Biomechanical Comparison between Inverted Triangle and Vertical Configurations of Three Kirschner Wires for Femoral Neck Fracture Fixation in Dogs: A Cadaveric Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimens
2.2. D-Printed Pinning Guides
2.3. Preparation of Femoral Neck Fracture Model
2.4. Fixation Model Preparation
2.5. Spread of the K-Wires
2.6. Surface Area of Support Base of K-Wires
2.7. Distance from K-Wire to Femoral Neck Cortex
2.8. Mechanical Testing
2.9. Statistical Analysis
3. Results
3.1. Descriptive Data
3.2. Mechanical Testing
3.3. Postoperative K-Wire Placement Evaluation
3.4. Modes of Failure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daly, W.R. Femoral head and neck fractures in the dog and cat: A review of 115 cases. Vet. Surg. 1978, 7, 29–38. [Google Scholar] [CrossRef]
- Hayashi, K.; Schulz, K.S.; Fossum, T.W. Management of specific fractures. In The Small Animal Surgery, 5th ed.; Fossum, T.W., Ed.; Elsevier: Philadelphia, PA, USA, 2019; pp. 1114–1118. [Google Scholar]
- Fisher, S.; McLaughlin, R.; Elder, S. In vitro biomechanical comparison of three methods for internal fixation of femoral neck fractures in dogs. Vet. Comp. Orthop. Traumatol. 2012, 25, 36–41. [Google Scholar] [PubMed] [Green Version]
- Guiot, L.P.; Dejardin, L.M. Fractures of the femur. In Veterinary Surgery: Small Animal, 2nd ed.; Johnston, S.A., Tobias, K.M., Eds.; Elsevier: St. Louis, MO, USA, 2018; pp. 1019–1071. [Google Scholar]
- Pérez-Aparicio, F.; Fjeld, T. Femoral neck fractures and capital epiphyseal separations in cats. J. Small Anim. Pract. 1993, 34, 445–449. [Google Scholar] [CrossRef]
- Lambrechts, N.E.; Verstraete, F.; Sumner-Smith, G.; Raath, A.; Van der Linde, M.; Groeneveld, H. Internal fixation of femoral neck fractures in the dog-an in vitro study. Vet. Comp. Orthop. Traumatol. 1993, 6, 188–193. [Google Scholar] [CrossRef]
- Jeffery, N. Internal fixation of femoral head and neck fractures in the cat. J. Small Anim. Pract. 1989, 30, 674–677. [Google Scholar] [CrossRef]
- Hulse, D.; Kerin, S.; Mertens, D. Fractures of the proximal femur. In AO Principles of Fracture Management in the Dog and Cat; Johnson, A.L., Houlton, J.E.F., Vannini, R., Eds.; AO Publishing: Davos Platz, Switzerland, 2005; pp. 272–285. [Google Scholar]
- Yoo, W.J.; Cheon, J.E.; Lee, H.R.; Cho, T.J.; Choi, I.H. Physeal growth arrest by excessive compression: Histological, biochemical, and micro-CT observations in rabbits. Clin. Orthop. Surg. 2011, 3, 309–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, T.W.G.; Sylvestre, A.M. Femur. In Fracture Management for the Small Animal Practitioner, 5th ed.; Sylvestre, A.M., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 153–161. [Google Scholar]
- Mittal, R.; Banerjee, S. Proximal femoral fractures: Principles of management and review of literature. J. Clin. Orthop. Trauma 2012, 3, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.; Hao, J.; Mauffrey, C.; Hammerberg, E.M.; Stahel, P.F.; Hak, D.J. Optimizing stability in femoral neck fracture fixation. Orthopedics 2015, 38, 625–630. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.K.; Su, Y.P.; Chen, C.M.; Chiu, F.Y.; Liu, C.L. Displaced femoral neck fractures in young adults treated with closed reduction and internal fixation. Orthopedics 2010, 33, 873. [Google Scholar] [CrossRef]
- Oakey, J.W.; Stover, M.D.; Summers, H.D.; Sartori, M.; Havey, R.M.; Patwardhan, A.G. Does screw configuration affect subtrochanteric fracture after femoral neck fixation? Clin. Orthop. Relat. Res. 2006, 443, 302–306. [Google Scholar] [CrossRef]
- Yang, J.J.; Lin, L.C.; Chao, K.H.; Chuang, S.Y.; Wu, C.C.; Yeh, T.T.; Lian, Y.T. Risk factors for nonunion in patients with intracapsular femoral neck fractures treated with three cannulated screws placed in either a triangle or an inverted triangle configuration. J. Bone Joint Surg. Am. 2013, 95, 61–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Wang, M.; Zhou, J.; Han, L.; Zhang, H.; Li, C.; Li, L.; Hao, M. Optimum configuration of cannulated compression screws for the fixation of unstable femoral neck fractures: Finite element analysis evaluation. Biomed. Res. Int. 2018, 2018, 1271762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Dong, W.; Qin, S.; Zhang, Y. Definition of ideal configuration for femoral neck screw fixation in older people. Sci. Rep. 2019, 9, 12895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Q.; Shi, B.; Xu, B.; Yuan, J. Obtuse triangle screw configuration for optimal internal fixation of femoral neck fracture: An anatomical analysis. Hip Int. 2019, 29, 72–76. [Google Scholar] [CrossRef]
- Roe, S.; Pijanowski, G.; Johnson, A. Biomechanical properties of canine cortical bone allografts: Effects of preparation and storage. Am. J. Vet. Res. 1988, 49, 873–877. [Google Scholar]
- Shen, M.; Wang, C.; Chen, H.; Rui, Y.F.; Zhao, S. An update on the Pauwels classification. J. Orthop. Surg. Res. 2016, 11, 161. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.J.; Park, Y.S. Plain radiography of the hip: A review of radiographic techniques and image features. Hip Pelvis 2015, 27, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Gurusamy, K.; Parker, M.; Rowlands, T. The complications of displaced intracapsular fractures of the hip: The effect of screw positioning and angulation on fracture healing. J. Bone Joint Surg. Br. 2005, 87, 632–634. [Google Scholar] [CrossRef]
- Fu, Y.C.; Torres, B.T.; Budsberg, S.C. Evaluation of a three-dimensional kinematic model for canine gait analysis. Am. J. Vet. Res. 2010, 71, 1118–1122. [Google Scholar] [CrossRef]
- Selvan, V.; Oakley, M.; Rangan, A.; Al-Lami, M. Optimum configuration of cannulated hip screws for the fixation of intracapsular hip fractures: A biomechanical study. Injury 2004, 35, 136–141. [Google Scholar] [CrossRef]
- Tan, V.; Wong, K.L.; Born, C.T.; Harten, R.; DeLong, W.G. Two-screw femoral neck fracture fixation: A biomechanical analysis of 2 different configurations. Am. J. Orthop. 2007, 36, 481. [Google Scholar] [PubMed]
- Zdero, R.; Keast-Butler, O.; Schemitsch, E.H. A biomechanical comparison of two triple-screw methods for femoral neck fracture fixation in a synthetic bone model. J. Trauma 2010, 69, 1537–1544. [Google Scholar] [CrossRef]
- Filipov, O.; Gueorguiev, B. Unique stability of femoral neck fractures treated with the novel biplane double-supported screw fixation method: A biomechanical cadaver study. Injury 2015, 46, 218–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fletcher, J.W.; Sommer, C.; Eckardt, H.; Knobe, M.; Gueorguiev, B.; Stoffel, K. Intracapsular Femoral Neck Fractures—A Surgical Management Algorithm. Medicina 2021, 57, 791. [Google Scholar] [CrossRef]
- Lindequist, S.; Wredmark, T.; Eriksson, S.A.; Samnegård, E. Screw positions in femoral neck fractures: Comparison of two different screw positions in cadavers. Acta Orthop. Scand. 1993, 64, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Lindequist, S. Cortical screw support in femoral neck fractures: A radiographic analysis of 87 fractures with a new mensuration technique. Acta Orthop. Scand. 1993, 64, 289–293. [Google Scholar] [CrossRef] [Green Version]
- Lindequist, S.; Törnkvist, H. Quality of reduction and cortical screw support in femoral neck fractures. An analysis of 72 fractures with a new computerized measuring method. J. Orthop. Trauma 1995, 9, 215–221. [Google Scholar] [CrossRef]
- Alonso, C.G.; Curiel, M.D.; Carranza, F.H.; Cano, R.P.; Pérez, A.D. Femoral bone mineral density, neck-shaft angle and mean femoral neck width as predictors of hip fracture in men and women. Osteoporos Int. 2000, 11, 714. [Google Scholar] [CrossRef]
- Farias, T.H.S.; Borges, V.Q.; Souza, E.S.; Miki, N.; Abdala, F. Radiographic study on the anatomical characteristics of the proximal femur in Brazilian adults. Rev. Bras. Ortop. 2015, 50, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Wang, L.; Hao, Y.; Wang, Z.; Wang, M.; Ge, S. Analysis of trabecular distribution of the proximal femur in patients with fragility fractures. BMC Musculoskelet. Disord. 2013, 14, 130. [Google Scholar] [CrossRef] [Green Version]
- Gabet, Y.; Kohavi, D.; Voide, R.; Mueller, T.L.; Müller, R.; Bab, I. Endosseous implant anchorage is critically dependent on mechanostructural determinants of peri-implant bone trabeculae. J. Bone Miner. Res. 2010, 25, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Corbee, R.; Maas, H.; Doornenbal, A.; Hazewinkel, H. Forelimb and hindlimb ground reaction forces of walking cats: Assessment and comparison with walking dogs. Vet. J. 2014, 202, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Wynnyckyj, C.; Wise-Milestone, L.; Omelon, S.; Wang, Z.; Grynpas, M. Fracture surface analysis to understand the failure mechanisms of collagen degraded bone. J. Bone Miner. Metab. 2011, 29, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Headrick, J.F.; Zhang, S.; Millard, R.P.; Rohrbach, B.W.; Weigel, J.P.; Millis, D.L. Use of an inverse dynamics method to describe the motion of the canine pelvic limb in three dimensions. Am. J. Vet. Res. 2014, 75, 544–553. [Google Scholar] [CrossRef]
Group | Yield Point (N) | Stiffness (N/mm) | Displacement (mm) |
---|---|---|---|
T | 221.26 ± 108.76 | 54.57 ± 35.34 | 4.59 ± 2.17 |
V | 126.10 ± 46.30 | 37.74 ± 16.66 | 3.85 ± 1.80 |
p values | 0.023 * | 0.165 | 0.380 |
Groups | Anteroposterior Spread (%) | Lateral Spread (%) | Surface Area (mm²) |
---|---|---|---|
T | 43.13 ± 5.82 | 51.25 ± 4.53 | 3.62 ± 0.74 |
V | 49.38 ± 11.27 | 24.25 ± 4.77 | 0.98 ± 0.27 |
p values | 0.113 | <0.001 * | <0.001 * |
Groups | Distance to Cortex (mm) | Cortical Support (n) | ||
---|---|---|---|---|
T | PCa | PCr | D | 2.75 ± 0.46 |
0.56 ± 0.17 | 0.82 ± 0.18 | 0.82 ± 0.30 | ||
V | P | M | D | 1.75 ± 0.46 |
0.68 ±0.20 | 1.21 ± 0.25 | 0.72 ± 0.27 | ||
p values | n/a | 0.007 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heo, S.; Lee, H.; Roh, Y.; Jeong, J. Biomechanical Comparison between Inverted Triangle and Vertical Configurations of Three Kirschner Wires for Femoral Neck Fracture Fixation in Dogs: A Cadaveric Study. Vet. Sci. 2023, 10, 285. https://doi.org/10.3390/vetsci10040285
Heo S, Lee H, Roh Y, Jeong J. Biomechanical Comparison between Inverted Triangle and Vertical Configurations of Three Kirschner Wires for Femoral Neck Fracture Fixation in Dogs: A Cadaveric Study. Veterinary Sciences. 2023; 10(4):285. https://doi.org/10.3390/vetsci10040285
Chicago/Turabian StyleHeo, Seonghyeon, Haebeom Lee, Yoonho Roh, and Jaemin Jeong. 2023. "Biomechanical Comparison between Inverted Triangle and Vertical Configurations of Three Kirschner Wires for Femoral Neck Fracture Fixation in Dogs: A Cadaveric Study" Veterinary Sciences 10, no. 4: 285. https://doi.org/10.3390/vetsci10040285
APA StyleHeo, S., Lee, H., Roh, Y., & Jeong, J. (2023). Biomechanical Comparison between Inverted Triangle and Vertical Configurations of Three Kirschner Wires for Femoral Neck Fracture Fixation in Dogs: A Cadaveric Study. Veterinary Sciences, 10(4), 285. https://doi.org/10.3390/vetsci10040285