Long-Acting Opioid Analgesics for Acute Pain: Pharmacokinetic Evidence Reviewed
Abstract
Simple Summary
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
5. Addendum
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perret-Gentil, F.P.; Doherr, M.G.; Spadavecchia, C.; Levionnois, O.L. Attitudes of Swiss veterinarians towards pain and analgesia in dogs and cats. Schweiz. Arch. Tierheilkd. 2014, 156, 111–117. [Google Scholar] [CrossRef]
- Sano, H.; Barker, K.; Odom, T.; Lewis, K.; Giordano, P.; Walsh, V.; Chambers, J.P. A survey of dog and cat anaesthesia in a sample of veterinary practices in New Zealand. N. Z. Vet. J. 2018, 66, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Foley, P.L.; Kendall, L.V.; Turner, P.V. Clinical Management of Pain in Rodents. Comp. Med. 2019, 69, 468–489. [Google Scholar] [CrossRef] [PubMed]
- Carbone, L. Ethical and IACUC Considerations Regarding Analgesia and Pain Management in Laboratory Rodents. Comp. Med. 2019, 69, 443–450. [Google Scholar] [CrossRef]
- Grant, G.J.; Vermeulen, K.; Zakowski, M.I.; Stenner, M.; Turndorf, H.; Langerman, L. Prolonged Analgesia and Decreased Toxicity with Liposomal Morphine in a Mouse Model. Anesth. Analg. 1994, 79, 706–709. [Google Scholar] [CrossRef]
- Medlicott, N.J.; Waldron, N.A.; Foster, T.P. Sustained release veterinary parenteral products. Adv. Drug Deliv. Rev. 2004, 56, 1345–1365. [Google Scholar] [CrossRef] [PubMed]
- Winzenburg, G.; Schmidt, C.; Fuchs, S.; Kissel, T. Biodegradable polymers and their potential use in parenteral veterinary drug delivery systems. Adv. Drug Deliv. Rev. 2004, 56, 1453–1466. [Google Scholar] [CrossRef]
- Cowan, A.; Lewis, J.W.; Macfarlane, I.R. Agonist and Antagonist Properties of Buprenorphine, A New Antinociceptive Agent. Br. J. Pharmacol. 1977, 60, 537–545. [Google Scholar] [CrossRef][Green Version]
- Cowan, A.; Doxey, J.C.; Harry, E.J. The Animal Pharmacology of Buprenorphine, An Oripavine Analgesic Agent. Br. J. Pharmacol. 1977, 60, 547–554. [Google Scholar] [CrossRef][Green Version]
- Flecknell, P.A. The relief of pain in laboratory animals. Lab. Anim. 1984, 18, 147–160. [Google Scholar] [CrossRef]
- Roughan, J.V.; Flecknell, P.A. Buprenorphine: A reappraisal of its antinociceptive effects and therapeutic use in alleviating post-operative pain in animals. Lab. Anim. 2002, 36, 322–343. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Guarnieri, M.; Brayton, C.; DeTolla, L.; Forbes-McBean, N.; Sarabia-Estrada, R.; Zadnik, P. Safety and efficacy of buprenorphine for analgesia in laboratory mice and rats. Lab. Anim. 2012, 41, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Guarnieri, M.; Brayton, C.; Sarabia-Estrada, R.; Tyler, B.; McKnight, P.; DeTolla, L. Subcutaneous Implants of a Cholesterol-Triglyceride-Buprenorphine Suspension in Rats. J. Vet. Med. 2017, 2017, 3102567. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Liu, K.S.; Kao, C.H.; Liu, S.Y.; Sung, K.C.; Kuei, C.H.; Wang, J.J. Novel depots of buprenorphine have a long-acting effect for the management of physical dependence to morphine. J. Pharm. Pharmacol. 2006, 58, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Foley, P.L. Current options for providing sustained analgesia to laboratory animals. Lab. Anim. 2014, 43, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Kleppner, S.R.; Patel, R.; Costantini, L.C.; McDonough, J. In-vitro and in-vivo characterization of a buprenorphine delivery system. J. Pharm. Pharmacol. 2006, 58, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Pieper, K.; Schuster, T.; Levionnois, O.; Matis, U.; Bergadano, A. Antinociceptive efficacy and plasma concentrations of transdermal buprenorphine in dogs. Vet. J. 2011, 187, 335–341. [Google Scholar] [CrossRef]
- Park, I.; Kim, D.; Song, J.; In, C.H.; Jeong, S.-W.; Lee, S.H.; Min, B.; Lee, D.; Kim, S.-O. Buprederm™, a New Transdermal Delivery System of Buprenorphine: Pharmacokinetic, Efficacy and Skin Irritancy Studies. Pharm. Res. 2008, 25, 1052–1062. [Google Scholar] [CrossRef]
- Guarnieri, M.; Kedda, J.; Tyler, B. Buprenorphine implants: A model for expedited development and approval of new drugs. Curr. Med. Res. Opin. 2020, 37, 83–88. [Google Scholar] [CrossRef]
- FDA. CVM Bioequivalence Guidance 35. Revised 8 November 2006. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cvm-gfi-35-bioequivalence-guidance (accessed on 5 May 2023).
- Kendall, L.V.; Hansen, R.J.; Dorsey, K.; Kang, S.; Lunghofer, P.J.; Gustafson, D.L. Pharmacokinetics of sustained-release analgesics in mice. J. Am. Assoc. Lab. Anim. Sci. 2014, 53, 478–484. [Google Scholar]
- Clark, T.S.; Clark, D.D.; Hoyt, R.F., Jr. Pharmacokinetic comparison of sustained-release and standard buprenorphine in mice. J. Am. Assoc. Lab. Anim. Sci. 2014, 53, 387–391. [Google Scholar] [PubMed]
- Foley, P.L.; Liang, H.; Crichlow, A.R. Evaluation of a sustained-release formulation of buprenorphine for analgesia in rats. J. Am. Assoc. Lab. Anim. Sci. 2011, 50, 198–204. [Google Scholar] [PubMed]
- Seymour, T.L.; Adams, S.C.; Felt, S.A.; Jampachaisri, K.; Yeomans, D.C.; Pacharinsak, C. Postoperative Analgesia Due to Sustained-Release Buprenorphine, Sustained-Release Meloxicam, and Carprofen Gel in a Model of Incisional Pain in Rats (Rattus norvegicus). J. Am. Assoc. Lab. Anim. Sci. 2016, 55, 300–305. [Google Scholar]
- Smith, B.J.; Wegenast, D.J.; Hansen, R.J.; Hess, A.M.; Kendall, L.V. Pharmacokinetics and Paw Withdrawal Pressure in Female Guinea Pigs (Cavia porcellus) Treated with Sustained-Release Buprenorphine and Buprenorphine Hydrochloride. J. Am. Assoc. Lab. Anim. Sci. 2016, 55, 789–793. [Google Scholar] [PubMed]
- Zanetti, A.S.; Putta, S.K.; Casebolt, D.B.; Louie, S.G. Pharmacokinetics and Adverse Effects of 3 Sustained-release Buprenorphine Dosages in Healthy Guinea Pigs (Cavia porcellus). J. Am. Assoc. Lab. Anim. Sci. 2017, 56, 768–778. [Google Scholar]
- Andrews, D.; Fajt, V.; Baker, K.; Blair, R.; Jones, S.; Dobek, G. A Comparison of Buprenorphine, Sustained release Buprenorphine, and High concentration Buprenorphine in Male New Zealand White Rabbits. J. Am. Assoc. Lab. Anim. Sci. 2020, 59, 546–556. [Google Scholar] [CrossRef]
- Cary, C.D.; Lukovsky-Akhsanov, N.L.; Gallardo-Romero, N.F.; Tansey, C.M.; Ostergaard, S.D.; Taylor, W.D., Jr.; Morgan, C.N.; Powell, N.; Lathrop, G.W.; Hutson, C.L. Pharmacokinetic Profiles of Meloxicam and Sustained-release Buprenorphine in Prairie Dogs (Cynomys ludovicianus). J. Am. Assoc. Lab. Anim. Sci. 2017, 56, 160–165. [Google Scholar]
- Nunamaker, E.A.; Stolarik, D.F.; Ma, J.; Wilsey, A.S.; Jenkins, G.J.; Medina, C.L. Clinical efficacy of sustained-release buprenorphine with meloxicam for postoperative analgesia in beagle dogs undergoing ovariohysterectomy. J. Am. Assoc. Lab. Anim. Sci. 2014, 53, 494–501. [Google Scholar]
- Guzman, D.S.; Knych, H.K.; Olsen, G.H.; Paul-Murphy, J.R. Pharmacokinetics of a Sustained Release Formulation of Buprenorphine After Intramuscular and Subcutaneous Administration to American Kestrels (Falco sparverius). J. Avian Med. Surg. 2017, 31, 102–107. [Google Scholar] [CrossRef]
- Molter, C.M.; Barbosa, L.; Johnson, S.; Knych, H.K.; Chinnadurai, S.K.; Wack, R.F. Pharmacokinetics of a single subcutaneous dose of sustained release buprenorphine in northern elephant seals (Mirounga angustirostris). J. Zoo Wildl. Med. 2015, 46, 52–61. [Google Scholar] [CrossRef]
- Thiede, A.J.; Garcia, K.D.; Stolarik, D.F.; Ma, J.; Jenkins, G.J.; Nunamaker, E.A. Pharmacokinetics of sustained-release and transdermal buprenorphine in Göttingen minipigs (Sus scrofa domestica). J. Am. Assoc. Lab. Anim. Sci. 2014, 53, 692–699. [Google Scholar] [PubMed]
- Dooley, S.B.; Aarnes, T.K.; Lakritz, J.; Lerche, P.; Bednarski, R.M.; Hubbell, J.A.E. Pharmacokinetics and pharmacodynamics of buprenorphine and sustained-release buprenorphine after administration to adult alpacas. Am. J. Vet. Res. 2017, 78, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Walkowiak, K.J.; Graham, M.L. Pharmacokinetics and Antinociceptive Activity of Sustained-Release Buprenorphine in Sheep. J. Am. Assoc. Lab. Anim. Sci. 2015, 54, 763–768. [Google Scholar]
- Zullian, C.; Lema, P.; Lavoie, M.; Dodelet-Devillers, A.; Beaudry, F.; Vachon, P. Plasma concentrations of buprenorphine following a single subcutaneous administration of a sustained release formulation of buprenorphine in sheep. Can. J. Vet. Res. 2016, 80, 250–253. [Google Scholar] [PubMed]
- Fitz, C.B.F.; Goodroe, A.E.; Moody, D.E.; Fang, W.B.; Capuano, S.V., III. Pharmacokinetics of Buprenorphine and Sustained-release Buprenorphine in Common Marmosets (Callithrix jacchus). J. Am. Assoc. Lab. Anim. Sci. 2021, 60, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Nunamaker, E.A.; Halliday, L.C.; Moody, D.E.; Fang, W.B.; Lindeblad, M.; Fortman, J.D. Pharmacokinetics of 2 formulations of buprenorphine in macaques (Macaca mulatta and Macaca fascicularis). J. Am. Assoc. Lab. Anim. Sci. 2013, 52, 48–56. [Google Scholar]
- Martinez, M.N.; Mochel, J.P.; Neuhoff, S.; Pade, D. Comparison of Canine and Human Physiological Factors: Understanding Interspecies Differences that Impact Drug Pharmacokinetics. AAPS J. 2021, 23, 59. [Google Scholar] [CrossRef]
- Traul, K.A.; Romero, J.B.; Brayton, C.; DeTolla, L.; Forbes-McBean, N.; Halquist, M.S.; Karnes, H.T.; Sarabia-Estrada, R.; Tomlinson, M.J.; Tyler, B.M.; et al. Safety studies of post-surgical buprenorphine therapy for mice. Lab. Anim. 2015, 49, 100–110. [Google Scholar] [CrossRef]
- Navarro, K.; Jampachaisri, K.; Huss, M.; Pacharinsak, C. Lipid bound extended release buprenorphine (high and low doses) and sustained release buprenorphine effectively attenuate post-operative hypersensitivity in an incisional pain model in mice (Mus musculus). Anim. Model. Exp. Med. 2021, 4, 129–137. [Google Scholar] [CrossRef]
- Guarnieri, M.; Brayton, C.; Tyler, B. A long-term study of a lipid-buprenorphine implant in rats. J. Vet. Med. 2018, 2612152. [Google Scholar] [CrossRef]
- Levinson, B.L.; Leary, S.L.; Bassett, B.J.; Cook, C.J.; Gorman, G.S.; Coward, L.U. Pharmacokinetic and Histopathologic Study of an Extended-Release, Injectable Formulation of Buprenorphine in Sprague–Dawley Rats. J. Am. Assoc. Lab. Anim. Sci. 2021, 60, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Oliver, V.L.; Athavale, S.; Simon, K.E.; Kendall, L.V.; Nemzek, J.A.; Lofgren, J.L. Evaluation of Pain Assessment Techniques and Analgesia Efficacy in a Female Guinea Pig (Cavia porcellus) Model of Surgical Pain. J. Am. Assoc. Lab. Anim. Sci. 2017, 56, 425–435. [Google Scholar] [PubMed]
- Barletta, M.; Ostenkamp, S.M.; Taylor, A.C.; Quandt, J.; Lascelles, B.D.X.; Messenger, K.M. The pharmacokinetics and analgesic effects of extended-release buprenorphine administered subcutaneously in healthy dogs. J. Vet. Pharmacol. Ther. 2018, 41, 502–512. [Google Scholar] [CrossRef] [PubMed]
- Shildhaus, N.; Trink, E.; Polson, C.; DeTolla, L.; Tyler, B.M.; Jallo, G.I.; Tok, S.; Guarnieri, M. Thermal latency studies in opiate-treated mice. J. Pharm. Bioallied Sci. 2014, 6, 43–47. [Google Scholar] [CrossRef]
- Adriaensen, H.; Mattelaer, B.; Vanmeenen, H. A long-term open, clinical and pharmacokinetic assessment of sublingual bupren-orphine in patients suffering from chronic pain. Acta Anaesthesiol. Belg. 1985, 36, 33–40. [Google Scholar]
- Watson, P.J.; McQuay, H.J.; Bullingham, R.E.; Allen, M.C.; Moore, R.A. Single-dose comparison of buprenorphine 0.3 and 0.6 mg i.v. given after operation: Clinical effects and plasma concentrations. Br. J. Anaesth. 1982, 54, 37–43. [Google Scholar] [CrossRef][Green Version]
- Bullingham, R.E.S.; McQuay, H.J.; Moore, A.; Bennett, M.R.D. Buprenorphine kinetics. Clin. Pharmacol. Ther. 1980, 28, 667–672. [Google Scholar] [CrossRef]
- Ohtani, M.; Kotaki, H.; Sawada, Y.; Iga, T. Comparative analysis of buprenorphine- and norbuprenorphine-induced analgesic effects based on pharmacokinetic-pharmacodynamic modeling. J. Pharmacol. Exp. Ther. 1995, 272, 505–510. [Google Scholar]
- Gopal, S.; Tzeng, T.-B.; Cowan, A. Characterization of the pharmacokinetics of buprenorphine and norbuprenorphine in rats after intravenous bolus administration of buprenorphine. Eur. J. Pharm. Sci. 2002, 15, 287–293. [Google Scholar] [CrossRef]
- Shah, F.M.V.; Jones, F.D.I.; Rosen, F.M. “Patient demand” postoperative analgesia with buprenorphine. Comparison between sublingual and i.m. administration. Br. J. Anaesth. 1986, 58, 508–511. [Google Scholar] [CrossRef][Green Version]
- Brown, S.M.; Holtzman, M.; Kim, T.; Kharasch, E.D. Buprenorphine Metabolites, Buprenorphine-3-glucuronide and Norbuprenorphine-3-glucuronide, Are Biologically Active. Anesthesiology 2011, 115, 1251–1260. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Snyder, S.H. Opiate Receptors in the Brain. N. Engl. J. Med. 1977, 296, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Raffa, R.B.; Haidery, M.; Huang, H.-M.; Kalladeen, K.D.E.; Lockstein, D.E.; Ono, H.; Shope, M.J.; Sowunmi, O.A.; Tran, J.K.; Pergolizzi, J.V. The clinical analgesic efficacy of buprenorphine. J. Clin. Pharm. Ther. 2014, 39, 577–583. [Google Scholar] [CrossRef]
- Yassen, A.; Olofsen, E.; Kan, J.; Dahan, A.; Danhof, M. Pharmacokinetic–Pharmacodynamic Modeling of the Effectiveness and Safety of Buprenorphine and Fentanyl in Rats. Pharm. Res. 2007, 25, 183–193. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kalluri, H.V.; Zhang, H.; Caritis, S.N.; Venkataramanan, R. A physiologically based pharmacokinetic modelling approach to predict buprenorphine pharmacokinetics following intravenous and sublingual administration. Br. J. Clin. Pharmacol. 2017, 83, 2458–2473. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ohtani, M.; Kotaki, H.; Nishitatano, K.; Swada, Y.; Iga, T. Kinetics of respiratory depression in rats induced by buprenorphine and its metabolite norbuprenorphine. J. Pharmacol. Exp. Ther. 1995, 272, 505–510. [Google Scholar]
- Yassen, A.; Olofsen, E.; Kan, J.; Dahan, A.; Danhof, M. Animal-to-Human Extrapolation of the Pharmacokinetic and Pharmacodynamic Properties of Buprenorphine. Clin. Pharmacokinet. 2007, 46, 433–447. [Google Scholar] [CrossRef]
- Lutfy, K.; Cowan, A. Buprenorphine: A unique drug with complex pharmacology. Curr. Neuropharmacol. 2004, 2, 395–402. [Google Scholar] [CrossRef]
- Serra, R.; Hug, S.; Brem, H.; Tyler, B. Chapter 6—Pharmacokinetics of Polymeric Drug Delivery. In Nervous System Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2019; pp. 91–109. [Google Scholar] [CrossRef]
- Hernandez-Avalos, I.; Mota-Rojas, D.; Mora-Medina, P.; Martínez-Burnes, J.; Alvarado, A.C.; Verduzco-Mendoza, A.; Lezama-García, K.; Olmos-Hernandez, A. Review of different methods used for clinical recognition and assessment of pain in dogs and cats. Int. J. Vet. Sci. Med. 2019, 7, 43–54. [Google Scholar] [CrossRef][Green Version]
- Barletta, M.; Young, C.N.; Quandt, J.E.; Hofmeister, E.H. Agreement between veterinary students and anesthesiologists regarding postoperative pain assessment in dogs. Vet. Anaesth. Analg. 2016, 43, 91–98. [Google Scholar] [CrossRef]
- Pinho, R.H.; Justo, A.A.; Cima, D.S.; Fonseca, M.W.; Minto, B.W.; Rocha, F.D.L.; Leach, M.C.; Luna, S.P.L. Effects of Human Observer Presence on Pain Assessment Using Facial Expressions in Rabbits. J. Am. Assoc. Lab. Anim. Sci. 2023, 62, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Healy, J.R.; Tonkin, J.L.; Kamarec, S.R.; Saludes, M.A.; Ibrahim, S.Y.; Matsumoto, R.R.; Wimsatt, J.H. Evaluation of an improved sustained-release buprenorphine formulation for use in mice. Am. J. Vet. Res. 2014, 75, 619–625. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Haertel, A.J.; Schultz, M.A.; Colgin, L.M.; Johnson, A.L. Predictors of subcutaneous injection reactions to sustained-release buprenorphine in rhesus macaques (Macaca mulatta). J. Am. Assoc. Lab. Anim. Sci. 2021, 60, 329–336. [Google Scholar] [CrossRef]
- Page, C.D.; Sarabia-Estrada, R.; Hoffman, R.J.; Lo, C.-P.; Gades, N.M. Lack of Absorption of a Sustained-release Buprenorphine Formulation Administered Subcutaneously to Athymic Nude Rats. J. Am. Assoc. Lab Anim. Sci. 2019, 58, 597–600. [Google Scholar] [CrossRef] [PubMed]
- Kerr, A.; Trotter, S.; Maley, P. Emulsification Technology. Microspheres for Sustained Release. Drug Dev. Deliv. 2021, 21, 38–43. [Google Scholar]
- Schreiner, V.; Durst, M.; Arras, M.; Detampel, P.; Jirkof, P.; Huwyler, J. Design and in vivo evaluation of a microparticulate depot formulation of buprenorphine for veterinary use. Sci. Rep. 2020, 10, 17295. [Google Scholar] [CrossRef]
- Kamali, H.; Khodaverdi, E.; Hadizadeh, F.; Mohajeri, S.A. In-vitro, ex-vivo, and in-vivo evaluation of buprenorphine HCl release from an in situ forming gel of PLGA-PEG-PLGA us-ing N methyl 2 pyrrolidone as solvent. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 96, 561–575. [Google Scholar] [CrossRef]
- Illario, J.A.; Osborn, K.G.; Garcia, A.V.; Sepulveda, Y.J.; Momper, J.D.; Kiel, J.W.; Kirihennedige, A.S.; Sun, S.A.; Richter, P.J. Comparative Pharmacokinetics and Injection Site Histopathology in Nude Mice Treated with Long-acting Buprenorphine Formulations. J. Am. Assoc. Lab. Anim. Sci. 2023, 62, 147–152. [Google Scholar] [CrossRef]
- Chan, G.; Si, C.; Nichols, M.R.; Kennedy, L. Assessment of the Safety and Efficacy of Pre-emptive Use of Extended-release Buprenorphine for Mouse Laparotomy. J. Am. Assoc. Lab. Anim. Sci. 2022, 61, 381–387. [Google Scholar] [CrossRef]
- Saenz, M.; Bloom-Saldana, E.A.; Synold, T.; Ermel, R.W.; Fueger, P.T.; Finlay, J.B. Pharmacokinetics of Sus-tained-release and Extended-release Buprenorphine in Mice after Surgical Catheterization. J. Am.-Soc. Lab. Anim. Sci. 2022, 61, 468–474. [Google Scholar] [CrossRef]
- Zhang, M.; Alamaw, E.; Jampachaisri, K.; Huss, M.; Pacharinsak, C. Effectiveness of two extend-ed-release buprenorphine formulations during postoperative period in neonatal rats. PLoS ONE 2022, 17, e0276327. [Google Scholar] [CrossRef]
Species | Strain | Sex | Dose | AUC | Cmax | Tmax | QST | Reference |
---|---|---|---|---|---|---|---|---|
mg/kg | h * ng/mL | ng/mL | h | |||||
Mouse | CD1 | F | 0.6 | 322 | 14.5 | 4 | no | [21] |
Mouse | C57BL/6J | M | 0.3 | 20.1 | 0.8 | 6 | no | [22] |
Mouse | C57BL/6J | M | 1.2 | 62.9 | 5.0 | 0.5 | no | [22] |
Rat | Sprague Dawley | M | 1.2 | nd | 2.8 | 4 | yes | [23] |
Rat | Norvegicus | M | 1.2 | nd | 1.2 | 24 | yes | [24] |
Guinea Pig | Cavia porcelles | F | 0.3 | 56 | 1.3 | 1 | yes | [25] |
Guinea Pig | Cavia porcelles | F | 0.15 | 50 | 2.0 | 1 | no | [26] |
Guinea Pig | Cavia porcelles | F | 0.3 | 127 | 6.9 | 1 | no | [26] |
Guinea Pig | Cavia porcelles | F | 0.6 | 1257 | 71.3 | 1 | no | [26] |
Guinea Pig | Cavia porcelles | M | 0.15 | 32 | 2.3 | 1 | no | [26] |
Guinea Pig | Cavia porcelles | M | 0.3 | 213 | 11.5 | 1 | no | [26] |
Guinea Pig | Cavia porcelles | M | 0.6 | 1198 | 64.3 | 1 | no | [26] |
Rabbit | New Zealand White | M | 0.15 | 22 | 0.6 | 39 | no | [27] |
Prairie dog | Cynomys ludovicianus | MF | 0.9 | 624 | 191 ** | 8 | no | [28] |
Prairie dog | Cynomys ludovicianus | MF | 1.2 | 863 | 17 | 24 | no | [28] |
Dog | Beagle | F | 0.2 | 188.9 | 5.6 | 13.8 | no | [29] |
Kestrel | Falco sparverius | MF | 1.8 | 665 | 69 | 0.25 | no | [30] |
Seal | Mirounga angustirostris | MF | 1.2 | 93.8 | 1.2 | 12 | no | [31] |
Göttingen minipigs | Sus scrofa domestica | F | 0.18 | 221.6 | 2.9 | 22.2 | no | [32] |
Alpaca | MF | 0.12 | 4.5 | 2 | 0.6 | no | [33] | |
Sheep | Suffolk | MF | 0.27 | 36.7 | 0.80 | 48 ** | yes | [34] |
Sheep | Dorset & Suffolk | FF | 0.1 | nd | 0.1 | 48 | no | [35] |
Sheep | Dorset & Suffolk | FF | 0.05 | nd | 0.1 | 72 | no | [35] |
Marmoset | Callithrix jacchus | MF | 0.2 | 98.6 | 2.8 | 4 | no | [36] |
Macaque | Mulata & fascicularis | MM | 0.2 | 177 | 15.3 | 9.3 | no | [37] |
Species | Strain | Sex | Dose | AUC | Cmax | Tmax | QST | Reference |
---|---|---|---|---|---|---|---|---|
mg/kg | h * ng/mL | ng/mL | h | |||||
Mouse | BALB/c | MF | 3.25 | nd | 16.3 | 6 | no | [39] |
Mouse | C57BL/6J | M | 3.25 | nd | 11.9 | 24 | yes | [40] |
Mouse | C57BL/6J | M | 6.5 | nd | 19.4 | 24 | yes | [40] |
Rat | Fischer F344/NTac | M | 0.65 | 154 | 3.4 | 24 | yes | [41] |
Rat | Fischer F344/NTac | F | 0.65 | 100 | 1.8 | 24 | yes | [41] |
Rat | Fischer F344/NTac | M | 1.3 | 459 | 6.6 | 48 | yes | [41] |
Rat | Fischer F344/NTac | F | 1.3 | 517 | 9.6 | 24 | yes | [41] |
Rat | Sprague-Dawley | M | 0.65 | 126 | 1.6 | 24 | yes | [42] |
Rat | Sprague-Dawley | F | 0.65 | 86 | 1.2 | 6 | yes | [42] |
Rat | Sprague-Dawley | M | 1.3 | 250 | 2.7 | 24 | yes | [42] |
Rat | Sprague-Dawley | F | 1.3 | 175 | 1.8 | 24 | yes | [42] |
Guinea Pig | Cavia porcelles | F | 0.48 | nd | 48 | 48 | yes | [43] |
Dog | Beagle | MF | 0.2 | 224 | 5 | 8 | yes | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyler, B.M.; Guarnieri, M. Long-Acting Opioid Analgesics for Acute Pain: Pharmacokinetic Evidence Reviewed. Vet. Sci. 2023, 10, 372. https://doi.org/10.3390/vetsci10060372
Tyler BM, Guarnieri M. Long-Acting Opioid Analgesics for Acute Pain: Pharmacokinetic Evidence Reviewed. Veterinary Sciences. 2023; 10(6):372. https://doi.org/10.3390/vetsci10060372
Chicago/Turabian StyleTyler, Betty M., and Michael Guarnieri. 2023. "Long-Acting Opioid Analgesics for Acute Pain: Pharmacokinetic Evidence Reviewed" Veterinary Sciences 10, no. 6: 372. https://doi.org/10.3390/vetsci10060372
APA StyleTyler, B. M., & Guarnieri, M. (2023). Long-Acting Opioid Analgesics for Acute Pain: Pharmacokinetic Evidence Reviewed. Veterinary Sciences, 10(6), 372. https://doi.org/10.3390/vetsci10060372