation of an Enteric Calicivirus, the Porcine Sapovirus Cowden Strain. J. Virol. 2016, 90, 1345–1358. [Google Scholar] [CrossRef] [Green Version]
- Flynn, W.T.; Saif, L.J.; Moorhead, P.D. Pathogenesis of porcine enteric calicivirus-like virus in four-day-old gnotobiotic pigs. Am. J. Vet. Res. 1988, 49, 819–825. [Google Scholar] [PubMed]
- Nagai, M.; Wang, Q.; Oka, T.; Saif, L.J. Porcine sapoviruses: Pathogenesis, epidemiology, genetic diversity, and diagnosis. Virus Res. 2020, 286, 198025. [Google Scholar] [CrossRef]
- Dufkova, L.; Scigalkova, I.; Moutelikova, R.; Malenovska, H.; Prodelalova, J. Genetic diversity of porcine sapoviruses, kobuviruses, and astroviruses in asymptomatic pigs: An emerging new sapovirus GIII genotype. Arch. Virol. 2013, 158, 549–558. [Google Scholar] [CrossRef]
- Shen, Q.; Zhang, W.; Yang, S.; Chen, Y.; Ning, H.; Shan, T.; Liu, J.; Yang, Z.; Cui, L.; Zhu, J.; et al. Molecular detection and prevalence of porcine caliciviruses in eastern China from 2008 to 2009. Arch. Virol. 2009, 154, 1625–1630. [Google Scholar] [CrossRef]
- Martella, V.; Banyai, K.; Lorusso, E.; Bellacicco, A.L.; Decaro, N.; Mari, V.; Saif, L.; Costantini, V.; De Grazia, S.; Pezzotti, G.; et al. Genetic heterogeneity of porcine enteric caliciviruses identified from diarrhoeic piglets. Virus Genes 2008, 36, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.H.; Han, M.G.; Funk, J.A.; Bowman, G.; Janies, D.A.; Saif, L.J. Genetic diversity and recombination of porcine sapoviruses. J. Clin. Microbiol. 2005, 43, 5963–5972. [Google Scholar] [CrossRef] [Green Version]
- Reuter, G.; Zimsek-Mijovski, J.; Poljsak-Prijatelj, M.; Di Bartolo, I.; Ruggeri, F.M.; Kantala, T.; Maunula, L.; Kiss, I.; Kecskemeti, S.; Halaihel, N.; et al. Incidence, diversity, and molecular epidemiology of sapoviruses in swine across Europe. J. Clin. Microbiol. 2010, 48, 363–368. [Google Scholar] [CrossRef] [Green Version]
- Gerba, C.P.; Kayed, D. Caliciviruses: A major xause of doodborne illness. J. Food Sci. 2006, 68, 1136–1137. [Google Scholar] [CrossRef]
- Costantini, V.; Loisy, F.; Joens, L.; Le Guyader, F.S.; Saif, L.J. Human and animal enteric caliciviruses in oysters from different coastal regions of the United States. Appl. Environ. Microbiol. 2006, 72, 1800–1809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, H.; Zhang, J.; Gauger, P.C.; Burrough, E.R.; Zhang, J.; Harmon, K.; Wang, L.; Zheng, Y.; Petznick, T.; Li, G. Genetic characterization of porcine sapoviruses identified from pigs during a diarrhoea outbreak in Iowa, 2019. Transbound. Emerg. Dis. 2022, 69, 1246–1255. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Song, C.; Liu, Y.; Qu, K.; Bi, J.; Bi, J.; Wang, Y.; Yang, Y.; Sun, J.; Guo, Z.; et al. High Genetic Diversity of Porcine Sapovirus From Diarrheic Piglets in Yunnan Province, China. Front. Vet. Sci. 2022, 9, 854905. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, M.; Masuda, T.; Ito, M.; Naoi, Y.; Doan, Y.H.; Haga, K.; Tsuchiaka, S.; Kishimoto, M.; Sano, K.; Omatsu, T.; et al. Genetic diversity and intergenogroup recombination events of sapoviruses detected from feces of pigs in Japan. Infect. Genet. Evol. 2017, 55, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.T.; Le, T.L.; Le, T.K.A.; Vu, T.B.H.; Le, T.H.N.; Phasuk, P.; Setrabutr, O.; Shirley, H.; Vinje, J.; Anh, D.D.; et al. Detection and molecular characterization of noroviruses and sapoviruses in children admitted to hospital with acute gastroenteritis in Vietnam. J. Med. Virol. 2012, 84, 290–297. [Google Scholar]
- Nguyen, T.A.; Hoang, L.; Pham, L.D.; Hoang, K.T.; Okitsu, S.; Mizuguchi, M.; Ushijima, H. Norovirus and sapovirus infections among children with acute gastroenteritis in Ho Chi Minh City during 2005–2006. J. Trop. Pediatr. 2008, 54, 102–113. [Google Scholar] [CrossRef] [Green Version]
- Song, D.S.; Kang, B.K.; Oh, J.S.; Ha, G.W.; Yang, J.S.; Moon, H.J.; Jang, Y.S.; Park, B.K. Multiplex reverse transcription-PCR for rapid differential detection of porcine epidemic diarrhea virus, transmissible gastroenteritis virus, and porcine group A rotavirus. J. Vet. Diagn. Investig. 2006, 18, 278–281. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Song, D.S.; Park, B.K. Differential detection of transmissible gastroenteritis virus and porcine epidemic diarrhea virus by duplex RT-PCR. J. Vet. Diagn. Investig. 2001, 13, 516–520. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Huang, P.W.; Zhong, W.M.; Farkas, T.; Cubitt, D.W.; Matson, D.O. Design and evaluation of a primer pair that detects both Norwalk- and Sapporo-like caliciviruses by RT-PCR. J. Virol. Methods 1999, 83, 145–154. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [Green Version]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Oka, T.; Lu, Z.; Phan, T.; Delwart, E.L.; Saif, L.J.; Wang, Q. Genetic Characterization and Classification of Human and Animal Sapoviruses. PLoS ONE 2016, 11, e0156373. [Google Scholar] [CrossRef] [Green Version]
- Collins, P.J.; Martella, V.; Buonavoglia, C.; O’Shea, H. Detection and characterization of porcine sapoviruses from asymptomatic animals in Irish farms. Vet. Microbiol. 2009, 139, 176–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, C.; He, H.; Zhang, C.; Zhang, X.; Han, J.; Zhang, H.; Luo, Y.; Wu, Y.; Wang, Y.; Ge, B.; et al. One-step triplex reverse-transcription PCR detection of porcine epidemic diarrhea virus, porcine sapelovirus, and porcine sapovirus. J. Vet. Diagn. Investig. 2019, 31, 909–912. [Google Scholar] [CrossRef]
- Salamunova, S.; Jackova, A.; Mandelik, R.; Novotny, J.; Vlasakova, M.; Vilcek, S. Molecular detection of enteric viruses and the genetic characterization of porcine astroviruses and sapoviruses in domestic pigs from Slovakian farms. BMC Vet. Res. 2018, 14, 313. [Google Scholar] [CrossRef]
- Wang, Q.H.; Souza, M.; Funk, J.A.; Zhang, W.; Saif, L.J. Prevalence of noroviruses and sapoviruses in swine of various ages determined by reverse transcription-PCR and microwell hybridization assays. J. Clin. Microbiol. 2006, 44, 2057–2062. [Google Scholar] [CrossRef] [Green Version]
- Valente, C.S.; Alfieri, A.F.; Barry, A.F.; Leme, R.A.; Lorenzetti, E.; Alfieri, A.A. Age distribution of porcine sapovirus asymptomatic infection and molecular evidence of genogroups GIII and GIX? circulation in distinct Brazilian pig production systems. Trop. Anim. Health Prod. 2016, 48, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Marthaler, D.; Fredrickson, R.; Gauger, P.C.; Zhang, J.; Burrough, E.R.; Petznick, T.; Li, G. Genetically divergent porcine sapovirus identified in pigs, United States. Transbound. Emerg. Dis. 2020, 67, 18–28. [Google Scholar] [CrossRef]
- Das Merces Hernandez, J.; Stangarlin, D.C.; Siqueira, J.A.; de Souza Oliveira, D.; Portal, T.M.; Barry, A.F.; Dias, F.A.; de Matos, J.C.; Mascarenhas, J.D.; Gabbay, Y.B. Genetic diversity of porcine sapoviruses in pigs from the Amazon region of Brazil. Arch. Virol. 2014, 159, 927–933. [Google Scholar] [CrossRef]
- Guo, M.; Hayes, J.; Cho, K.O.; Parwani, A.V.; Lucas, L.M.; Saif, L.J. Comparative pathogenesis of tissue culture-adapted and wild-type Cowden porcine enteric calicivirus (PEC) in gnotobiotic pigs and induction of diarrhea by intravenous inoculation of wild-type PEC. J. Virol. 2001, 75, 9239–9251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Wang, L.; Zheng, Y.; Zhang, J.; Guo, B.; Yoon, K.J.; Gauger, P.C.; Harmon, K.M.; Main, R.G.; Li, G. Metagenomic analysis of the RNA fraction of the fecal virome indicates high diversity in pigs infected by porcine endemic diarrhea virus in the United States. Virol. J. 2018, 15, 95. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Li, B.; Tao, J.; Cheng, J.; Liu, H. The complex co-infections of multiple porcine diarrhea viruses in local area based on the Luminex xTAG multiplex detection method. Front. Vet. Sci. 2021, 8, 602866. [Google Scholar] [CrossRef]
- Katsuda, K.; Kohmoto, M.; Kawashima, K.; Tsunemitsu, H. Frequency of enteropathogen detection in suckling and weaned pigs with diarrhea in Japan. J. Vet. Diagn. Investig. 2006, 18, 350–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheuer, K.A.; Oka, T.; Hoet, A.E.; Gebreyes, W.A.; Molla, B.Z.; Saif, L.J.; Wang, Q. Prevalence of porcine noroviruses, molecular characterization of emerging porcine sapoviruses from finisher swine in the United States, and unified classification scheme for sapoviruses. J. Clin. Microbiol. 2013, 51, 2344–2353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Target Virus | Name of Primer | Nucleotide Sequence (5′–3′) | PCR Product (bp) | References |
---|---|---|---|---|
Sapovirus | P289 | TGA CAA TGT AAT CAT CAC CAT A | 331 | [27] |
P290 | GAT TAC TCC AAG TGG GAC TCC AC | |||
Porcine rotavirus | Rot3 | AAA GAT GCT AGG GAC AAA ATT G | 308 | [25,26] |
Rot5 | TTC AGA TTG TGG AGC TAT TCC A | |||
Porcine epidemic diarrhea virus | P1 | TTC TGA GTC ACG AAC AGC CA | 650 | [26] |
P2 | CAT ATG CAG CCT GCT CTG AA | |||
Transmissible gastroenteritis virus | T1F | GTG GTT TTG GTY RTA AAT GC | 859 | [26] |
T1R | CAC TAA CCA ACG TGG ARC TA |
GenBank Accession No. | Strain | Location | Source | Year | Virus |
---|---|---|---|---|---|
KX688105.1 | 1ah | China | Pigs | 2010 | Sapovirus |
KF204570.1 | CH430 | China | Pigs | 2012 | Sapovirus |
KT600272.1 | XJ-SHZ1 | China | Pigs | 2014 | Sapovirus |
MF997471.1 | Shenzhen-1 | China | Human | 2015 | Sapovirus |
MK379007.1 | IRES_NM01_C3 | China | Pigs | 2017 | Sapovirus |
OP413967.1 | PF183 | China | Pigs | 2018 | Sapovirus |
OK485000.1 | YNLH | China | Pigs | 2020 | Sapovirus |
OK484998.1 | YNJD | China | Pigs | 2020 | Sapovirus |
OK484999.1 | YNAN | China | Pigs | 2020 | Sapovirus |
KF924392.1 | VIG-AM-116006/BRA | Brazil | Human | 2010 | Sapovirus |
AY237420.2 | Mc10 | Thailand | Human | 2003 | Sapovirus |
U95645.1 | 29845 | UK | Human | 1992 | Sapovirus |
EU221477.1 | 43/06-18p3/06/ITA | Italy | Pigs | 2006 | Sapovirus |
JN644270.1 | PC45/NL | Belgium | Pigs | 2009 | Sapovirus |
DQ389630.1 | JB-GC90 | Republic of Korea | Pigs | 2004 | Sapovirus |
DQ389627.1 | JB-SC54 | Republic of Korea | Pigs | 2004 | Sapovirus |
DQ389616.1 | JB-JE92 | Republic of Korea | Pigs | 2005 | Sapovirus |
MK965898.1 | IL31538 | USA | Pigs | 2019 | Sapovirus |
MW316744.1 | MO_1188 | USA | Pigs | 2020 | Sapovirus |
MW316748.1 | OH_19789 | USA | Pigs | 2020 | Sapovirus |
MH490911.1 | Mex | Mexico | Pigs | 2016 | Sapovirus |
DQ115889.1 | Aragua | Venezuela | Pigs | 2003 | Sapovirus |
MW316747.1 | IL_16624 | USA | Pigs | 2020 | Sapovirus |
AY615811.1 | SWECII/VA103 | The Netherlands | Pigs | 2004 | Sapovirus |
AY615810.1 | SWECII/VA14 | The Netherlands | Pigs | 2004 | Sapovirus |
AY615804.1 | PECIVA20 | The Netherlands | Pigs | 2004 | Sapovirus |
DQ383274.2 | PEC/swine-Id3 | Hungary | Pigs | 2005 | Sapovirus |
AB126320.1 | swine43 | Japan | Pigs | 2003 | Norovirus |
Province/City | No. of Collected Samples | No. of Gene-Positive Samples/(%) | No. of Farms | No. of Gene-Positive Farms/(%) |
---|---|---|---|---|
Hanoi | 10 | 1/(10.00) x | 2 | 1/(50.00) x |
Haiphong | 10 | 1/(10.00) x | 2 | 1/(50.00) x |
Hungyen | 43 | 6/(13.95) x | 8 | 3/(37.50) xy |
Thanhhoa | 6 | 0/(0.00) | 1 | 0/(0.00) |
Vinhphuc | 33 | 2/(6.06) x | 7 | 2/(28.57) y |
Total | 102 | 10/(9.80) | 20 | 7 (35.00) |
Type of Pigs/Farm Scale | Age | Number of Tested Samples | Number of RdRp Gene-Positive Samples/(%) |
---|---|---|---|
Piglets | <21 days | 6 | 0/(0.00) |
≥21 days | 33 | 2/(6.06) | |
Fattening pigs | 33 | 5/(15.15) | |
Sows | 30 | 3/(10.00) | |
<100 | 52 | 3/(5.77) | |
100–300 | 20 | 3/(15.00) | |
>300 | 30 | 4/(13.33) |
Strain Name | Virus with the Highest Nucleotide Identity | ||||
---|---|---|---|---|---|
Strain | Country | Accession Number | Year | % Identity | |
Vietnam/Pig/VNUA-P01/2022 | Aragua/VE | Venezuela | DQ115889.1 | 2003 | 92.65 |
Vietnam/Pig/VNUA-P07/2022 | JB-GC90/04 | Republic of Korea | DQ389630.1 | 2004 | 90.63 |
Vietnam/Pig/VNUA-P09/2022 | Aragua/VE | Venezuela | DQ115889.1 | 2003 | 92.65 |
Vietnam/Pig/VNUA-P15/2022 | Aragua/VE | Venezuela | DQ115889.1 | 2003 | 92.65 |
Vietnam/Pig/VNUA-P25/2022 | Aragua/VE | Venezuela | DQ115889.1 | 2003 | 92.65 |
Vietnam/Pig/VNUA-P65/2022 | Aragua/VE | Venezuela | DQ115889.1 | 2003 | 92.65 |
Vietnam/Pig/VNUA-P79/2022 | Aragua/VE | Venezuela | DQ115889.1 | 2003 | 92.65 |
Vietnam/Pig/VNUA-P89/2022 | Aragua/VE | Venezuela | DQ115889.1 | 2003 | 92.65 |
Vietnam/Pig/VNUA-P113/2022 | SWECII/VA103 | The Netherlands | AY615811.1 | 2016 | 86.62 |
Vietnam/Pig/VNUA-P118/2022 | SWECII/VA103 | The Netherlands | AY615811.1 | 2016 | 86.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, H.V.; Truong, T.H.; Tran, G.T.H.; Rapichai, W.; Rattanasrisomporn, A.; Choowongkomon, K.; Rattanasrisomporn, J. Porcine Sapovirus in Northern Vietnam: Genetic Detection and Characterization Reveals Co-Circulation of Multiple Genotypes. Vet. Sci. 2023, 10, 430. https://doi.org/10.3390/vetsci10070430
Dong HV, Truong TH, Tran GTH, Rapichai W, Rattanasrisomporn A, Choowongkomon K, Rattanasrisomporn J. Porcine Sapovirus in Northern Vietnam: Genetic Detection and Characterization Reveals Co-Circulation of Multiple Genotypes. Veterinary Sciences. 2023; 10(7):430. https://doi.org/10.3390/vetsci10070430
Chicago/Turabian StyleDong, Hieu Van, Thai Ha Truong, Giang Thi Huong Tran, Witsanu Rapichai, Amonpun Rattanasrisomporn, Kiattawee Choowongkomon, and Jatuporn Rattanasrisomporn. 2023. "Porcine Sapovirus in Northern Vietnam: Genetic Detection and Characterization Reveals Co-Circulation of Multiple Genotypes" Veterinary Sciences 10, no. 7: 430. https://doi.org/10.3390/vetsci10070430
APA StyleDong, H. V., Truong, T. H., Tran, G. T. H., Rapichai, W., Rattanasrisomporn, A., Choowongkomon, K., & Rattanasrisomporn, J. (2023). Porcine Sapovirus in Northern Vietnam: Genetic Detection and Characterization Reveals Co-Circulation of Multiple Genotypes. Veterinary Sciences, 10(7), 430. https://doi.org/10.3390/vetsci10070430