Incorporation of Testicular Ultrasonography and Hair Steroid Concentrations in Bull Breeding Soundness Evaluation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Testicular Ultrasonography
2.3. Sample Collection and Processing
2.3.1. Hair
2.3.2. Semen
2.4. Semen Evaluation
2.5. Hair Steroid Assays
2.6. Statistical Analyses
3. Results
3.1. Testicular Ultrasonography
3.2. Testicular Parenchyma and Spermatozoan Parameters
3.3. Steroid Concentrations
3.4. Steroid Concentrations and Semen Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barth, A.D. Review: The Use of Bull Breeding Soundness Evaluation to Identify Subfertile and Infertile Bulls. Animal 2018, 12, s158–s164. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.L.; Bormann, J.M.; Weaber, R.L.; Grieger, D.M.; Rolf, M.M. Selection for Bull Fertility: A Review. Transl. Anim. Sci. 2020, 4, 423–441. [Google Scholar] [CrossRef]
- Abdelnaby, E.A. Testicular Haemodynamics, Plasma Testosterone and Oestradiol Concentrations, and Serum Nitric Oxide Levels in the Egyptian Buffalo Bull after a Single Administration of Human Chorionic Gonadotropin. Reprod. Domest. Anim. 2022, 57, 754–760. [Google Scholar] [CrossRef]
- Fadl, A.M.; Abdelnaby, E.A.; El-Sherbiny, H.R. Supplemental Dietary Zinc Sulphate and Folic Acid Combination Improves Testicular Volume and Haemodynamics, Testosterone Levels and Semen Quality in Rams under Heat Stress Conditions. Reprod. Domest. Anim. 2022, 57, 567–576. [Google Scholar] [CrossRef]
- Spaggiari, G.; Granata, A.R.M.; Santi, D. Testicular Ultrasound Inhomogeneity Is an Informative Parameter for Fertility Evaluation. Asian J. Androl. 2020, 22, 302–308. [Google Scholar] [CrossRef]
- Eilts, B.E.; Pechman, R.D. B-mode ultrasound observations of bull testes during breeding soundness examinations. Theriogenology 1988, 30, 1169–1175. [Google Scholar] [CrossRef] [PubMed]
- Arteaga, A.A.; Barth, A.D.; Brito, L.F.C. Relationship between Semen Quality and Pixel-Intensity of Testicular Ultrasonograms after Scrotal Insulation in Beef Bulls. Theriogenology 2005, 64, 408–415. [Google Scholar] [CrossRef]
- Barth, A.D.; Alisio, L.; Avilés, M.; Arteaga, A.A.; Campbell, J.R.; Hendrick, S.H. Fibrotic Lesions in the Testis of Bulls and Relationship to Semen Quality. Anim. Reprod. Sci. 2008, 106, 274–288. [Google Scholar] [CrossRef]
- Tomlinson, M.; Jennings, A.; Macrae, A.; Truyers, I. The Value of Trans-Scrotal Ultrasonography at Bull Breeding Soundness Evaluation (BBSE): The Relationship between Testicular Parenchymal Pixel Intensity and Semen Quality. Theriogenology 2017, 89, 169–177. [Google Scholar] [CrossRef]
- Yimer, N.; Haron, A.W. Trans-Scrotal Ultrasonography and Breeding Soundness Evaluation of Bulls in a Herd of Dairy and Beef Cattle with Poor Reproductive Performance. Artic. Pertanika J. Trop. Agric. Sci. 2011, 34, 217–228. [Google Scholar]
- Brito, L.F.C. Endocrine Control of Testicular Development and Initiation of Spermatogenesis in Bulls. In Bovine Reproduction; Wiley: Hoboken, NJ, USA, 2021; pp. 47–57. [Google Scholar] [CrossRef]
- Mormède, P.; Andanson, S.; Aupérin, B.; Beerda, B.; Guémené, D.; Malmkvist, J.; Manteca, X.; Manteuffel, G.; Prunet, P.; van Reenen, C.G.; et al. Exploration of the Hypothalamic-Pituitary-Adrenal Function as a Tool to Evaluate Animal Welfare. Physiol. Behav. 2007, 92, 317–339. [Google Scholar] [CrossRef] [PubMed]
- Brkovich, A.M.; Fisher, W.A. Psychological Distress and Infertility: Forty Years of Research. J. Psychosom. Obstet. Gynaecol. 1998, 19, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Hardy, M.P.; Gao, H.B.; Dong, Q.; Ge, R.; Wang, Q.; Chai, W.R.; Feng, X.; Sottas, C. Stress Hormone and Male Reproductive Function. Cell Tissue Res. 2005, 322, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Barth, A.D.; Bowman, P.A. The Sequential Appearance of Sperm Abnormalities after Scrotal Insulation or Dexamethasone Treatment in Bulls. Can. Vet. J. 1994, 35, 93. [Google Scholar]
- Thibier, M.; Rolland, O. The effect of dexamethasone (DXM) on circulating testosterone (T) and luteinizing hormone (LH) in young postpubertal bulls. Theriogenology 1976, 5, 53–60. [Google Scholar] [CrossRef]
- Whirledge, S.; Cidlowski, J.A. A Role for Glucocorticoids in Stress-Impaired Reproduction: Beyond the Hypothalamus and Pituitary. Endocrinology 2013, 154, 4450–4468. [Google Scholar] [CrossRef]
- Gabai, G.; Mongillo, P.; Giaretta, E.; Marinelli, L. Do Dehydroepiandrosterone (DHEA) and Its Sulfate (DHEAS) Play a Role in the Stress Response in Domestic Animals? Front. Vet. Sci. 2020, 7, 588835. [Google Scholar] [CrossRef]
- Whitham, J.C.; Bryant, J.L.; Miller, L.J. Beyond Glucocorticoids: Integrating Dehydroepiandrosterone (DHEA) into Animal Welfare Research. Animals 2020, 10, 1381. [Google Scholar] [CrossRef]
- Almeida, P.E.; Weber, P.S.D.; Burton, J.L.; Zanella, A.J. Depressed DHEA and Increased Sickness Response Behaviors in Lame Dairy Cows with Inflammatory Foot Lesions. Domest. Anim. Endocrinol. 2008, 34, 89–99. [Google Scholar] [CrossRef]
- Meyer, J.S.; Novak, M.A. Minireview: Hair Cortisol: A Novel Biomarker of Hypothalamic-Pituitary- Adrenocortical Activity. Endocrinology 2012, 153, 4120–4127. [Google Scholar] [CrossRef]
- Peric, T.; Corazzin, M.; Romanzin, A.; Bovolenta, S.; Prandi, A.; Montillo, M.; Comin, A. Cortisol and DHEA Concentrations in the Hair of Dairy Cows Managed Indoor or on Pasture. Livest. Sci. 2017, 202, 39–43. [Google Scholar] [CrossRef]
- Chapwanya, A.; Callanan, J.; Larkin, H.; Keenan, L.; Vaughan, L. Breeding soundness evaluation of bulls by semen analysis, testicular fine needle aspiration cytology and trans-scrotal ultrasonography. Ir. Vet. J. 2008, 61, 315–318. [Google Scholar] [CrossRef] [PubMed]
- Chenoweth, P.J.; McPherson, F.J. Bull Breeding Soundness, Semen Evaluation and Cattle Productivity. Anim. Reprod. Sci. 2016, 169, 32–36. [Google Scholar] [CrossRef]
- Probo, M.; Peric, T.; Fusi, J.; Prandi, A.; Faustini, M.; Veronesi, M.C. Hair Cortisol and Dehydroepiandrosterone Sulfate Concentrations in Healthy Beef Calves from Birth to 6 Months of Age. Theriogenology 2021, 175, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Peric, T.; Comin, A.; Corazzin, M.; Montillo, M.; Cappa, A.; Campanile, G.; Prandi, A. Short Communication: Hair Cortisol Concentrations in Holstein-Friesian and Crossbreed F1 Heifers. J. Dairy Sci. 2013, 96, 3023–3027. [Google Scholar] [CrossRef]
- Stradaioli, G.; Peric, T.; Montillo, M.; Comin, A.; Corazzin, M.; Veronesi, M.C.; Prandi, A. Hair Cortisol and Testosterone Concentrations and Semen Production of Bos Taurus Bulls. Ital. J. Anim. Sci. 2017, 16, 631–639. [Google Scholar] [CrossRef]
- Barceló-Fimbres, M.; Campos-Chillón, L.F.; Seidel, J.E. In Vitro Fertilization Using Non-Sexed and Sexed Bovine Sperm: Sperm Concentration, Sorter Pressure, and Bull Effects. Reprod. Domest. Anim. 2011, 46, 495–502. [Google Scholar] [CrossRef]
- Seidel, G.E. Several Insights on Evaluation of Semen. Anim. Reprod. 2012, 9, 329–332. [Google Scholar]
- O’Meara, C.; Henrotte, E.; Kupisiewicz, K.; Latour, C.; Broekhuijse, M.; Camus, A.; Gavin-Plagne, L.; Sellem, E. The Effect of Adjusting Settings within a Computer-Assisted Sperm Analysis (CASA) System on Bovine Sperm Motility and Morphology Results. Anim. Reprod. 2022, 19, e20210077. [Google Scholar] [CrossRef]
- Morgan, C.A., III; Southwick, S.; Hazlett, G.; Rasmusson, A.; Hoyt, G.; Zimolo, Z.; Charney, D. Relationships Among Plasma Dehydroepiandrosterone Sulfate and Cortisol Levels, Symptoms of Dissociation, and Objective Performance in Humans Exposed to Acute Stress. Arch. Gen. Psychiatry 2004, 61, 819–825. [Google Scholar] [CrossRef]
- Saczawa, M.E.; Graber, J.A.; Brooks-Gunn, J.; Warren, M.P. Methodological Considerations in Use of the Cortisol/DHEA(S) Ratio in Adolescent Populations. Psychoneuroendocrinology 2013, 38, 2815–2819. [Google Scholar] [CrossRef] [PubMed]
- de Fonseca, P.A.S.; dos Santos, F.C.; Lam, S.; Suárez-Vega, A.; Miglior, F.; Schenkel, F.S.; de Diniz, L.A.F.; Id-Lahoucine, S.; Carvalho, M.R.S.; Cánovas, A. Genetic Mechanisms Underlying Spermatic and Testicular Traits within and among Cattle Breeds: Systematic Review and Prioritization of GWAS Results. J. Anim. Sci. 2018, 96, 4978–4999. [Google Scholar] [CrossRef] [PubMed]
- Labrie, F. All Sex Steroids Are Made Intracellularly in Peripheral Tissues by the Mechanisms of Intracrinology after Menopause. J. Steroid Biochem. Mol. Biol. 2015, 145, 133–138. [Google Scholar] [CrossRef] [PubMed]
Testicular Parenchyma | |||
---|---|---|---|
Fertility Parameters (Fresh Semen) | Homogenous | Heterogenous | p |
Ejaculate volume | 6.7 ± 0.5 | 6.6 ± 0.5 | 0.86 |
Sperm concentration (×106/mL) | 710 ± 133 | 940 ± 186 | 0.32 |
Motile sperm (%) | 54.5 ± 8.2 | 60.5 ± 9.6 | 0.64 |
Testicular Parenchyma | |||
---|---|---|---|
Fertility Parameters (Post-Thawing) | Homogenous | Heterogenous | p |
Motile sperm (%) | 65.7 ± 4.7 a | 51.6 ± 3.8 b | 0.02 |
Progressively motile sperm (%) | 41.3 ± 4.5 | 33.8 ± 3.9 | 0.21 |
Viable sperm (%) | 49.1 ± 4.5 | 44.2 ± 4.2 | 0.44 |
Motility yield (%) | 41.9 ± 2.4 | 41.8 ± 2.5 | 0.97 |
Testicular Parenchyma | |||
---|---|---|---|
Hair Steroid Concentrations | Homogenous | Heterogenous | p |
HCC | 1.1 ± 0.1 | 1.3 ± 0.1 | 0.21 |
HDC | 6.7 ± 0.7 | 7.8 ± 0.6 | 0.54 |
HTC | 4.8 ± 0.6 | 4.2 ± 0.6 | 0.53 |
C/DHEA-S ratio | 17.6 ± 1.8 | 16.6 ± 1.9 | 0.70 |
Fertility Parameter | p | |
---|---|---|
Motile sperm (%) | 22.88 + 2.88 (DHEA-S); R2 = 0.76 | 0.003 |
Progressively motile sperm | 8.53 + 2.66 (DHEA-S); R2 = 0.70 | 0.006 |
Motility yield | 17.19 + 2.86 (DHEA-S); R2 = 0.71 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cotticelli, A.; Navas, L.; Calabria, A.; Bifulco, G.; Campanile, G.; Peric, T.; Prandi, A.; D’Occhio, M.J.; Russo, M. Incorporation of Testicular Ultrasonography and Hair Steroid Concentrations in Bull Breeding Soundness Evaluation. Vet. Sci. 2023, 10, 373. https://doi.org/10.3390/vetsci10060373
Cotticelli A, Navas L, Calabria A, Bifulco G, Campanile G, Peric T, Prandi A, D’Occhio MJ, Russo M. Incorporation of Testicular Ultrasonography and Hair Steroid Concentrations in Bull Breeding Soundness Evaluation. Veterinary Sciences. 2023; 10(6):373. https://doi.org/10.3390/vetsci10060373
Chicago/Turabian StyleCotticelli, Alessio, Luigi Navas, Alfonso Calabria, Giovanna Bifulco, Giuseppe Campanile, Tanja Peric, Alberto Prandi, Michael J. D’Occhio, and Marco Russo. 2023. "Incorporation of Testicular Ultrasonography and Hair Steroid Concentrations in Bull Breeding Soundness Evaluation" Veterinary Sciences 10, no. 6: 373. https://doi.org/10.3390/vetsci10060373
APA StyleCotticelli, A., Navas, L., Calabria, A., Bifulco, G., Campanile, G., Peric, T., Prandi, A., D’Occhio, M. J., & Russo, M. (2023). Incorporation of Testicular Ultrasonography and Hair Steroid Concentrations in Bull Breeding Soundness Evaluation. Veterinary Sciences, 10(6), 373. https://doi.org/10.3390/vetsci10060373