Long-Acting Opioid Analgesics for Acute Pain: Pharmacokinetic Evidence Reviewed
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
5. Addendum
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perret-Gentil, F.P.; Doherr, M.G.; Spadavecchia, C.; Levionnois, O.L. Attitudes of Swiss veterinarians towards pain and analgesia in dogs and cats. Schweiz. Arch. Tierheilkd. 2014, 156, 111–117. [Google Scholar] [CrossRef]
- Sano, H.; Barker, K.; Odom, T.; Lewis, K.; Giordano, P.; Walsh, V.; Chambers, J.P. A survey of dog and cat anaesthesia in a sample of veterinary practices in New Zealand. N. Z. Vet. J. 2018, 66, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Foley, P.L.; Kendall, L.V.; Turner, P.V. Clinical Management of Pain in Rodents. Comp. Med. 2019, 69, 468–489. [Google Scholar] [CrossRef] [PubMed]
- Carbone, L. Ethical and IACUC Considerations Regarding Analgesia and Pain Management in Laboratory Rodents. Comp. Med. 2019, 69, 443–450. [Google Scholar] [CrossRef]
- Grant, G.J.; Vermeulen, K.; Zakowski, M.I.; Stenner, M.; Turndorf, H.; Langerman, L. Prolonged Analgesia and Decreased Toxicity with Liposomal Morphine in a Mouse Model. Anesth. Analg. 1994, 79, 706–709. [Google Scholar] [CrossRef]
- Medlicott, N.J.; Waldron, N.A.; Foster, T.P. Sustained release veterinary parenteral products. Adv. Drug Deliv. Rev. 2004, 56, 1345–1365. [Google Scholar] [CrossRef] [PubMed]
- Winzenburg, G.; Schmidt, C.; Fuchs, S.; Kissel, T. Biodegradable polymers and their potential use in parenteral veterinary drug delivery systems. Adv. Drug Deliv. Rev. 2004, 56, 1453–1466. [Google Scholar] [CrossRef]
- Cowan, A.; Lewis, J.W.; Macfarlane, I.R. Agonist and Antagonist Properties of Buprenorphine, A New Antinociceptive Agent. Br. J. Pharmacol. 1977, 60, 537–545. [Google Scholar] [CrossRef]
- Cowan, A.; Doxey, J.C.; Harry, E.J. The Animal Pharmacology of Buprenorphine, An Oripavine Analgesic Agent. Br. J. Pharmacol. 1977, 60, 547–554. [Google Scholar] [CrossRef]
- Flecknell, P.A. The relief of pain in laboratory animals. Lab. Anim. 1984, 18, 147–160. [Google Scholar] [CrossRef]
- Roughan, J.V.; Flecknell, P.A. Buprenorphine: A reappraisal of its antinociceptive effects and therapeutic use in alleviating post-operative pain in animals. Lab. Anim. 2002, 36, 322–343. [Google Scholar] [CrossRef] [PubMed]
- Guarnieri, M.; Brayton, C.; DeTolla, L.; Forbes-McBean, N.; Sarabia-Estrada, R.; Zadnik, P. Safety and efficacy of buprenorphine for analgesia in laboratory mice and rats. Lab. Anim. 2012, 41, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Guarnieri, M.; Brayton, C.; Sarabia-Estrada, R.; Tyler, B.; McKnight, P.; DeTolla, L. Subcutaneous Implants of a Cholesterol-Triglyceride-Buprenorphine Suspension in Rats. J. Vet. Med. 2017, 2017, 3102567. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.S.; Kao, C.H.; Liu, S.Y.; Sung, K.C.; Kuei, C.H.; Wang, J.J. Novel depots of buprenorphine have a long-acting effect for the management of physical dependence to morphine. J. Pharm. Pharmacol. 2006, 58, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Foley, P.L. Current options for providing sustained analgesia to laboratory animals. Lab. Anim. 2014, 43, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Kleppner, S.R.; Patel, R.; Costantini, L.C.; McDonough, J. In-vitro and in-vivo characterization of a buprenorphine delivery system. J. Pharm. Pharmacol. 2006, 58, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Pieper, K.; Schuster, T.; Levionnois, O.; Matis, U.; Bergadano, A. Antinociceptive efficacy and plasma concentrations of transdermal buprenorphine in dogs. Vet. J. 2011, 187, 335–341. [Google Scholar] [CrossRef]
- Park, I.; Kim, D.; Song, J.; In, C.H.; Jeong, S.-W.; Lee, S.H.; Min, B.; Lee, D.; Kim, S.-O. Buprederm™, a New Transdermal Delivery System of Buprenorphine: Pharmacokinetic, Efficacy and Skin Irritancy Studies. Pharm. Res. 2008, 25, 1052–1062. [Google Scholar] [CrossRef]
- Guarnieri, M.; Kedda, J.; Tyler, B. Buprenorphine implants: A model for expedited development and approval of new drugs. Curr. Med. Res. Opin. 2020, 37, 83–88. [Google Scholar] [CrossRef]
- FDA. CVM Bioequivalence Guidance 35. Revised 8 November 2006. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cvm-gfi-35-bioequivalence-guidance (accessed on 5 May 2023).
- Kendall, L.V.; Hansen, R.J.; Dorsey, K.; Kang, S.; Lunghofer, P.J.; Gustafson, D.L. Pharmacokinetics of sustained-release analgesics in mice. J. Am. Assoc. Lab. Anim. Sci. 2014, 53, 478–484. [Google Scholar]
- Clark, T.S.; Clark, D.D.; Hoyt, R.F., Jr. Pharmacokinetic comparison of sustained-release and standard buprenorphine in mice. J. Am. Assoc. Lab. Anim. Sci. 2014, 53, 387–391. [Google Scholar] [PubMed]
- Foley, P.L.; Liang, H.; Crichlow, A.R. Evaluation of a sustained-release formulation of buprenorphine for analgesia in rats. J. Am. Assoc. Lab. Anim. Sci. 2011, 50, 198–204. [Google Scholar] [PubMed]
- Seymour, T.L.; Adams, S.C.; Felt, S.A.; Jampachaisri, K.; Yeomans, D.C.; Pacharinsak, C. Postoperative Analgesia Due to Sustained-Release Buprenorphine, Sustained-Release Meloxicam, and Carprofen Gel in a Model of Incisional Pain in Rats (Rattus norvegicus). J. Am. Assoc. Lab. Anim. Sci. 2016, 55, 300–305. [Google Scholar]
- Smith, B.J.; Wegenast, D.J.; Hansen, R.J.; Hess, A.M.; Kendall, L.V. Pharmacokinetics and Paw Withdrawal Pressure in Female Guinea Pigs (Cavia porcellus) Treated with Sustained-Release Buprenorphine and Buprenorphine Hydrochloride. J. Am. Assoc. Lab. Anim. Sci. 2016, 55, 789–793. [Google Scholar] [PubMed]
- Zanetti, A.S.; Putta, S.K.; Casebolt, D.B.; Louie, S.G. Pharmacokinetics and Adverse Effects of 3 Sustained-release Buprenorphine Dosages in Healthy Guinea Pigs (Cavia porcellus). J. Am. Assoc. Lab. Anim. Sci. 2017, 56, 768–778. [Google Scholar]
- Andrews, D.; Fajt, V.; Baker, K.; Blair, R.; Jones, S.; Dobek, G. A Comparison of Buprenorphine, Sustained release Buprenorphine, and High concentration Buprenorphine in Male New Zealand White Rabbits. J. Am. Assoc. Lab. Anim. Sci. 2020, 59, 546–556. [Google Scholar] [CrossRef]
- Cary, C.D.; Lukovsky-Akhsanov, N.L.; Gallardo-Romero, N.F.; Tansey, C.M.; Ostergaard, S.D.; Taylor, W.D., Jr.; Morgan, C.N.; Powell, N.; Lathrop, G.W.; Hutson, C.L. Pharmacokinetic Profiles of Meloxicam and Sustained-release Buprenorphine in Prairie Dogs (Cynomys ludovicianus). J. Am. Assoc. Lab. Anim. Sci. 2017, 56, 160–165. [Google Scholar]
- Nunamaker, E.A.; Stolarik, D.F.; Ma, J.; Wilsey, A.S.; Jenkins, G.J.; Medina, C.L. Clinical efficacy of sustained-release buprenorphine with meloxicam for postoperative analgesia in beagle dogs undergoing ovariohysterectomy. J. Am. Assoc. Lab. Anim. Sci. 2014, 53, 494–501. [Google Scholar]
- Guzman, D.S.; Knych, H.K.; Olsen, G.H.; Paul-Murphy, J.R. Pharmacokinetics of a Sustained Release Formulation of Buprenorphine After Intramuscular and Subcutaneous Administration to American Kestrels (Falco sparverius). J. Avian Med. Surg. 2017, 31, 102–107. [Google Scholar] [CrossRef]
- Molter, C.M.; Barbosa, L.; Johnson, S.; Knych, H.K.; Chinnadurai, S.K.; Wack, R.F. Pharmacokinetics of a single subcutaneous dose of sustained release buprenorphine in northern elephant seals (Mirounga angustirostris). J. Zoo Wildl. Med. 2015, 46, 52–61. [Google Scholar] [CrossRef]
- Thiede, A.J.; Garcia, K.D.; Stolarik, D.F.; Ma, J.; Jenkins, G.J.; Nunamaker, E.A. Pharmacokinetics of sustained-release and transdermal buprenorphine in Göttingen minipigs (Sus scrofa domestica). J. Am. Assoc. Lab. Anim. Sci. 2014, 53, 692–699. [Google Scholar] [PubMed]
- Dooley, S.B.; Aarnes, T.K.; Lakritz, J.; Lerche, P.; Bednarski, R.M.; Hubbell, J.A.E. Pharmacokinetics and pharmacodynamics of buprenorphine and sustained-release buprenorphine after administration to adult alpacas. Am. J. Vet. Res. 2017, 78, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Walkowiak, K.J.; Graham, M.L. Pharmacokinetics and Antinociceptive Activity of Sustained-Release Buprenorphine in Sheep. J. Am. Assoc. Lab. Anim. Sci. 2015, 54, 763–768. [Google Scholar]
- Zullian, C.; Lema, P.; Lavoie, M.; Dodelet-Devillers, A.; Beaudry, F.; Vachon, P. Plasma concentrations of buprenorphine following a single subcutaneous administration of a sustained release formulation of buprenorphine in sheep. Can. J. Vet. Res. 2016, 80, 250–253. [Google Scholar] [PubMed]
- Fitz, C.B.F.; Goodroe, A.E.; Moody, D.E.; Fang, W.B.; Capuano, S.V., III. Pharmacokinetics of Buprenorphine and Sustained-release Buprenorphine in Common Marmosets (Callithrix jacchus). J. Am. Assoc. Lab. Anim. Sci. 2021, 60, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Nunamaker, E.A.; Halliday, L.C.; Moody, D.E.; Fang, W.B.; Lindeblad, M.; Fortman, J.D. Pharmacokinetics of 2 formulations of buprenorphine in macaques (Macaca mulatta and Macaca fascicularis). J. Am. Assoc. Lab. Anim. Sci. 2013, 52, 48–56. [Google Scholar]
- Martinez, M.N.; Mochel, J.P.; Neuhoff, S.; Pade, D. Comparison of Canine and Human Physiological Factors: Understanding Interspecies Differences that Impact Drug Pharmacokinetics. AAPS J. 2021, 23, 59. [Google Scholar] [CrossRef]
- Traul, K.A.; Romero, J.B.; Brayton, C.; DeTolla, L.; Forbes-McBean, N.; Halquist, M.S.; Karnes, H.T.; Sarabia-Estrada, R.; Tomlinson, M.J.; Tyler, B.M.; et al. Safety studies of post-surgical buprenorphine therapy for mice. Lab. Anim. 2015, 49, 100–110. [Google Scholar] [CrossRef]
- Navarro, K.; Jampachaisri, K.; Huss, M.; Pacharinsak, C. Lipid bound extended release buprenorphine (high and low doses) and sustained release buprenorphine effectively attenuate post-operative hypersensitivity in an incisional pain model in mice (Mus musculus). Anim. Model. Exp. Med. 2021, 4, 129–137. [Google Scholar] [CrossRef]
- Guarnieri, M.; Brayton, C.; Tyler, B. A long-term study of a lipid-buprenorphine implant in rats. J. Vet. Med. 2018, 2612152. [Google Scholar] [CrossRef]
- Levinson, B.L.; Leary, S.L.; Bassett, B.J.; Cook, C.J.; Gorman, G.S.; Coward, L.U. Pharmacokinetic and Histopathologic Study of an Extended-Release, Injectable Formulation of Buprenorphine in Sprague–Dawley Rats. J. Am. Assoc. Lab. Anim. Sci. 2021, 60, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Oliver, V.L.; Athavale, S.; Simon, K.E.; Kendall, L.V.; Nemzek, J.A.; Lofgren, J.L. Evaluation of Pain Assessment Techniques and Analgesia Efficacy in a Female Guinea Pig (Cavia porcellus) Model of Surgical Pain. J. Am. Assoc. Lab. Anim. Sci. 2017, 56, 425–435. [Google Scholar] [PubMed]
- Barletta, M.; Ostenkamp, S.M.; Taylor, A.C.; Quandt, J.; Lascelles, B.D.X.; Messenger, K.M. The pharmacokinetics and analgesic effects of extended-release buprenorphine administered subcutaneously in healthy dogs. J. Vet. Pharmacol. Ther. 2018, 41, 502–512. [Google Scholar] [CrossRef] [PubMed]
- Shildhaus, N.; Trink, E.; Polson, C.; DeTolla, L.; Tyler, B.M.; Jallo, G.I.; Tok, S.; Guarnieri, M. Thermal latency studies in opiate-treated mice. J. Pharm. Bioallied Sci. 2014, 6, 43–47. [Google Scholar] [CrossRef]
- Adriaensen, H.; Mattelaer, B.; Vanmeenen, H. A long-term open, clinical and pharmacokinetic assessment of sublingual bupren-orphine in patients suffering from chronic pain. Acta Anaesthesiol. Belg. 1985, 36, 33–40. [Google Scholar]
- Watson, P.J.; McQuay, H.J.; Bullingham, R.E.; Allen, M.C.; Moore, R.A. Single-dose comparison of buprenorphine 0.3 and 0.6 mg i.v. given after operation: Clinical effects and plasma concentrations. Br. J. Anaesth. 1982, 54, 37–43. [Google Scholar] [CrossRef]
- Bullingham, R.E.S.; McQuay, H.J.; Moore, A.; Bennett, M.R.D. Buprenorphine kinetics. Clin. Pharmacol. Ther. 1980, 28, 667–672. [Google Scholar] [CrossRef]
- Ohtani, M.; Kotaki, H.; Sawada, Y.; Iga, T. Comparative analysis of buprenorphine- and norbuprenorphine-induced analgesic effects based on pharmacokinetic-pharmacodynamic modeling. J. Pharmacol. Exp. Ther. 1995, 272, 505–510. [Google Scholar]
- Gopal, S.; Tzeng, T.-B.; Cowan, A. Characterization of the pharmacokinetics of buprenorphine and norbuprenorphine in rats after intravenous bolus administration of buprenorphine. Eur. J. Pharm. Sci. 2002, 15, 287–293. [Google Scholar] [CrossRef]
- Shah, F.M.V.; Jones, F.D.I.; Rosen, F.M. “Patient demand” postoperative analgesia with buprenorphine. Comparison between sublingual and i.m. administration. Br. J. Anaesth. 1986, 58, 508–511. [Google Scholar] [CrossRef]
- Brown, S.M.; Holtzman, M.; Kim, T.; Kharasch, E.D. Buprenorphine Metabolites, Buprenorphine-3-glucuronide and Norbuprenorphine-3-glucuronide, Are Biologically Active. Anesthesiology 2011, 115, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Snyder, S.H. Opiate Receptors in the Brain. N. Engl. J. Med. 1977, 296, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Raffa, R.B.; Haidery, M.; Huang, H.-M.; Kalladeen, K.D.E.; Lockstein, D.E.; Ono, H.; Shope, M.J.; Sowunmi, O.A.; Tran, J.K.; Pergolizzi, J.V. The clinical analgesic efficacy of buprenorphine. J. Clin. Pharm. Ther. 2014, 39, 577–583. [Google Scholar] [CrossRef]
- Yassen, A.; Olofsen, E.; Kan, J.; Dahan, A.; Danhof, M. Pharmacokinetic–Pharmacodynamic Modeling of the Effectiveness and Safety of Buprenorphine and Fentanyl in Rats. Pharm. Res. 2007, 25, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Kalluri, H.V.; Zhang, H.; Caritis, S.N.; Venkataramanan, R. A physiologically based pharmacokinetic modelling approach to predict buprenorphine pharmacokinetics following intravenous and sublingual administration. Br. J. Clin. Pharmacol. 2017, 83, 2458–2473. [Google Scholar] [CrossRef] [PubMed]
- Ohtani, M.; Kotaki, H.; Nishitatano, K.; Swada, Y.; Iga, T. Kinetics of respiratory depression in rats induced by buprenorphine and its metabolite norbuprenorphine. J. Pharmacol. Exp. Ther. 1995, 272, 505–510. [Google Scholar]
- Yassen, A.; Olofsen, E.; Kan, J.; Dahan, A.; Danhof, M. Animal-to-Human Extrapolation of the Pharmacokinetic and Pharmacodynamic Properties of Buprenorphine. Clin. Pharmacokinet. 2007, 46, 433–447. [Google Scholar] [CrossRef]
- Lutfy, K.; Cowan, A. Buprenorphine: A unique drug with complex pharmacology. Curr. Neuropharmacol. 2004, 2, 395–402. [Google Scholar] [CrossRef]
- Serra, R.; Hug, S.; Brem, H.; Tyler, B. Chapter 6—Pharmacokinetics of Polymeric Drug Delivery. In Nervous System Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2019; pp. 91–109. [Google Scholar] [CrossRef]
- Hernandez-Avalos, I.; Mota-Rojas, D.; Mora-Medina, P.; Martínez-Burnes, J.; Alvarado, A.C.; Verduzco-Mendoza, A.; Lezama-García, K.; Olmos-Hernandez, A. Review of different methods used for clinical recognition and assessment of pain in dogs and cats. Int. J. Vet. Sci. Med. 2019, 7, 43–54. [Google Scholar] [CrossRef]
- Barletta, M.; Young, C.N.; Quandt, J.E.; Hofmeister, E.H. Agreement between veterinary students and anesthesiologists regarding postoperative pain assessment in dogs. Vet. Anaesth. Analg. 2016, 43, 91–98. [Google Scholar] [CrossRef]
- Pinho, R.H.; Justo, A.A.; Cima, D.S.; Fonseca, M.W.; Minto, B.W.; Rocha, F.D.L.; Leach, M.C.; Luna, S.P.L. Effects of Human Observer Presence on Pain Assessment Using Facial Expressions in Rabbits. J. Am. Assoc. Lab. Anim. Sci. 2023, 62, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Healy, J.R.; Tonkin, J.L.; Kamarec, S.R.; Saludes, M.A.; Ibrahim, S.Y.; Matsumoto, R.R.; Wimsatt, J.H. Evaluation of an improved sustained-release buprenorphine formulation for use in mice. Am. J. Vet. Res. 2014, 75, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Haertel, A.J.; Schultz, M.A.; Colgin, L.M.; Johnson, A.L. Predictors of subcutaneous injection reactions to sustained-release buprenorphine in rhesus macaques (Macaca mulatta). J. Am. Assoc. Lab. Anim. Sci. 2021, 60, 329–336. [Google Scholar] [CrossRef]
- Page, C.D.; Sarabia-Estrada, R.; Hoffman, R.J.; Lo, C.-P.; Gades, N.M. Lack of Absorption of a Sustained-release Buprenorphine Formulation Administered Subcutaneously to Athymic Nude Rats. J. Am. Assoc. Lab Anim. Sci. 2019, 58, 597–600. [Google Scholar] [CrossRef] [PubMed]
- Kerr, A.; Trotter, S.; Maley, P. Emulsification Technology. Microspheres for Sustained Release. Drug Dev. Deliv. 2021, 21, 38–43. [Google Scholar]
- Schreiner, V.; Durst, M.; Arras, M.; Detampel, P.; Jirkof, P.; Huwyler, J. Design and in vivo evaluation of a microparticulate depot formulation of buprenorphine for veterinary use. Sci. Rep. 2020, 10, 17295. [Google Scholar] [CrossRef]
- Kamali, H.; Khodaverdi, E.; Hadizadeh, F.; Mohajeri, S.A. In-vitro, ex-vivo, and in-vivo evaluation of buprenorphine HCl release from an in situ forming gel of PLGA-PEG-PLGA us-ing N methyl 2 pyrrolidone as solvent. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 96, 561–575. [Google Scholar] [CrossRef]
- Illario, J.A.; Osborn, K.G.; Garcia, A.V.; Sepulveda, Y.J.; Momper, J.D.; Kiel, J.W.; Kirihennedige, A.S.; Sun, S.A.; Richter, P.J. Comparative Pharmacokinetics and Injection Site Histopathology in Nude Mice Treated with Long-acting Buprenorphine Formulations. J. Am. Assoc. Lab. Anim. Sci. 2023, 62, 147–152. [Google Scholar] [CrossRef]
- Chan, G.; Si, C.; Nichols, M.R.; Kennedy, L. Assessment of the Safety and Efficacy of Pre-emptive Use of Extended-release Buprenorphine for Mouse Laparotomy. J. Am. Assoc. Lab. Anim. Sci. 2022, 61, 381–387. [Google Scholar] [CrossRef]
- Saenz, M.; Bloom-Saldana, E.A.; Synold, T.; Ermel, R.W.; Fueger, P.T.; Finlay, J.B. Pharmacokinetics of Sus-tained-release and Extended-release Buprenorphine in Mice after Surgical Catheterization. J. Am.-Soc. Lab. Anim. Sci. 2022, 61, 468–474. [Google Scholar] [CrossRef]
- Zhang, M.; Alamaw, E.; Jampachaisri, K.; Huss, M.; Pacharinsak, C. Effectiveness of two extend-ed-release buprenorphine formulations during postoperative period in neonatal rats. PLoS ONE 2022, 17, e0276327. [Google Scholar] [CrossRef]
Species | Strain | Sex | Dose | AUC | Cmax | Tmax | QST | Reference |
---|---|---|---|---|---|---|---|---|
mg/kg | h * ng/mL | ng/mL | h | |||||
Mouse | CD1 | F | 0.6 | 322 | 14.5 | 4 | no | [21] |
Mouse | C57BL/6J | M | 0.3 | 20.1 | 0.8 | 6 | no | [22] |
Mouse | C57BL/6J | M | 1.2 | 62.9 | 5.0 | 0.5 | no | [22] |
Rat | Sprague Dawley | M | 1.2 | nd | 2.8 | 4 | yes | [23] |
Rat | Norvegicus | M | 1.2 | nd | 1.2 | 24 | yes | [24] |
Guinea Pig | Cavia porcelles | F | 0.3 | 56 | 1.3 | 1 | yes | [25] |
Guinea Pig | Cavia porcelles | F | 0.15 | 50 | 2.0 | 1 | no | [26] |
Guinea Pig | Cavia porcelles | F | 0.3 | 127 | 6.9 | 1 | no | [26] |
Guinea Pig | Cavia porcelles | F | 0.6 | 1257 | 71.3 | 1 | no | [26] |
Guinea Pig | Cavia porcelles | M | 0.15 | 32 | 2.3 | 1 | no | [26] |
Guinea Pig | Cavia porcelles | M | 0.3 | 213 | 11.5 | 1 | no | [26] |
Guinea Pig | Cavia porcelles | M | 0.6 | 1198 | 64.3 | 1 | no | [26] |
Rabbit | New Zealand White | M | 0.15 | 22 | 0.6 | 39 | no | [27] |
Prairie dog | Cynomys ludovicianus | MF | 0.9 | 624 | 191 ** | 8 | no | [28] |
Prairie dog | Cynomys ludovicianus | MF | 1.2 | 863 | 17 | 24 | no | [28] |
Dog | Beagle | F | 0.2 | 188.9 | 5.6 | 13.8 | no | [29] |
Kestrel | Falco sparverius | MF | 1.8 | 665 | 69 | 0.25 | no | [30] |
Seal | Mirounga angustirostris | MF | 1.2 | 93.8 | 1.2 | 12 | no | [31] |
Göttingen minipigs | Sus scrofa domestica | F | 0.18 | 221.6 | 2.9 | 22.2 | no | [32] |
Alpaca | MF | 0.12 | 4.5 | 2 | 0.6 | no | [33] | |
Sheep | Suffolk | MF | 0.27 | 36.7 | 0.80 | 48 ** | yes | [34] |
Sheep | Dorset & Suffolk | FF | 0.1 | nd | 0.1 | 48 | no | [35] |
Sheep | Dorset & Suffolk | FF | 0.05 | nd | 0.1 | 72 | no | [35] |
Marmoset | Callithrix jacchus | MF | 0.2 | 98.6 | 2.8 | 4 | no | [36] |
Macaque | Mulata & fascicularis | MM | 0.2 | 177 | 15.3 | 9.3 | no | [37] |
Species | Strain | Sex | Dose | AUC | Cmax | Tmax | QST | Reference |
---|---|---|---|---|---|---|---|---|
mg/kg | h * ng/mL | ng/mL | h | |||||
Mouse | BALB/c | MF | 3.25 | nd | 16.3 | 6 | no | [39] |
Mouse | C57BL/6J | M | 3.25 | nd | 11.9 | 24 | yes | [40] |
Mouse | C57BL/6J | M | 6.5 | nd | 19.4 | 24 | yes | [40] |
Rat | Fischer F344/NTac | M | 0.65 | 154 | 3.4 | 24 | yes | [41] |
Rat | Fischer F344/NTac | F | 0.65 | 100 | 1.8 | 24 | yes | [41] |
Rat | Fischer F344/NTac | M | 1.3 | 459 | 6.6 | 48 | yes | [41] |
Rat | Fischer F344/NTac | F | 1.3 | 517 | 9.6 | 24 | yes | [41] |
Rat | Sprague-Dawley | M | 0.65 | 126 | 1.6 | 24 | yes | [42] |
Rat | Sprague-Dawley | F | 0.65 | 86 | 1.2 | 6 | yes | [42] |
Rat | Sprague-Dawley | M | 1.3 | 250 | 2.7 | 24 | yes | [42] |
Rat | Sprague-Dawley | F | 1.3 | 175 | 1.8 | 24 | yes | [42] |
Guinea Pig | Cavia porcelles | F | 0.48 | nd | 48 | 48 | yes | [43] |
Dog | Beagle | MF | 0.2 | 224 | 5 | 8 | yes | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyler, B.M.; Guarnieri, M. Long-Acting Opioid Analgesics for Acute Pain: Pharmacokinetic Evidence Reviewed. Vet. Sci. 2023, 10, 372. https://doi.org/10.3390/vetsci10060372
Tyler BM, Guarnieri M. Long-Acting Opioid Analgesics for Acute Pain: Pharmacokinetic Evidence Reviewed. Veterinary Sciences. 2023; 10(6):372. https://doi.org/10.3390/vetsci10060372
Chicago/Turabian StyleTyler, Betty M., and Michael Guarnieri. 2023. "Long-Acting Opioid Analgesics for Acute Pain: Pharmacokinetic Evidence Reviewed" Veterinary Sciences 10, no. 6: 372. https://doi.org/10.3390/vetsci10060372
APA StyleTyler, B. M., & Guarnieri, M. (2023). Long-Acting Opioid Analgesics for Acute Pain: Pharmacokinetic Evidence Reviewed. Veterinary Sciences, 10(6), 372. https://doi.org/10.3390/vetsci10060372