Zinc Status of Horses and Ponies: Relevance of Health, Horse Type, Sex, Age, and Test Material
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Approval
2.2. Animals, Housing, and Feeding Regimen
2.3. Sample Collection
2.4. Zn Measurements
2.5. Establishment of a Reference Range
2.6. Statistical Data Analysis
3. Results
3.1. Plasma Zn Concentrations of the Hospitalized Horses and Ponies (Study Part 1)
3.1.1. Calculated Reference Range
3.1.2. Dependence on the Health Status of the Animals
3.1.3. Correlation with the Age of the Animals
3.1.4. Dependence on the Sex of the Animals
3.1.5. Dependence on the Horse Type
3.2. Zn Concentrations in the Mane Hair and Plasma of Healthy Adult Horses and Ponies (Study Part 2)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frassinetti, S.; Bronzetti, G.; Caltavuturo, L.; Cini, M.; Croce, C.D. The role of zinc in life: A review. J. Environ. Pathol. Toxicol. Oncol. 2006, 25, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Baltaci, A.K.; Mogulkoc, R.; Baltaci, S.B. Review: The role of zinc in the endocrine system. Pak. J. Pharm. Sci. 2019, 32, 231–239. [Google Scholar] [PubMed]
- National Research Council (NRC). Nutrient Requirements of Horses, 6th ed.; The National Academic Press: Washington, DC, USA, 2007.
- King, J.C. Assessment of Zinc Status. J. Nutr. 1990, 120, 1474–1479. [Google Scholar] [CrossRef] [PubMed]
- Hartoma, R. Serum testosterone compared with serum zinc in man. Acta Physiol. Scand. 1977, 101, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Buxaderas, S.C.; Farré-Rovira, R. Whole blood and serum zinc levels in relation to sex and age. Rev. Esp. Fisiol. 1985, 41, 463–470. [Google Scholar]
- Schuhmacher, M.; Domingo, J.L.; Corbella, J. Zinc and copper levels in serum and urine: Relationship to biological, habitual and environmental factors. Sci. Total Environ. 1994, 148, 67–72. [Google Scholar] [CrossRef]
- Arnaud, J.; Touvier, M.; Galan, P.; Andriollo-Sanchez, M.; Ruffieux, D.; Roussel, A.-M.; Hercberg, S.; Favieret, A. Determinants of serum zinc concentrations in a population of French middle-age subjects (SU.VI.MAX cohort). Eur. J. Clin. Nutr. 2010, 64, 1057–1064. [Google Scholar] [CrossRef]
- Cymbaluk, N.F.; Bristol, F.M.; Christensen, D.A. Influence of age and breed of equid on plasma copper and zinc concentrations. Am. J. Vet. Res. 1986, 47, 192–195. [Google Scholar]
- Stark, G.; Schneider, B.; Gemeiner, M. Zinc and copper plasma levels in Icelandic horses with Culicoides hypersensitivity. Equine Vet. J. 2001, 33, 506–509. [Google Scholar] [CrossRef]
- Maia, L.; de Souza, M.V.; Bragança Alves Fernandes, R.; Ferreira Fontes, M.P.; de Souza Vianna, M.W.; Vercelli Luz, W. Heavy Metals in Horse Blood, Serum, and Feed in Minas Gerais, Brazil. J. Equine Vet. Sci. 2006, 26, 578–583. [Google Scholar] [CrossRef]
- Kolm, G.; Helsberg, A.; Gemeiner, M. Variations in the concentration of zinc in the blood of Icelandic horses. Vet. Rec. 2005, 157, 549–551. [Google Scholar] [CrossRef]
- Murase, H.; Sakai, S.; Kusano, K.; Hobo, S.; Nambo, Y. Serum zinc levels and their relationship with diseases in racehorses. J. Vet. Med. Sci. 2013, 75, 37–41. [Google Scholar] [CrossRef]
- Cymbaluk, N.F.; Christensen, D.A. Copper, Zinc and Manganese Concentrations in Equine Liver, Kidney and Plasma. Can. Vet. J. 1986, 27, 206–210. [Google Scholar]
- Brummer-Holder, M.; Cassill, B.D.; Hayes, S.H. Interrelationships Between Age and Trace Element Concentration in Horse Mane Hair and Whole Blood. J. Equine Vet. Sci. 2020, 87, 102922. [Google Scholar] [CrossRef]
- Dunnett, M.; Lees, P. Trace element, toxin and drug elimination in hair with particular reference to the horse. Res. Vet. Sci. 2003, 75, 89–101. [Google Scholar] [CrossRef]
- Combs, D.K. Hair Analysis as an Indicator of Mineral Status of Livestock. J. Anim. Sci. 1987, 65, 1753–1758. [Google Scholar] [CrossRef]
- Wells, L.A.; LeRoy, R.; Ralston, S.L. Mineral intake and hair analysis of horses in Arizona. J. Equine Vet. Sci. 1990, 10, 412–416. [Google Scholar] [CrossRef]
- Ghorbani, A.; Mohit, A.; Kuhi, H.D. Effects of dietary mineral intake on hair and serum mineral contents of horses. J. Equine Vet. Sci. 2015, 35, 295–300. [Google Scholar] [CrossRef]
- Kalashnikov, V.V.; Zajcev, A.M.; Atroshchenko, M.M.; Miroshnikov, S.A.; Zavyalov, O.A.; Frolov, A.N.; Skalny, A.V. Assessment of Gender Effects and Reference Values of Mane Hair Trace Element Content in English Thoroughbred Horses (North Caucasus, Russia) Using ICP-DRC-MS. Biol. Trace Elem. Res. 2019, 191, 382–388. [Google Scholar] [CrossRef]
- Asano, K.; Suzuki, K.; Chiba, M.; Sera, K.; Matsumoto, T.; Asano, R.; Sakai, T. Influence of the coat color on the trace elemental status measured by particle-induced X-ray emission in horse hair. Biol. Trace Elem. Res. 2005, 103, 169–176. [Google Scholar] [CrossRef]
- Asano, R.; Suzuki, K.; Otsuka, T.; Otsuka, M.; Sakurai, H. Concentrations of toxic metals and essential minerals in the mane hair of healthy racing horses and their relation to age. J. Vet. Med. Sci. 2002, 64, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Asano, K.; Suzuki, K.; Chiba, M.; Sera, K.; Asano, R.; Sakai, T. Twenty-eight element concentrations in mane hair samples of adult riding horses determined by particle-induced X-ray emission. Biol. Trace Elem. Res. 2005, 107, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Armelin, M.J.A.; Ávila, R.L.; Piasentin, R.M.; Saiki, M. Effect of chelated mineral supplementation on the absorption of Cu, Fe, K, Mn and Zn in horse hair. J. Radioanal. Nucl. Chem. 2003, 258, 449–451. [Google Scholar] [CrossRef]
- van der Merwe, D.; van den Wollenberg, L.; van Hees-Valkenborg, J.; de Haan, T.; van der Drift, S.; Vandendriessche, V. Evaluation of hair analysis for determination of trace mineral status and exposure to toxic heavy metals in horses in the Netherlands. J. Vet. Diagn. Investig. 2022, 34, 1000–1005. [Google Scholar] [CrossRef] [PubMed]
- Ozougwu, J.C. Physiology of the liver. Int. J. Res. Pharm. Biosci. 2017, 4, 13–24. [Google Scholar]
- Wahl, L.; Vervuert, I. Commercial Hair Analysis in Horses: A Tool to Assess Mineral Intake? J. Equine Vet. Sci. 2022, 119, 104145. [Google Scholar] [CrossRef]
- Paßlack, N.; van Bömmel-Wegmann, S.; Vahjen, W.; Zentek, J. Impact of Dietary Zinc Chloride Hydroxide and Zinc Methionine on the Faecal Microbiota of Healthy Adult Horses and Ponies. J. Equine Vet. Sci. 2022, 110, 103804. [Google Scholar] [CrossRef]
- Gesellschaft für Ernährungsphysiologie (GfE) [Society for Nutritional Physiology]; Flachowsky, G.; Kamphues, J.; Rodehutscord, M.; Schenkel, H.; Staudacher, W.; Südekum, K.H.; Susenbeth, A.; Windisch, W. Empfehlungen zur Energie- und Nährstoffversorgung von Pferden [Recommendations for the Energy and Nutrient Supply of Horses], 1st ed.; DLG-Verlag: Frankfurt am Main, Germany, 2014. [Google Scholar]
- Kaneko, J.J.; Harvey, J.W.; Bruss, M.L. Clinical Biochemistry of Domestic Animals, 6th ed.; Academic Press: San Diego, CA, USA, 2008. [Google Scholar]
- Jablan, J.; Grdić Rajković, M.; Inić, S.; Petlevski, R.; Domijan, A.-M. Impact of Anticoagulants on Assessment of Zinc in Plasma. Croat. Chem. Acta 2018, 91, 317–321. [Google Scholar] [CrossRef]
- Hussein, H.A.; Müller, A.-E.; Staufenbiel, R. Comparative evaluation of mineral profiles in different blood specimens of dairy cows at different production phases. Front. Vet. Sci. 2022, 9, 905249. [Google Scholar] [CrossRef]
- Katayev, A.; Balciza, C.; Seccombe, D.W. Establishing Reference Intervals for Clinical Laboratory Test Results: Is There a Better Way? Am. J. Clin. Pathol. 2010, 133, 180–186. [Google Scholar] [CrossRef]
- Friedrichs, K.R.; Harr, K.E.; Freeman, K.P.; Szladovits, B.; Walton, R.M.; Barnhart, K.F.; Blanco-Chavez, J. ASVCP reference interval guidelines: Determination of de novo reference intervals in veterinary species and other related topics. Vet. Clin. Pathol. 2012, 41, 441–453. [Google Scholar] [CrossRef]
- Helgeland, K.; Haider, T.; Jonsen, J. Copper and zinc in human serum in Norway. Relationship to geography, sex and age. Scand. J. Clin. Lab. Investig. 1982, 42, 35–39. [Google Scholar] [CrossRef]
- Gil-Extremera, B.; Maldonado, A.; Ruiz-Martínez, M.; Rubio, M.A. Zinc in adult human serum in Spain. Rev. Esp. Fisiol. 1989, 45, 217–219. [Google Scholar]
- Paz de Moncada, N.; Chacín de Bonilla, L.; Villasmil, J.J.; Estévez, J.; Bonilla, E. Blood levels of zinc in normal subjects. Investig. Clin. 1989, 30, 101–109. [Google Scholar]
- Díaz Romero, C.; Henríquez Sánchez, P.; López Blanco, F.; Rodríguez Rodríguez, E.; Serra Majem, L. Serum copper and zinc concentrations in a representative sample of the Canarian population. J. Trace Elem. Med. Biol. 2002, 16, 75–81. [Google Scholar] [CrossRef]
- Farzin, L.; Moassesi, M.E.; Sajadi, F.; Amiri, M.; Shams, H. Serum Levels of Antioxidants (Zn, Cu, Se) in Healthy Volunteers Living in Tehran. Biol. Trace Elem. Res. 2009, 129, 36–45. [Google Scholar] [CrossRef]
- Dabbaghmanesh, M.H.; Taheri Boshrooyeh, H.; Kalantarhormozi, M.R.; Ranjbar Omrani, G.H. Assessment of Zinc Concentration in Random Samples of the Adult Population in Shiraz, Iran. Iran. Red. Crescent. Med. J. 2011, 13, 249–255. [Google Scholar]
- Hotz, C.; Peerson, J.M.; Brown, K.H. Suggested lower cutoffs of serum zinc concentrations for assessing zinc status: Reanalysis of the second National Health and Nutrition Examination Survey data (1976–1980). Am. J. Clin. Nutr. 2003, 78, 756–764. [Google Scholar] [CrossRef]
- Pinna, K.; Woodhouse, L.R.; Sutherland, B.; Shames, D.M.; King, J.C. Exchangeable zinc pool masses and turnover are maintained in healthy men with low zinc intakes. J. Nutr. 2001, 131, 2288–2294. [Google Scholar] [CrossRef]
- Auer, D.E.; Ng, J.C.; Thompson, H.L.; Inglis, S.; Seawright, A. Acute phase response in horses: Changes in plasma cation concentrations after localised tissue injury. Vet. Rec. 1989, 124, 235–239. [Google Scholar] [CrossRef]
- Kienzle, E.; Bockhorni, T. Nutrition of horses with equine pituitary pars intermedia dysfunction (“Cushing’s syndrome“) treated with pergolid. A field study. Tierarztl. Prax. Ausg. G Grosstiere/Nutztiere 2018, 46, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Gromadzka-Ostrowska, J.; Zalewska, B.; Jakubów, K.; Gozlinski, H. Three-year study on trace mineral concentration in the blood plasma of Shetland pony mares. Camp. Biochem. Physiol. 1985, 82, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Lodhi, L.A.; Qureshi, Z.I.; Ahmad, I.; Hussain, R. Serum mineral profile in various reproductive phases of mares. Pak. Vet. J. 2013, 33, 296–299. [Google Scholar]
- Whittem, T.; Davis, C.; Beresford, G.D.; Gourdie, T. Detection of morphine in mane hair of horses. Aust. Vet. J. 1998, 76, 426–427. [Google Scholar] [CrossRef] [PubMed]
- Nitrayova, S.; Windisch, W.; von Heimendahl, E.; Müller, A.; Bartelt, J. Bioavailability of zinc from different sources in pigs. J. Anim. Sci. 2012, 90, 185–187. [Google Scholar] [CrossRef]
- Huang, Y.L.; Lu, L.; Xi, J.J.; Li, S.F.; Li, X.L.; Liu, S.B.; Zhang, L.Y.; Xi, L.; Luo, X.G. Relative bioavailabilities of organic zinc sources with different chelation strengths for broilers fed diets with low or high phytate content. Anim. Feed Sci. Technol. 2013, 179, 144–148. [Google Scholar] [CrossRef]
- van Bömmel-Wegmann, S.; Zentek, J.; Gehlen, H.; Barton, A.-K.; Paßlack, N. Effects of dietary zinc chloride hydroxide and zinc methionine on the immune system and blood profile of healthy adult horses and ponies. Arch. Anim. Nutr. 2023. Online ahead of print. [Google Scholar] [CrossRef]
Study Population | n | Lower Reference Limit | Upper Reference Limit | Measured Plasma Zn Concentration 1 | |
---|---|---|---|---|---|
Total population | (538) | 4.40 | 31.2 | 14.1 | (0.82–64.3) |
Control group | (221) | 5.60 | 30.4 | 14.3 | (2.98–63.0) |
Patients with internal diseases | (317) | 4.30 | 31.3 | 13.8 | (0.82–64.3) |
Study Population | n | Plasma Zn 1 | |
---|---|---|---|
Control group | (221) | 14.3 | (2.98–63.0) a |
Patients with | |||
gastrointestinal diseases | (188) | 13.2 | (2.02–56.4) a |
respiratory diseases | (40) | 12.6 | (4.42–48.6) a |
eye diseases | (22) | 14.9 | (4.63–64.3) a |
skin diseases | (4) | 14.1 | (7.32–16.9) a |
metabolic diseases | (21) | 17.5 | (7.13–29.0) b |
further diseases | (42) | 13.6 | (0.82–31.3) a |
Study Population | Sex | n | Plasma Zn | p-Value 1 | |
---|---|---|---|---|---|
Total population | Mare | (248) | 13.9 | (2.02–34.5) | 0.872 |
Stallion | (71) | 14.3 | (4.42–31.8) | ||
Gelding | (219) | 14.2 | (0.82–64.3) | ||
Control group | Mare | (90) | 14.5 | (3.09–34.5) | 0.741 |
Stallion | (33) | 13.9 | (5.86–22.3) | ||
Gelding | (98) | 14.3 | (2.98–63.0) | ||
Patients with internal diseases | Mare | (158) | 13.5 | (2.02–33.4) | 0.769 |
Stallion | (38) | 14.7 | (4.42–31.8) | ||
Gelding | (121) | 13.9 | (0.82–64.3) |
Study Population | Horse Type | n | Plasma Zn | p-Value 1 | |
---|---|---|---|---|---|
Total population | Ponies | (154) | 14.0 | (3.83–56.4) | 0.915 |
Horses | (384) | 14.1 | (0.82–64.3) | ||
Control group | Ponies | (57) | 14.3 | (3.83–32.8) | 0.495 |
Horses | (164) | 14.3 | (2.98–63.0) | ||
Patients with internal diseases | Ponies | (97) | 13.8 | (4.22–56.4) | 0.467 |
Horses | (220) | 13.7 | (0.82–64.3) |
p-Value (Polynomial Contrasts) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Zn Chloride Hydroxide | Zn Methionine | Interaction | Zn Chloride Hydroxide | Zn Methionine | Dose | Compound | ||||||||
Maintenance | 120 mg | 240 mg | Maintenance | 120 mg | 240 mg | Lin | Quad | Lin | Quad | Lin | Quad | |||
Plasma Zn (µmol/L) | 10.3 | 9.04 | 9.13 | 9.18 | 6.90 | 10.2 | 0.016 | 0.127 | 0.166 | 0.069 | <0.001 | - | - | - |
(7.57–12.6) | (8.23–10.5) | (7.80–11.5) | (6.82–11.2) | (5.05–10.0) | (7.47–14.0) | |||||||||
Mane hair Zn (mg/kg) | 128 | 126 | 139 | 125 | 133 | 135 | 0.057 | - | - | - | - | 0.003 | 0.292 | 0.074 |
(92.7–145) | (83.5–139) | (102–160) | (87.8–161) | (101–158) | (115–164) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Bömmel-Wegmann, S.; Gehlen, H.; Barton, A.-K.; Büttner, K.; Zentek, J.; Paßlack, N. Zinc Status of Horses and Ponies: Relevance of Health, Horse Type, Sex, Age, and Test Material. Vet. Sci. 2023, 10, 295. https://doi.org/10.3390/vetsci10040295
van Bömmel-Wegmann S, Gehlen H, Barton A-K, Büttner K, Zentek J, Paßlack N. Zinc Status of Horses and Ponies: Relevance of Health, Horse Type, Sex, Age, and Test Material. Veterinary Sciences. 2023; 10(4):295. https://doi.org/10.3390/vetsci10040295
Chicago/Turabian Stylevan Bömmel-Wegmann, Sarah, Heidrun Gehlen, Ann-Kristin Barton, Kathrin Büttner, Jürgen Zentek, and Nadine Paßlack. 2023. "Zinc Status of Horses and Ponies: Relevance of Health, Horse Type, Sex, Age, and Test Material" Veterinary Sciences 10, no. 4: 295. https://doi.org/10.3390/vetsci10040295
APA Stylevan Bömmel-Wegmann, S., Gehlen, H., Barton, A. -K., Büttner, K., Zentek, J., & Paßlack, N. (2023). Zinc Status of Horses and Ponies: Relevance of Health, Horse Type, Sex, Age, and Test Material. Veterinary Sciences, 10(4), 295. https://doi.org/10.3390/vetsci10040295