Characteristics of a Temperature-Sensitive Mutant Strain of Salmonella Enteritidis and Its Potential as a Live Vaccine Candidate
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Construction of ts Mutant 2S-G10 Strain
2.2. Attenuation Evaluation of the Mutant Strain
2.3. One-Step Growth Curve Analysis
2.4. Invasion Assay
2.5. Complete Genome Sequencing
2.6. Comparative Genome Analysis
2.7. Statistical Analysis
3. Results
3.1. Construction of the ts Mutant Strain
3.2. Attenuation of the ts Mutant Strain
3.3. One-Step Growth Curve Analysis
3.4. Invasion Assay
3.5. Complete Genome Sequencing and Comparative Genome Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2020 Zoonoses Report. EFSA J. 2021, 19, e06971. [Google Scholar] [CrossRef]
- Pijnacker, R.; Dallman, T.J.; Tijsma, A.S.L.; Hawkins, G.; Larkin, L.; Kotila, S.M.; Amore, G.; Amato, E.; Suzuki, P.M.; Denayer, S.; et al. An international outbreak of Salmonella enterica serotype Enteritidis linked to eggs from Poland: A microbiological and epidemiological study. Lancet Infect. Dis. 2019, 19, 778–786. [Google Scholar] [CrossRef] [PubMed]
- Vandeplas, S.; Dubois Dauphin, R.; Beckers, Y.; Thonart, P.; Théwis, A. Salmonella in chicken: Current and developing strategies to reduce contamination at farm level. J. Food Prot. 2010, 73, 774–785. [Google Scholar] [CrossRef] [PubMed]
- Hahn, I. A contribution to consumer protection: TAD Salmonella vac® E—A new live vaccine for chickens against Salmonella Enteritidis. Lohmann Inf. 2000, 23, 29–32. [Google Scholar]
- Barrow, P.A.; Lovell, M.A.; Berchieri, A. The use of two live attenuated vaccines to immunize egg-laying hens against Salmonella enteritidis phage type 4. Avian Pathol. 1991, 20, 681–692. [Google Scholar] [CrossRef]
- Desin, T.S.; Köster, W.; Potter, A.A. Salmonella vaccines in poultry: Past, present and future. Expert Rev. Vaccines 2013, 12, 87–96. [Google Scholar] [CrossRef]
- Whithear, K.G.; Soeripto; Harringan, K.E.; Ghiocas, E. Safety of temperature sensitive mutant Mycoplasma gallisepticum vaccine. Aust. Vet. J. 1990, 67, 159–165. [Google Scholar] [CrossRef]
- Whithear, K.G.; Soeripto; Harringan, K.E.; Ghiocas, E. Immunogenicity of a temperature sensitive mutant Mycoplasma gallisepticum vaccine. Aust. Vet. J. 1990, 67, 168–174. [Google Scholar] [CrossRef]
- Craddock, V.M. Study of the methylation and lack of deamination of deoxyribonucleic acid by N -methyl- N′-nitro- N -nitrosoguanidine. Biochem. J. 1969, 111, 615–620. [Google Scholar] [CrossRef]
- Gee, P.; Maron, D.M.; Ames, B.N. Detection and classification of mutagens: A set of base-specific Salmonella tester strains. Proc. Natl. Acad. Sci. USA 1994, 91, 11606–11610. [Google Scholar] [CrossRef]
- Gordon, A.J.E.; Burns, P.A.; Glickman, B.W. N-Methyl-N′-nitro-N-nitrosoguanidine induced DNA sequence alteration; non-random components in alkylation mutagenesis. Mutat. Res. Mol. Mech. Mutagen. 1990, 233, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; La, T.; Lee, H.-J.; Kim, T.; Song, S.; Park, E.; Park, G.-H.; Choi, I.; Park, S.; Lee, J.-B.; et al. Evaluation of Immune Responses and Protective Efficacy of a Novel Live Attenuated Salmonella Enteritidis Vaccine Candidate in Chickens. Vaccines 2022, 10, 1405. [Google Scholar] [CrossRef] [PubMed]
- Nonomura, I.; Imada, Y. Temperature-sensitive mutant of Mycoplasma synoviae. II. Properties of a nonpathogenic but immunogenic mutant (MSts44). Avian Dis. 1982, 26, 776–781. [Google Scholar] [CrossRef] [PubMed]
- Halatsi, K.; Oikonomou, I.; Lambiri, M.; Mandilara, G.; Vatopoulos, A.; Kyriacou, A. PCR detection of Salmonella spp. using primers targeting the quorum sensing gene sdiA. FEMS Microbiol. Lett. 2006, 259, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.J.; Yeh, D.B.; Wei, C.I. Specific PCR primers for the identification of Salmonella enterica serovar Enteritidis in chicken-related samples. J. Food Drug Anal. 2009, 17, 183–189. [Google Scholar] [CrossRef]
- Reddy, S.; Austin, F. Adhesion and Invasion Assay Procedure Using Caco-2 Cells for Listeria monocytogenes. Bio-Protocol 2017, 7, e2267. [Google Scholar] [CrossRef]
- La, T.-M.; Kim, T.; Lee, H.-J.; Lee, J.-B.; Park, S.-Y.; Choi, I.-S.; Lee, S.-W. Whole-Genome Analysis of Multidrug-Resistant Salmonella Enteritidis Strains Isolated from Poultry Sources in Korea. Pathogens 2021, 10, 1615. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Garrison, E.; Marth, G. Haplotype-based variant detection from short-read sequencing. arXiv 2012, arXiv:1207.3907. [Google Scholar]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Roer, L.; Hendriksen, R.S.; Leekitcharoenphon, P.; Lukjancenko, O.; Kaas, S.; Hasman, H. Is the Evolution of Salmonella enterica subsp. enterica Linked to Restriction-Modification Systems? mSystems 2016, 1, e00009-16. [Google Scholar] [CrossRef] [PubMed]
- Morgulis, A.; Coulouris, G.; Raytselis, Y.; Madden, T.L.; Agarwala, R.; Schäffer, A.A. Database indexing for production MegaBLAST searches. Bioinformatics 2008, 24, 1757–1764. [Google Scholar] [CrossRef]
- Özdemir, C.; Akçelik, N.; Neslihan Özdemir, F.; Evcili, I.; Kahraman, T.; Gürsel, I.; Akçelik, M. The role of bcsE gene in the pathogenicity of Salmonella. Pathog. Dis. 2021, 79, ftab037. [Google Scholar] [CrossRef]
- Brabetz, W.; Muller-Loennies, S.; Holst, O.; Brade, H. Deletion of the Heptosyltransferase Genes rfaC and rfaF in Escherichia Coli K-12 Results in an Re-Type Lipopolysaccharide with a High Degree of 2-Aminoethanol Phosphate Substitution. Eur. J. Biochem. 1997, 247, 716–724. [Google Scholar] [CrossRef]
- Sadler, W.W.; Brownell, J.R.; Fanelli, M.J. Influence of age and inoculum level on shed pattern of Salmonella typhimurium in chickens. Avian Dis. 1969, 13, 793–803. [Google Scholar] [CrossRef]
- Acevedo-Villanueva, K.Y.; Akerele, G.O.; Al Hakeem, W.G.; Renu, S.; Shanmugasundaram, R.; Selvaraj, R.K. A Novel Approach against Salmonella: A Review of Polymeric Nanoparticle Vaccines for Broilers and Layers. Vaccines 2021, 9, 1041. [Google Scholar] [CrossRef]
- Barrow, P.A. Salmonella infections: Immune and non-immune protection with vaccines. Avian Pathol. 2007, 36, 1–13. [Google Scholar] [CrossRef]
- Gast, R.K. Serotype-specific and serotype-independent strategies for preharvest control of food-borne Salmonella in poultry. Avian Dis. 2007, 51, 817–828. [Google Scholar] [CrossRef]
- Troxell, B.; Petri, N.; Daron, C.; Pereira, R.; Mendoza, M.; Hassan, H.M.; Koci, M.D. Poultry body temperature contributes to invasion control through reduced expression of Salmonella pathogenicity island 1 genes in Salmonella enterica serovars Typhimurium and Enteritidis. Appl. Environ. Microbiol. 2015, 81, 8192–8201. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, K.; McVey, A.F.; Clark, I.B.N.; Swain, P.S.; Pilizota, T. General calibration of microbial growth in microplate readers. Sci. Rep. 2016, 6, 38828. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.A.; Falkow, S. The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc. Natl. Acad. Sci. USA 1990, 87, 4304–4308. [Google Scholar] [CrossRef]
- Steele-Mortimer, O.; Méresse, S.; Gorvel, J.P.; Toh, B.H.; Finlay, B.B. Biogenesis of Salmonella typhimurium-containing vacuoles in epithelial cells involves interactions with the early endocytic pathway. Cell. Microbiol. 1999, 1, 33–49. [Google Scholar] [CrossRef] [PubMed]
- Ibarra, J.A.; Knodler, L.A.; Sturdevant, D.E.; Virtaneva, K.; Carmody, A.B.; Fischer, E.R.; Porcella, S.F.; Steele-Mortimer, O. Induction of Salmonella pathogenicity island 1 under different growth conditions can affect Salmonella–host cell interactions in vitro. Microbiology 2010, 156, 1120–1133. [Google Scholar] [CrossRef]
- Kimchi-Sarfaty, C.; Oh, J.M.; Kim, I.W.; Sauna, Z.E.; Calcagno, A.M.; Ambudkar, S.V.; Gottesman, M.M. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 2007, 315, 525–528. [Google Scholar] [CrossRef]
- Levitt, M. Effect of proline residues on protein folding. J. Mol. Biol. 1981, 145, 251–263. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Burghardt, R.C.; Johnson, G.A.; Kim, S.W.; Knabe, D.A.; Li, P.; Li, X.; McKnight, J.R.; Satterfield, M.C.; et al. Proline and hydroxyproline metabolism: Implications for animal and human nutrition. Amino Acids 2011, 40, 1053–1063. [Google Scholar] [CrossRef]
- Widłak, W. Protein Structure and Function. In Molecular Biology; Springer: Berlin/Heidelberg, Germany, 2013; pp. 15–29. [Google Scholar]
- Foster, J.W.; Spector, M.P. How Salmonella survive against the odds. Annu. Rev. Microbiol. 1995, 49, 145–174. [Google Scholar] [CrossRef]
- Pesingi, P.K.; Kumawat, M.; Behera, P.; Dixit, S.K.; Agarwal, R.K.; Goswami, T.K.; Mahawar, M. Protein-L-isoaspartyl methyltransferase (PIMT) is required for survival of Salmonella Typhimurium at 42 °C and contributes to the virulence in poultry. Front. Microbiol. 2017, 8, 361. [Google Scholar] [CrossRef]
- White, M.J.; He, H.; Penoske, R.M.; Twining, S.S.; Zahrt, T.C. PepD participates in the mycobacterial stress response mediated through MprAB and SigE. J. Bacteriol. 2010, 192, 1498–1510. [Google Scholar] [CrossRef] [PubMed]
- Marcus, S.L.; Brumell, J.H.; Pfeifer, C.G.; Finlay, B.B. Salmonella pathogenicity islands: Big virulence in small packages. Microbes Infect. 2000, 2, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Raffatellu, M.; Wilson, R.P.; Chessa, D.; Andrews-Polymenis, H.; Tran, Q.T.; Lawhon, S.; Khare, S.; Adams, L.G.; Bäumler, A.J. SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype Typhimurium invasion of epithelial cells. Infect. Immun. 2005, 73, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Knodler, L.A.; Celli, J.; Hardt, W.D.; Vallance, B.A.; Yip, C.; Finlay, B.B. Salmonella effectors within a single pathogenicity island are differentially expressed and translocated by separate type III secretion systems. Mol. Microbiol. 2002, 43, 1089–1103. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chen, W.; Zhao, Y.; Xu, H.; Hua, Y. Involvement of RecG in H2O2-induced damage repair in Deinococcus radiodurans. Can. J. Microbiol. 2009, 55, 841–848. [Google Scholar] [CrossRef]
- Van Immerseel, F.; Studholme, D.J.; Eeckhaut, V.; Heyndrickx, M.; Dewulf, J.; Dewaele, I.; Van Hoorebeke, S.; Haesebrouck, F.; Van Meirhaeghe, H.; Ducatelle, R.; et al. Salmonella Gallinarum field isolates from laying hens are related to the vaccine strain SG9R. Vaccine 2013, 31, 4940–4945. [Google Scholar] [CrossRef]
Target (Target Gene) | Primer | 5′-Sequence-3′ | Amplified Product Size (bp) | Reference |
---|---|---|---|---|
Salmonella spp. (sdiA) | SdiA1 | AAT ATC GCT TCG TAC CAC | 274 | [14] |
SdiA2 | GTA GGT AAA CGA GGA GCA G | |||
Salmonella Enteritidis (sefb) | Sef.B127L | AGA TTG GGC ACT ACA CGT GT | 535 | [15] |
SefB661R | TGT ACT CCA CCA GGT AAT TG |
Group | Type | Inoculation Dose (CFU/mL) | Number of Chicks | Liver n 1 | Cecum/Cecal Tonsil n 1 |
---|---|---|---|---|---|
PBS | Negative control | - | 14 | 0 | 0 |
6NB | Wild-type | 1 × 107 | 12 | 10 *** | 10 *** |
2S-G10 | Ts mutant | 1 × 107 | 12 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, H.; La, T.-M.; Lee, H.-J.; Kim, T.; Song, S.-u.; Park, G.-H.; Choi, I.-S.; Park, S.-Y.; Lee, J.-B.; Lee, S.-W. Characteristics of a Temperature-Sensitive Mutant Strain of Salmonella Enteritidis and Its Potential as a Live Vaccine Candidate. Vet. Sci. 2023, 10, 313. https://doi.org/10.3390/vetsci10050313
Shin H, La T-M, Lee H-J, Kim T, Song S-u, Park G-H, Choi I-S, Park S-Y, Lee J-B, Lee S-W. Characteristics of a Temperature-Sensitive Mutant Strain of Salmonella Enteritidis and Its Potential as a Live Vaccine Candidate. Veterinary Sciences. 2023; 10(5):313. https://doi.org/10.3390/vetsci10050313
Chicago/Turabian StyleShin, Hyunjin, Tae-Min La, Hong-Jae Lee, Taesoo Kim, Seung-un Song, Gyu-Hyung Park, In-Soo Choi, Seung-Yong Park, Joong-Bok Lee, and Sang-Won Lee. 2023. "Characteristics of a Temperature-Sensitive Mutant Strain of Salmonella Enteritidis and Its Potential as a Live Vaccine Candidate" Veterinary Sciences 10, no. 5: 313. https://doi.org/10.3390/vetsci10050313