Intramammary Infusion of Micronised Purified Flavonoid Fraction (MPFF) in Mastitis-Diagnosed Dairy Cows Naturally Infected by Staphylococcus spp. in the Late Lactation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Media and Reagents
2.2. Animals and Dairy Management
2.3. Milk Sample Collection
2.4. CMT Procedure
2.5. SCCs Assessment
2.6. Milk Sample Culture and Bacteriological Analysis
2.7. Control Groups
2.8. MPFF Intramammary Infusion Treatments
2.9. Statistical Analyses
3. Results
3.1. Identification of Mastitis Etiological Agents (Genera and Species) in Dairy Cows Naturally-Infected in the Late Lactation
3.2. Effects of MPFF Intramammary Infusion on SCCs Obtained in Dairy Cows Naturally-Infected by Staphylococcus spp. in the Late Lactation
3.3. Effects of MPFF Intramammary Infusion on the Number of Pathogen Isolates Obtained in Mastitis-Positive Quarters Naturally-Infected by Staphylococcus spp. in the Late Lactation
3.4. Effects of MPFF Intramammary Infusion on the Total Bacterial Counts (TBCs) Obtained in Mastitis-Positive Quarters Naturally-Infected by Staphylococcus spp. in the Late Lactation
3.5. Antimicrobial Sensitivity Patterns of the Pathogenic Isolated Bacteria Obtained in In Vitro Cultures Derived from Milk Samples in the Late Lactation
3.6. Effect of MPFF Intramammary Infusion on the Cure Rate (%) in Mastitis-Diagnosed Quarters Naturally-Infected by Staphylococcus spp. in the Late Lactation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seegers, H.; Fourichon, C.; Beaudeau, F. Production Effects Related to Mastitis and Mastitis Economics in Dairy Cattle Herds. Vet. Res. 2003, 34, 475–491. [Google Scholar] [CrossRef] [PubMed]
- Hogeveen, H.; Van Der Voort, M. Assessing the Economic Impact of an Endemic Disease: The Case of Mastitis. Rev. Sci. Tech. 2017, 36, 217–226. [Google Scholar] [CrossRef]
- Azooz, M.F.; El-Wakeel, S.A.; Yousef, H.M. Financial and Economic Analyses of the Impact of Cattle Mastitis on the Profitability of Egyptian Dairy Farms. Vet. World 2020, 13, 1750–1759. [Google Scholar] [CrossRef] [PubMed]
- Ruegg, P.L. A 100-Year Review: Mastitis Detection, Management, and Prevention. J. Dairy Sci. 2017, 100, 10381–10397. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Mir, M.U.R.; Ganie, S.A.; Mushtaq, S.; Bukhari, S.I.; Alshehri, S.; Rashid, S.M.; Mir, T.M.; Rehman, M.U. Milk-Compositional Study of Metabolites and Pathogens in the Milk of Bovine Animals Affected with Subclinical Mastitis. Molecules 2022, 27, 8631. [Google Scholar] [CrossRef]
- Romero, J.; Benavides, E.; Meza, C. Assessing Financial Impacts of Subclinical Mastitis on Colombian Dairy Farms. Front. Vet. Sci. 2018, 5, 273. [Google Scholar] [CrossRef]
- Gussmann, M.; Steeneveld, W.; Kirkeby, C.; Hogeveen, H.; Farre, M.; Halasa, T. Economic and Epidemiological Impact of Different Intervention Strategies for Subclinical and Clinical Mastitis. Prev. Vet. Med. 2019, 166, 78–85. [Google Scholar] [CrossRef] [PubMed]
- van Aken, A.; Hoop, D.; Friedli, K.; Mann, S. Udder Health, Veterinary Costs, and Antibiotic Usage in Free Stall Compared with Tie Stall Dairy Housing Systems: An Optimized Matching Approach in Switzerland. Res. Vet. Sci. 2022, 152, 333–353. [Google Scholar] [CrossRef] [PubMed]
- Sharun, K.; Dhama, K.; Tiwari, R.; Gugjoo, M.B.; Yatoo, M.I.; Patel, S.K.; Pathak, M.; Karthik, K.; Khurana, S.K.; Singh, R.; et al. Advances in Therapeutic and Managemental Approaches of Bovine Mastitis: A Comprehensive Review. Vet. Q. 2021, 41, 107–136. [Google Scholar] [CrossRef]
- Aly, S.S.; Okello, E.; ElAshmawy, W.R.; Williams, D.R.; Anderson, R.J.; Rossitto, P.; Tonooka, K.; Glenn, K.; Karle, B.; Lehenbauer, T.W. Effectiveness of Intramammary Antibiotics, Internal Teat Sealants, or Both at Dry-Off in Dairy Cows: Clinical Mastitis and Culling Outcomes. Antibiotics 2022, 11, 954. [Google Scholar] [CrossRef]
- Kim, S.J.; Moon, D.C.; Park, S.C.; Kang, H.Y.; Na, S.H.; Lim, S.K. Antimicrobial Resistance and Genetic Characterization of Coagulase-Negative Staphylococci from Bovine Mastitis Milk Samples in Korea. J. Dairy Sci. 2019, 102, 11439–11448. [Google Scholar] [CrossRef] [PubMed]
- Wente, N.; Krömker, V. Streptococcus Dysgalactiae-Contagious or Environmental? Animals 2020, 10, 2185. [Google Scholar] [CrossRef] [PubMed]
- Klaas, I.C.; Zadoks, R.N. An Update on Environmental Mastitis: Challenging Perceptions. Transbound. Emerg. Dis. 2018, 65, 166–185. [Google Scholar] [CrossRef] [PubMed]
- Saed, H.A.E.M.R.; Ibrahim, H.M.M. Antimicrobial Profile of Multidrug-Resistant Streptococcus spp. Isolated from Dairy Cows with Clinical Mastitis. J. Adv. Vet. Anim. Res. 2020, 7, 186–197. [Google Scholar] [CrossRef] [PubMed]
- De los Santos, R.; González-Revello, Á.; Majul, L.; Umpiérrez, A.; Aldrovandi, A.; Gil, A.; Hirigoyen, D.; Zunino, P. Subclinical Bovine Mastitis Associated with Staphylococcus spp. in Eleven Uruguayan Dairy Farms. J. Infect. Dev. Ctries. 2022, 16, 630–637. [Google Scholar] [CrossRef]
- de Oliveira, R.P.; da Silva, J.G.; Aragão, B.B.; de Carvalho, R.G.; Juliano, M.A.; Frazzon, J.; Farias, M.P.O.; Mota, R.A. Diversity and Emergence of Multi-Resistant Staphylococcus spp. Isolated from Subclinical Mastitis in Cows in of the State of Piauí, Brazil. Braz. J. Microbiol. 2022, 53, 2215–2222. [Google Scholar] [CrossRef]
- Graber, H.U.; Bodmer, M. Staphylococcus aureus and Its Genotypes as a Mastitis Pathogen in Dairy Cattles—A Review. Schweiz. Arch. Tierheilkd. 2019, 161, 611–617. [Google Scholar] [CrossRef]
- Pérez, V.K.C.; da Costa, G.M.; Guimarães, A.S.; Heinemann, M.B.; Lage, A.P.; Dorneles, E.M.S. Relationship between Virulence Factors and Antimicrobial Resistance in Staphylococcus aureus from Bovine Mastitis. J. Glob. Antimicrob. Resist. 2020, 22, 792–802. [Google Scholar] [CrossRef]
- Rychshanova, R.; Mendybayeva, A.; Miciński, B.; Mamiyev, N.; Shevchenko, P.; Bermukhametov, Z.; Orzechowski, B.; Miciński, J. Antibiotic Resistance and Biofilm Formation in Staphylococcus aureus Isolated from Dairy Cows at the Stage of Subclinical Mastitis in Northern Kazakhstan. Arch. Anim. Breed. 2022, 65, 439–448. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.; Li, X.; Wang, X.; Li, H. Detection of Antibiotic Resistance, Virulence Gene, and Drug Resistance Gene of Staphylococcus aureus Isolates from Bovine Mastitis. Microbiol. Spectr. 2022, 10, e00471-22. [Google Scholar] [CrossRef]
- Srednik, M.E.; Grieben, M.A.; Bentancor, A.; Gentilini, E.R. Molecular Identification of Coagulase-Negative Staphylococci Isolated from Bovine Mastitis and Detection of β-Lactam Resistance. J. Infect. Dev. Ctries. 2015, 9, 1022–1027. [Google Scholar] [CrossRef] [PubMed]
- Bhavana, R.N.; Chaitanya, R.K. Identification of Coagulase Negative Staphylococcal Species from Bovine Mastitis in India. Iran. J. Vet. Res. 2022, 23, 358–362. [Google Scholar] [PubMed]
- Bansal, B.K.; Gupta, D.K.; Shafi, T.A.; Sharma, S. Comparative Antibiogram of Coagulase-Negative Staphylococci (CNS) Associated with Subclinical and Clinical Mastitis in Dairy Cows. Vet. World 2015, 8, 421–426. [Google Scholar] [CrossRef]
- Srednik, M.E.; Tremblay, Y.D.N.; Labrie, J.; Archambault, M.; Jacques, M.; Cirelli, A.F.; Gentilini, E.R. Biofilm Formation and Antimicrobial Resistance Genes of Coagulase-Negative Staphylococci Isolated from Cows with Mastitis in Argentina. FEMS Microbiol. Lett. 2017, 364, 8. [Google Scholar] [CrossRef] [PubMed]
- Frey, Y.; Rodriguez, J.P.; Thomann, A.; Schwendener, S.; Perreten, V. Genetic Characterization of Antimicrobial Resistance in Coagulase-Negative Staphylococci from Bovine Mastitis Milk. J. Dairy Sci. 2013, 96, 2247–2257. [Google Scholar] [CrossRef]
- McDougall, S.; Penry, J.; Dymock, D. Antimicrobial Susceptibilities in Dairy Herds That Differ in Dry Cow Therapy Usage. J. Dairy Sci. 2021, 104, 9142–9163. [Google Scholar] [CrossRef]
- Kandeel, S.A.; Morin, D.E.; Calloway, C.D.; Constable, P.D. Association of California Mastitis Test Scores with Intramammary Infection Status in Lactating Dairy Cows Admitted to a Veterinary Teaching Hospital. J. Vet. Intern. Med. 2018, 32, 497–505. [Google Scholar] [CrossRef]
- Deng, Z.; Hogeveen, H.; Lam, T.J.G.M.; van der Tol, R.; Koop, G. Performance of Online Somatic Cell Count Estimation in Automatic Milking Systems. Front. Vet. Sci. 2020, 7, 221. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-H.; Kusaba, N. Association between Differential Somatic Cell Count and California Mastitis Test Results in Holstein Cattle. JDS Commun. 2022, 3, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Sargeant, J.M.; Leslie, K.E.; Shirley, J.E.; Pulkrabek, B.J.; Lim, G.H. Sensitivity and Specificity of Somatic Cell Count and California Mastitis Test for Identifying Intramammary Infection in Early Lactation. J. Dairy Sci. 2001, 84, 2018–2024. [Google Scholar] [CrossRef]
- Ndahetuye, J.B.; Persson, Y.; Nyman, A.K.; Tukei, M.; Ongol, M.P.; Båge, R. Aetiology and Prevalence of Subclinical Mastitis in Dairy Herds in Peri-Urban Areas of Kigali in Rwanda. Trop. Anim. Health Prod. 2019, 51, 2037–2044. [Google Scholar] [CrossRef] [PubMed]
- Riollet, C.; Rainard, P.; Poutrel, B. Cells and Cytokines in Inflammatory Secretions of Bovine Mammary Gland. Adv. Exp. Med. Biol. 2000, 480, 247–258. [Google Scholar] [PubMed]
- Dosogne, H.; Vangroenweghe, F.; Mehrzad, J.; Massart-Leën, A.M.; Burvenich, C. Differential Leukocyte Count Method for Bovine Low Somatic Cell Count Milk. J. Dairy Sci. 2003, 86, 828–834. [Google Scholar] [CrossRef] [PubMed]
- Sarikaya, H.; Schlamberger, G.; Meyer, H.H.D.; Bruckmaier, R.M. Leukocyte Populations and MRNA Expression of Inflammatory Factors in Quarter Milk Fractions at Different Somatic Cell Score Levels in Dairy Cows. J. Dairy Sci. 2006, 89, 2479–2486. [Google Scholar] [CrossRef]
- Souza, F.N.; Blagitz, M.G.; Batista, C.F.; Takano, P.V.; Gargano, R.G.; Diniz, S.A.; Silva, M.X.; Ferronatto, J.A.; Santos, K.R.; Heinemann, M.B.; et al. Immune Response in Nonspecific Mastitis: What Can It Tell Us? J. Dairy Sci. 2020, 103, 5376–5386. [Google Scholar] [CrossRef] [PubMed]
- Naranjo-Lucena, A.; Slowey, R. Invited Review: Antimicrobial Resistance in Bovine Mastitis Pathogens: A Review of Genetic Determinants and Prevalence of Resistance in European Countries. J. Dairy Sci. 2023, 106, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Moosavi, M.; Mirzaei, A.; Ghavami, M.; Tamadon, A. Relationship between Season, Lactation Number and Incidence of Clinical Mastitis in Different Stages of Lactation in a Holstein Dairy Farm. Vet. Res. Forum Int. Q. J. 2014, 5, 13–19. [Google Scholar]
- Golder, H.M.; Hodge, A.; Lean, I.J. Effects of Antibiotic Dry-Cow Therapy and Internal Teat Sealant on Milk Somatic Cell Counts and Clinical and Subclinical Mastitis in Early Lactation. J. Dairy Sci. 2016, 99, 7370–7380. [Google Scholar] [CrossRef]
- Freu, G.; Tomazi, T.; Monteiro, C.P.; Barcelos, M.M.; Alves, B.G.; Dos Santos, M.V. Internal Teat Sealant Administered at Drying off Reduces Intramammary Infections during the Dry and Early Lactation Periods of Dairy Cows. Animals 2020, 10, 1522. [Google Scholar] [CrossRef]
- McDougall, S.; Williamson, J.; Gohary, K.; Lacy-Hulbert, J. Risk Factors for Clinical or Subclinical Mastitis Following Infusion of Internal Teat Sealant Alone at the End of Lactation in Cows with Low Somatic Cell Counts. N. Z. Vet. J. 2022, 70, 79–87. [Google Scholar] [CrossRef]
- Dahl, G.E.; McFadden, T.B. Symposium Review: Environmental Effects on Mammary Immunity and Health. J. Dairy Sci. 2022, 105, 8586–8589. [Google Scholar] [CrossRef] [PubMed]
- McDougall, S.; Castle, R. Cow-Level Risk Factors for Clinical Mastitis in the Dry Period in Cows Treated with an Internal Teat Sealant Alone at the End of Lactation. N. Z. Vet. J. 2021, 69, 327–336. [Google Scholar] [CrossRef]
- McDougall, S.; Williamson, J.; Gohary, K.; Lacy-Hulbert, J. Detecting Intramammary Infection at the End of Lactation in Dairy Cows. J. Dairy Sci. 2021, 104, 10232–10249. [Google Scholar] [CrossRef]
- Niemi, R.E.; Hovinen, M.; Rajala-Schultz, P.J. Selective Dry Cow Therapy Effect on Milk Yield and Somatic Cell Count: A Retrospective Cohort Study. J. Dairy Sci. 2022, 105, 1387–1401. [Google Scholar] [CrossRef]
- Wittek, T.; Tichy, A.; Grassauer, B.; Egger-Danner, C. Retrospective Analysis of Austrian Health Recording Data of Antibiotic or Nonantibiotic Dry-off Treatment on Milk Yield, Somatic Cell Count, and Frequency of Mastitis in Subsequent Lactation. J. Dairy Sci. 2018, 101, 1456–1463. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef] [PubMed]
- Wen, K.; Fang, X.; Yang, J.; Yao, Y.; Nandakumar, K.S.; Salem, M.L.; Cheng, K. Recent Research on Flavonoids and Their Biomedical Applications. Curr. Med. Chem. 2021, 28, 1042–1066. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules 2022, 27, 2901. [Google Scholar] [CrossRef]
- Karetová, D.; Suchopár, J.; Bultas, J. Diosmin/Hesperidin: A Cooperating Tandem, or Is Diosmin Crucial and Hesperidin an Inactive Ingredient Only? Vnitr. Lek. 2020, 66, 97–103. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, R.; Shi, W.; Li, L.; Liu, H.; Chen, Z.; Wu, L. Metabolism and Pharmacological Activities of the Natural Health-Benefiting Compound Diosmin. Food Funct. 2020, 11, 8472–8492. [Google Scholar] [CrossRef]
- Gerges, S.H.; Wahdan, S.A.; Elsherbiny, D.A.; El-Demerdash, E. Pharmacology of Diosmin, a Citrus Flavone Glycoside: An Updated Review. Eur. J. Drug Metab. Pharmacokinet. 2022, 47, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Swinkels, J.M.; Leach, K.A.; Breen, J.E.; Payne, B.; White, V.; Green, M.J.; Bradley, A.J. Randomized Controlled Field Trial Comparing Quarter and Cow Level Selective Dry Cow Treatment Using the California Mastitis Test. J. Dairy Sci. 2021, 104, 9063–9081. [Google Scholar] [CrossRef] [PubMed]
- Middleton, J.R.; Saeman, A.; Fox, L.K.; Lombard, J.; Hogan, J.S.; Smith, K.L. The National Mastitis Council: A Global Organization for Mastitis Control and Milk Quality, 50 Years and Beyond. J. Mammary Gland Biol. Neoplasia 2014, 19, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Al-harbi, H.; Ranjbar, S.; Moore, R.J.; Alawneh, J.I. Bacteria Isolated From Milk of Dairy Cows With and Without Clinical Mastitis in Different Regions of Australia and Their AMR Profiles. Front. Vet. Sci. 2021, 8, 743725. [Google Scholar] [CrossRef]
- Tsugami, Y.; Chiba, T.; Obayashi, T.; Higuchi, H.; Watanabe, A.; Isobe, N.; Kawai, K. Differences in Antimicrobial Components between Bacterial Culture-Positive and Culture-Negative Bovine Clinical Mastitis Milk. Anim. Sci. J. 2022, 93, e13771. [Google Scholar] [CrossRef]
- Wiggans, G.R.; Shook, G.E. A Lactation Measure of Somatic Cell Count. J. Dairy Sci. 1987, 70, 2666–2672. [Google Scholar] [CrossRef]
- Tijs, S.H.W.; Holstege, M.M.C.; Scherpenzeel, C.G.M.; Santman-Berends, I.M.G.A.; Velthuis, A.G.J.; Lam, T.J.G.M. Effect of Selective Dry Cow Treatment on Udder Health and Antimicrobial Usage on Dutch Dairy Farms. J. Dairy Sci. 2022, 105, 5381–5392. [Google Scholar] [CrossRef]
- Gomes, F.; Henriques, M. Control of Bovine Mastitis: Old and Recent Therapeutic Approaches. Curr. Microbiol. 2016, 72, 377–382. [Google Scholar] [CrossRef]
- El-Sayed, A.; Kamel, M. Bovine Mastitis Prevention and Control in the Post-Antibiotic Era. Trop. Anim. Health Prod. 2021, 53, 236. [Google Scholar] [CrossRef]
- Gutiérrez-Reinoso, M.A.; Uquilla, J.B.; Barona, F.A.; Guano, M.E.; Chicaiza, G.N.; García-Herreros, M. Effects of Intrauterine Infusion of Micronised Purified Flavonoid Fraction (MPFF) in Metritis-Diagnosed Dairy Cows Naturally Infected by E. Coli during the Early Postpartum. Vet. Sci. 2022, 9, 362. [Google Scholar] [CrossRef]
- Francoz, D.; Wellemans, V.; Dupré, J.P.; Roy, J.P.; Labelle, F.; Lacasse, P.; Dufour, S. Invited Review: A Systematic Review and Qualitative Analysis of Treatments Other than Conventional Antimicrobials for Clinical Mastitis in Dairy Cows. J. Dairy Sci. 2017, 100, 7751–7770. [Google Scholar] [CrossRef] [PubMed]
- Zaatout, N.; Ayachi, A.; Kecha, M. Staphylococcus aureus Persistence Properties Associated with Bovine Mastitis and Alternative Therapeutic Modalities. J. Appl. Microbiol. 2020, 129, 1102–1119. [Google Scholar] [CrossRef]
- Fuchs, G.; Glardon, O.J. Literature Review on Phyto-Therapeutics for the Treatment of Bovine Mastitis. Schweiz. Arch. Tierheilkd. 2021, 163, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Ruegg, P.L. What Is Success? A Narrative Review of Research Evaluating Outcomes of Antibiotics Used for Treatment of Clinical Mastitis. Front. Vet. Sci. 2021, 8, 639–641. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.C.L.; Ip, M.; Gong, H.; Lui, S.L.; See, R.H.; Jolivalt, C.; Fung, K.P.; Leung, P.C.; Reiner, N.E.; Lau, C.B.S. Synergistic Effects of Diosmetin with Erythromycin against ABC Transporter Over-Expressed Methicillin-Resistant Staphylococcus aureus (MRSA) RN4220/PUL5054 and Inhibition of MRSA Pyruvate Kinase. Phytomedicine 2013, 20, 611–614. [Google Scholar] [CrossRef] [PubMed]
- Keller, D.; Sundrum, A. Comparative Effectiveness of Individualised Homeopathy and Antibiotics in the Treatment of Bovine Clinical Mastitis: Randomised Controlled Trial. Vet. Rec. 2018, 182, 407. [Google Scholar] [CrossRef]
- Petzl, W.; Zerbe, H.; Günther, J.; Seyfert, H.M.; Hussen, J.; Schuberth, H.J. Pathogen-Specific Responses in the Bovine Udder. Models and Immunoprophylactic Concepts. Res. Vet. Sci. 2018, 116, 55–61. [Google Scholar] [CrossRef]
- Engler, C.; Renna, M.S.; Beccaria, C.; Silvestrini, P.; Pirola, S.I.; Pereyra, E.A.L.; Baravalle, C.; Camussone, C.M.; Monecke, S.; Calvinho, L.F.; et al. Differential Immune Response to Two Staphylococcus aureus Strains with Distinct Adaptation Genotypes after Experimental Intramammary Infection of Dairy Cows. Microb. Pathog. 2022, 172, 105–789. [Google Scholar] [CrossRef]
- Huwait, E.; Mobashir, M. Potential and Therapeutic Roles of Diosmin in Human Diseases. Biomedicines 2022, 10, 1076. [Google Scholar] [CrossRef]
- Van den Borne, B.H.P.; van Schaik, G.; Lam, T.J.G.M.; Nielen, M.; Frankena, K. Intramammary Antimicrobial Treatment of Subclinical Mastitis and Cow Performance Later in Lactation. J. Dairy Sci. 2019, 102, 4441–4451. [Google Scholar] [CrossRef]
- Kosciuczuk, E.M.; Lisowski, P.; Jarczak, J.; Majewska, A.; Rzewuska, M.; Zwierzchowski, L.; Bagnicka, E. Transcriptome Profiling of Staphylococci-Infected Cow Mammary Gland Parenchyma. BMC Vet. Res. 2017, 13, 161. [Google Scholar] [CrossRef] [PubMed]
- Kirsanova, E.; Boysen, P.; Johansen, G.M.; Heringstad, B.; Lewandowska-Sabat, A.; Olsaker, I. Expression Analysis of Candidate Genes for Chronic Subclinical Mastitis in Norwegian Red Cattle. J. Dairy Sci. 2020, 103, 9142–9149. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Buggiotti, L.; Salavati, M.; Marchitelli, C.; Palma-Vera, S.; Wylie, A.; Takeda, H.; Tang, L.; Crowe, M.A.; Wathes, D.C.; et al. Global Transcriptomic Profiles of Circulating Leucocytes in Early Lactation Cows with Clinical or Subclinical Mastitis. Mol. Biol. Rep. 2021, 48, 4611–4623. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fan, Y.; He, Y.; Han, Z.; Gong, Z.; Peng, Y.; Meng, Y.; Mao, Y.; Yang, Z.; Yang, Y. Integrative Analysis of MiRNA and MRNA Expression Profiles in Mammary Glands of Holstein Cows Artificially Infected with Staphylococcus aureus. Pathogens 2021, 10, 506. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant Flavonoids: Classification, Distribution, Biosynthesis, and Antioxidant Activity. Food Chem. 2022, 383, 132–531. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.J.; Chen, J.B.; Cao, J.P.; Li, X.; Sun, C. De Citrus Flavonoids and Their Antioxidant Evaluation. Crit. Rev. Food Sci. Nutr. 2022, 62, 3833–3854. [Google Scholar] [CrossRef]
- Zbinden, C.; Pilo, P.; Frey, J.; Bruckmaier, R.M.; Wellnitz, O. The Immune Response of Bovine Mammary Epithelial Cells to Live or Heat-Inactivated Mycoplasma Bovis. Vet. Microbiol. 2015, 179, 336–340. [Google Scholar] [CrossRef]
- Gulbe, G.; Pilmane, M.; Saulīte, V.; Doniņa, S.; Jermolajevs, J.; Peškova, L.; Valdovska, A. Cells and Cytokines in Milk of Subclinically Infected Bovine Mammary Glands after the Use of Immunomodulatory Composition GLP 810. Mediat. Inflamm. 2020, 2020, 8238029. [Google Scholar] [CrossRef]
- Thomas, L.H.; Haider, W.; Hill, A.W.; Cook, R.S. Pathologic Findings of Experimentally Induced Streptococcus Uberis Infection in the Mammary Gland of Cows. Am. J. Vet. Res. 1994, 55, 1723–1728. [Google Scholar]
- Liu, Y.; Zhou, M.; Xu, S.; Khan, M.A.; Shi, Y.; Qu, W.; Gao, J.; Liu, G.; Kastelic, J.P.; Han, B. Mycoplasma Bovis-Generated Reactive Oxygen Species and Induced Apoptosis in Bovine Mammary Epithelial Cell Cultures. J. Dairy Sci. 2020, 103, 10429–10445. [Google Scholar] [CrossRef]
- Ma, F.; Yang, S.; Zhou, M.; Lu, Y.; Deng, B.; Zhang, J.; Fan, H.; Wang, G. NADPH Oxidase-Derived Reactive Oxygen Species Production Activates the ERK1/2 Pathway in Neutrophil Extracellular Traps Formation by Streptococcus Agalactiae Isolated from Clinical Mastitis Bovine. Vet. Microbiol. 2022, 268, 109427. [Google Scholar] [CrossRef] [PubMed]
- Kan, X.; Hu, G.; Liu, Y.; Xu, P.; Huang, Y.; Cai, X.; Guo, W.; Fu, S.; Liu, J. Mammary Fibrosis Tendency and Mitochondrial Adaptability in Dairy Cows with Mastitis. Metabolites 2022, 12, 1035. [Google Scholar] [CrossRef] [PubMed]
- Jean, T.; Bodinier, M.C. Mediators Involved in Inflammation: Effects of Daflon 500 Mg on Their Release. Angiology 1994, 45, 554–559. [Google Scholar] [PubMed]
- Robak, J.; Gryglewski, R.J. Bioactivity of Flavonoids. Pol. J. Pharmacol. 1996, 48, 555–564. [Google Scholar]
- Burnett, B.P.; Bitto, A.; Altavilla, D.; Squadrito, F.; Levy, R.M.; Pillai, L. Flavocoxid Inhibits Phospholipase A2, Peroxidase Moieties of the Cyclooxygenases (COX), and 5-Lipoxygenase, Modifies COX-2 Gene Expression, and Acts as an Antioxidant. Mediat. Inflamm. 2011, 2011, 385780. [Google Scholar] [CrossRef]
- Slika, H.; Mansour, H.; Wehbe, N.; Nasser, S.A.; Iratni, R.; Nasrallah, G.; Shaito, A.; Ghaddar, T.; Kobeissy, F.; Eid, A.H. Therapeutic Potential of Flavonoids in Cancer: ROS-Mediated Mechanisms. Biomed. Pharmacother. 2022, 146, 112442. [Google Scholar] [CrossRef]
- Silva, B.; Biluca, F.C.; Gonzaga, L.V.; Fett, R.; Dalmarco, E.M.; Caon, T.; Costa, A.C.O. In Vitro Anti-Inflammatory Properties of Honey Flavonoids: A Review. Food Res. Int. 2021, 141, 110086. [Google Scholar] [CrossRef]
- Hoskin, D.W.; Coombs, M.R.P. Editorial: Immune Modulation by Flavonoids. Front. Immunol. 2022, 13, 1739. [Google Scholar] [CrossRef]
- Jiang, Y.P.; Wen, J.J.; Zhao, X.X.; Gao, Y.C.; Ma, X.; Song, S.Y.; Jin, Y.; Shao, T.J.; Yu, J.; Wen, C.P. The Flavonoid Naringenin Alleviates Collagen-Induced Arthritis through Curbing the Migration and Polarization of CD4+ T Lymphocyte Driven by Regulating Mitochondrial Fission. Int. J. Mol. Sci. 2022, 24, 279. [Google Scholar] [CrossRef]
- Veh, K.A.; Klein, R.C.; Ster, C.; Keefe, G.; Lacasse, P.; Scholl, D.; Roy, J.P.; Haine, D.; Dufour, S.; Talbot, B.G.; et al. Genotypic and Phenotypic Characterization of Staphylococcus aureus Causing Persistent and Nonpersistent Subclinical Bovine Intramammary Infections during Lactation or the Dry Period. J. Dairy Sci. 2015, 98, 155–168. [Google Scholar] [CrossRef]
- Rowe, S.M.; Godden, S.M.; Royster, E.; Timmerman, J.; Boyle, M. Postcalving Udder Health and Productivity in Cows Approaching Dry-off with Intramammary Infections Caused by Non-aureus Staphylococcus, Aerococcus, Enterococcus, Lactococcus, and Streptococcus Species. J. Dairy Sci. 2021, 104, 6061–6079. [Google Scholar] [CrossRef] [PubMed]
- Naqvi, S.A.; Nobrega, D.B.; Ronksley, P.E.; Barkema, H.W. Invited Review: Effectiveness of Precalving Treatment on Postcalving Udder Health in Nulliparous Dairy Heifers: A Systematic Review and Meta-Analysis. J. Dairy Sci. 2018, 101, 4707–4728. [Google Scholar] [CrossRef] [PubMed]
- Campos, B.; Pickering, A.C.; Rocha, L.S.; Aguilar, A.P.; Fabres-Klein, M.H.; de Oliveira Mendes, T.A.; Fitzgerald, J.R.; de Oliveira Barros Ribon, A. Diversity and Pathogenesis of Staphylococcus aureus from Bovine Mastitis: Current Understanding and Future Perspectives. BMC Vet. Res. 2022, 18, 115. [Google Scholar] [CrossRef] [PubMed]
- Degen, S.; Paduch, J.H.; Hoedemaker, M.; Krömker, V. Factors Affecting the Probability of Bacteriological Cure of Bovine Mastitis. Tierarztl. Prax. Ausg. G. Grosstiere Nutztiere 2015, 43, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Royster, E.; Wagner, S. Treatment of Mastitis in Cattle. Vet. Clin. North Am. Food Anim. Pract. 2015, 31, 17–46. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, K.R.; Purgato, G.A.; Píccolo, M.S.; Rodrigues, F.F.; Pizziolo, V.R.; Muñoz, G.D.; Rossi, C.C.; Diaz, M.A. Formulations of essential oils obtained from plants traditionally used as condiments or traditional medicine active against Staphylococcus aureus isolated from dairy cows with mastitis. Lett. Appl. Microbiol. 2023, 76, ovad034. [Google Scholar] [CrossRef]
- Da Silva, B.A.; Feijó, F.M.C.; Alves, N.D.; Pimenta, A.S.; Benicio, L.D.M.; da Silva Júnior, E.C.; Santos, C.S.; Pereira, A.F.; Moura, Y.B.F.; Gama, G.S.P.; et al. Use of a product based on wood vinegar of Eucalyptus clone I144 used in the control of bovine mastitis. Vet. Microbiol. 2023, 279, 109670. [Google Scholar] [CrossRef]
Experimental Groups | |||||||||
---|---|---|---|---|---|---|---|---|---|
Control Groups | Treatment Groups | ||||||||
Negative Control (Healthy Non-Treated; n = 50) | Positive Control (Mastitis Non- Treated; n = 50) | Low Dose (Mastitis-Treated MPFF: 500 mg; n = 50) | Medium Dose (Mastitis-Treated MPFF: 1000 mg; n = 50) | High Dose (Mastitis-Treated MPFF: 1500 mg; n = 50) | |||||
- (n = 25) | - (n = 25) | Staph. aureus (n = 25) | CNS (n = 25) | Staph. aureus (n = 25) | CNS (n = 25) | Staph. aureus (n = 25) | CNS (n = 25) | Staph. aureus (n = 25) | CNS (n = 25) |
Bacterial Species/Type | Associated to Frequent Mastitis/Considered Pathogen | Prevalence (% Total) | Prevalence (% Mastitis+) | |
---|---|---|---|---|
GRAM− | ||||
Enterobacter spp. | No | Yes | 4/250 (1.6%) | 4/200 (2.0%) |
Coliforms (≠spp.) * | Yes | Yes | 39/250 (15.6%) | 39/200(19.5%) |
Citrobacter freundii | No | Yes | 3/250 (1.2%) | 3/200 (1.5%) |
Escherichia coli * | Yes | Yes | 51/250 (20.4%) | 51/200 (25.5%) |
Klebsiella spp. | No | Yes | 7/250 (2.8%) | 7/200 (3.5%) |
Pseudomonas aeuroginosa | No | Yes | 5/250 (2.0%) | 5/200 (2.5%) |
Proteus mirabilis | No | Yes | 2/250 (0.8%) | 2/200 (1.0%) |
Yersinia spp. | No | Yes | 6/250 (2.4%) | 6/200 (3.0%) |
Salmonella spp. | No | Yes | 3/250 (1.2%) | 3/200 (1.5%) |
GRAM+ | ||||
Staphylococcus aureus * | Yes | Yes | 63/250(25.2%) | 63/200 (31.5%) |
CNS * | Yes | Yes | 46/250 (18.4%) | 46/200 (23.0%) |
Staphylococcus chromogenes * | Yes | Yes | 26/250(10.4%) | 26/200 (13.0%) |
Staphylococcus xilosus | No | Yes | 18/250(7.2%) | 18/200 (9.0%) |
Staphylococcus simulans | No | Yes | 15/250(6.0%) | 15/200 (7.5%) |
Staphylococcus cohnii | No | Yes | 2/250(0.8%) | 2/200 (1.0%) |
Staphylococcus epidermidis | No | Yes | 16/250 (6.4%) | 16/200 (8.0%) |
Staphylococcus haemolyticus * | Yes | Yes | 20/250(8.0%) | 20/200 (10.0%) |
Staphylococcus saprophyticus | No | Yes | 3/250 (1.2%) | 3/200 (1.5%) |
Micrococcus spp. | No | Yes | 2/250 (0.8%) | 2/200 (1.0%) |
Bacillus spp. * | Yes | Yes | 14/250 (5.6%) | 14/200 (7.0%) |
Enterococcus spp. | No | Yes | 5/250(2.0%) | 5/200 (2.5%) |
Corynebacterium spp. | No | Yes | 6/250 (2.4%) | 6/200 (3.0%) |
Listeria monocytogenes | No | Yes | 8/250(3.2%) | 8/200 (4.0%) |
Streptococcus agalactiae * | Yes | Yes | 38/250(15.2%) | 38/200 (19.0%) |
Streptococcus dysgalactiae * | Yes | Yes | 32/250(12.8%) | 32/200 (16.0%) |
Streptococcus uberis * | Yes | Yes | 18/250 (7.2%) | 18/200 (9.0%) |
Total | 357/1227 (29.1%) | 357 | 357 |
Somatic Cell Counts (SCCs: 106 × cells/mL) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Timepoints | (−) Control (n = 25; Healthy Non-Treated) | (+) Control (n = 25; Mastitis Non-Treated) | Low Dose (n = 25; Mastitis MPFF: 500 mg) | Medium Dose (n = 25; Mastitis MPFF: 1000 mg) | High Dose (n = 25; Mastitis MPFF: 1500 mg) | |||||
Staph. aureus | CNS | Staph. aureus | CNS | Staph. aureus | CNS | Staph. aureus | CNS | Staph. aureus | CNS | |
Day 0 Drying-Off (Pre-Treatment) | 0.10 Aa | 0.09 Aa | 0.34 Ba | 0.40 Ba | 0.43 Ba | 0.38 Ba | 0.44 Ba | 0.39 Ba | 0.36 Ba | 0.46 Ba |
Day 3 Post-Calving (Post-Treatment) | 0.13 Aa | 0.11 Aa | 0.39 Ba | 0.38 Ba | 0.50 Ca | 0.41 BCa | 0.39 Ba | 0.28 DEb | 0.32 BDa | 0.21 Eb |
Difference bt/at (106 × cells/mL) | +0.03 | +0.02 | +0.05 | −0.02 | +0.07 | +0.03 | −0.05 | −0.11 | −0.04 | −0.25 |
No. Pathogens-Isolates | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Timepoints | (−) Control | (+) Control | Low Dose | Medium Dose | High Dose | |||||
(n = 25; Healthy Non-Treated) | (n = 25; Mastitis Non-Treated) | (n = 25; Mastitis MPFF: 500 mg) | (n = 25; Mastitis MPFF: 1000 mg) | (n = 25; Mastitis MPFF:1500 mg) | ||||||
Staph. aureus | CNS | Staph. aureus | CNS | Staph. aureus | CNS | Staph. aureus | CNS | Staph. aureus | CNS | |
Day 0 Drying-Off (Pre-Treatment) | 0.0 Aa (0/25) | 0.0 Aa (0/25) | 2.5 Ba (63/25) | 2.3 Ba (57/25) | 2.8 Ba (71/25) | 2.6 Ba (66/25) | 2.4 Ba (60/25) | 2.3 Ba (58/25) | 2.3 Ba (59/25) | 2.6 Ba (65/25) |
Day 3 Post-Calving (Post-Treatment) | 0.0 Aa (0/25) | 0.0 Aa (0/25) | 2.4 Ba (60/25) | 1.8 Ca (45/25) | 2.5 Ba (64/25) | 1.9 Cb (47/25) | 1.7 Cb (42/25) | 1.0 DEb (25/25) | 1.3 CDb (33/25) | 0.7 Eb (17/25) |
Total Reduction (No. Isolates) | - | - | 3 | 12 | 7 | 19 | 18 | 33 | 26 | 48 |
Total Bacterial Counts (TBCs: ×105 CFUs/mL) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Timepoints | (-) Control | (+) Control | Low Dose | Medium Dose | High Dose | |||||
(n = 25; Healthy Non-Treated) | (n = 25; Mastitis Non-Treated) | (n = 25; Mastitis MPFF: 500 mg) | (n = 25; Mastitis MPFF: 1000 mg) | (n = 25; Mastitis MPFF:1500 mg) | ||||||
Staph. aureus | CNS | Staph. aureus | CNS | Staph. aureus | CNS | Staph. aureus | CNS | Staph. aureus | CNS | |
Day 0 Drying-Off (Pre-Treatment) | 0.00 Aa | 0.00 Aa | 3.32 Ba | 2.89 Ba | 3.80 Ba | 3.48 Ba | 3.63 Ba | 3.87 Ba | 3.71 Ba | 3.69 Ba |
Day 3 Post-Calving (Post-Treatment) | 0.00 Aa | 0.00 Aa | 3.60 BCa | 3.12 Ba | 4.22 Ca | 3.04 Ba | 3.34 Ba | 2.10 Db | 3.16 Ba | 1.72 Db |
Difference at/bt (105 × cells/mL) | 0 | 0 | 0.28 | –0.23 | 0.42 | –0.44 | -0.29 | –1.67 | –0.55 | –1.97 |
Bacterial spp./Types | Antimicrobial Sensitivity Patterns | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | |
GRAM− | ||||||||||||||||||||
Coliforms (≠ spp.) | ++ | ++ | ++ | ++ | ++ | + | − | ++ | ||||||||||||
Klebsiella spp. | ++ | ++ | ++ | − | − | ++ | − | |||||||||||||
E. coli * | ++ | + | − | − | ++ | + | + | |||||||||||||
GRAM+ | ||||||||||||||||||||
Bacillus (≠ spp.) | ++ | − | + | ++ | − | + | − | − | + | ++ | ++ | |||||||||
CNS | ++ | ++ | ++ | ++ | + | − | + | |||||||||||||
Staph. aureus | ++ | − | ++ | ++ | − | ++ | + | − | − | − | ++ | ++ | − | |||||||
Strep. agalactiae | ++ | + | ++ | − | ++ | ++ | − | |||||||||||||
Str. dysgalactiae | ++ | ++ | ++ | ++ | + | ++ | − | |||||||||||||
Strep. uberis | ++ | ++ | ++ | ++ | + | ++ | − | |||||||||||||
Total HS (++) | 8 | 3 | 1 | 4 | 6 | 4 | 1 | 3 | 1 | 0 | 2 | 0 | 0 | 0 | 2 | 3 | 2 | 0 | 0 | 0 |
Total R (−) | 0 | 2 | 0 | 0 | 1 | 4 | 0 | 2 | 3 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 4 |
Pathogen Species | Antimicrobial Sensitivity | |||
---|---|---|---|---|
(+) Control (n = 50; Mastitis Non-Treated) | Low Dose (n = 50; Mastitis MPFF: 500 mg) | Medium Dose (n = 50; Mastitis MPFF: 1000 mg) | High Dose (n = 50; Mastitis MPFF:1500 mg) | |
Coagulase-negative Staph. (CNS) | ||||
Staphylococcus haemolyticus | − | − | + | ++ |
Staphylococcus epidermidis | − | + | ++ | +++ |
Staphylococcus saprophyticus | − | + | ++ | +++ |
Staphylococcus cohnii | − | + | ++ | +++ |
Staphylococcus chromogenes | − | − | + | ++ |
Staphylococcus simulans | − | − | + | ++ |
Staphylococcus xylosus | − | + | ++ | +++ |
Coagulase-positive Staph. | ||||
Staphylococcus aureus | − | − | − | + |
Experimental Groups | (-) Control (n = 25; Healthy Non-Treated) | (+) Control (n = 25; Mastitis Non-Treated) | Low Dose (n = 25; Mastitis MPFF:500 mg) | Medium Dose (n = 25; Mastitis MPFF:1000 mg) | High Dose (n = 25; Mastitis MPFF:1500 mg) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Staph. aureus | CNS | Staph. aureus | CNS | Staph. aureus | CNS | Staph. aureus | CNS | Staph. aureus | CNS | |
Cure Rate (%) on Day 3 Post-Calving (Post-Treatment) | 0.0 A (0/25) | 0.0 A (0/25) | 4.0 A (1/25) | 12.0 AB (3/25) | 4.0 A (1/25) | 16.0 B (4/25) | 12.0 AB (3/25) | 36.0 C (9/25) | 28.0 C (7/25) | 68.0 D (17/25) |
Staph. aureus | CNS | |||||||||
Total Cure Rate (%) including All Treatments | 11/75 A (14.6%) | 30/75 B (40.0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Reinoso, M.A.; Uquilla, J.B.; Guamaní, J.L.; Caiza, Á.E.; Carrera, R.P.; Garcia-Herreros, M. Intramammary Infusion of Micronised Purified Flavonoid Fraction (MPFF) in Mastitis-Diagnosed Dairy Cows Naturally Infected by Staphylococcus spp. in the Late Lactation. Vet. Sci. 2023, 10, 335. https://doi.org/10.3390/vetsci10050335
Gutiérrez-Reinoso MA, Uquilla JB, Guamaní JL, Caiza ÁE, Carrera RP, Garcia-Herreros M. Intramammary Infusion of Micronised Purified Flavonoid Fraction (MPFF) in Mastitis-Diagnosed Dairy Cows Naturally Infected by Staphylococcus spp. in the Late Lactation. Veterinary Sciences. 2023; 10(5):335. https://doi.org/10.3390/vetsci10050335
Chicago/Turabian StyleGutiérrez-Reinoso, Miguel A., José B. Uquilla, Jorge L. Guamaní, Ángel E. Caiza, Rocío P. Carrera, and Manuel Garcia-Herreros. 2023. "Intramammary Infusion of Micronised Purified Flavonoid Fraction (MPFF) in Mastitis-Diagnosed Dairy Cows Naturally Infected by Staphylococcus spp. in the Late Lactation" Veterinary Sciences 10, no. 5: 335. https://doi.org/10.3390/vetsci10050335
APA StyleGutiérrez-Reinoso, M. A., Uquilla, J. B., Guamaní, J. L., Caiza, Á. E., Carrera, R. P., & Garcia-Herreros, M. (2023). Intramammary Infusion of Micronised Purified Flavonoid Fraction (MPFF) in Mastitis-Diagnosed Dairy Cows Naturally Infected by Staphylococcus spp. in the Late Lactation. Veterinary Sciences, 10(5), 335. https://doi.org/10.3390/vetsci10050335